Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1761-1771.doi: 10.3864/j.issn.0578-1752.2021.08.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken

WANG GuangYu1(),LI Qing1,TANG WenQian1,WANG HuHu2,XU XingLian2(),QIU WeiFen1   

  1. 1College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province, Nanjing 210023
    2College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-08-14 Accepted:2020-10-14 Online:2021-04-16 Published:2021-04-25
  • Contact: XingLian XU E-mail:gywangfood@163.com;xlxu@njau.edu.cn

Abstract:

【Objective】The effects of nuoB on the properties of Pseudomonas fragi and its spoilage activity on chilled chicken were studied in this work, which could provide a theoretical basis for revealing mechanism of nuoB-mediated chilled chicken spoilage and developing new preservation technologies. 【Method】The nuoB mutant was constructed by inserting a resistance cartridge to analyze the differences of the growth curve, aggregation, motility, and biofilm formation ability between the wild type and the mutant in vitro. The effects on the spoilage characteristics of chilled chicken were studied in situ, including the total viable count, TVBN, pH, and sensory evaluation. This study investigated the influence of nuoB on the physiological properties and spoilage potential of P. fragi. 【Result】The results showed that nuoB did not affect the growth condition, aggregation, and swarming motility of P. fragi. However, the swimming motility and biofilm formation of the mutant were significantly decreased during the incubation period. The in situ assessment of the spoilage ability on chilled chicken showed that there was no significant difference in the total viable count between two groups, which both reached to 10 lg CFU·g -1. The TVBN in the mutant group was significantly lower than that in the wild type group during the whole storage period and exceeded the national standard limit of 15 mg/100 g on the 4th day. The maximum value of TVBN in the mutant group at the end of storage was about half of that in the wild type group. The pH values of both samples were within the normal levels in the first 2 days, while the mutant group was significantly lower than that in the wild type group after the 5th day. Sensory evaluation results showed that slime and odor occurred in both groups on day 4, which could be considered as spoilage, but the spoilage extent of mutant group was slightly weaker than the wild type group. 【Conclusion】The destruction of nuoB did not affect the growth ability of P. fragi, but inhibited its swimming motility, biofilm formation, and spoilage potential in chilled chicken.

Key words: Pseudomonas fragi, gene, bacterial property, spoilage, chilled chicken

Table 1

Primers used in this study"

引物 Primer 序列(5′-3′)
Sequence (5′-3′)
nuoB-F ATATCTAGACCTGCATAGACATTGATGGAGGTTCTAC AAC
nuoB-R ATATCTAGACTTGATCATCACGTCGCTGTTACGTTC
Kpn-Kn-F ATATATATGGTACCGGAATAGGGAACTTCAAGATCCC CTC
Kpn-Kn-R ATATATATGGTACCAGAGCGCTTTTGAAGCTGG
nuoB-outF GAGGCCTGCGACATAGCGACACAAC
nuoB-outR CAGACTTCGCGCTCGTACCAGTTGG
下划线代表限制性内切酶酶切位点
Underline sequences are cleavage sites of restriction enzyme

Fig. 1

pCVD442 vector (a) and diagram of the construction of ΔnuoB mutant (b)"

Fig. 2

Growth curves of P. fragi NMC25 and the ΔnuoB mutant"

Fig. 3

Swarming (a) and swimming (b) motilities of P. fragi NMC25 and the ΔnuoB mutant *, ** indicate significant difference (P<0.05) and extremely significant difference (P<0.01) at the same incubation time, respectively. The same as below"

Fig. 4

Biofilm formation abilities of P. fragi NMC25 and the ΔnuoB mutant"

Fig. 5

Microbial changes of chilled chicken samples"

Fig. 6

TVBN changes of chilled chicken samples *** indicate significant difference (P<0.001). The same as below"

Fig. 7

pH changes of chilled chicken samples"

Fig. 8

Spoilage scores (a) and pictures (b) of chilled chicken samples The dotted line indicates the samples are sensory rejection"

[1] CASABURI A, PIOMBINO P, NYCHAS G J, VILLANI F, ERCOLINI D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, 2015,45:83-102.
pmid: 25481065
[2] PELLISSERY A J, VINAYAMOHAN P G, AMALARADJOU M A R, VENKITANARAYANAN K. Spoilage Bacteria and Meat Quality. Meat Quality Analysis. Elsevier, 2020: 307-334.
[3] MOHAREB F, IRIONDO M, DOULGERAKI A I, VAN HOEK A, AARTS H, CAUCHI M, NYCHAS G J E. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling. Food Control, 2015,57:152-160.
[4] NYCHAS G J E, SKANDAMIS P N, TASSOU C C, KOUTSOUMANIS K P. Meat spoilage during distribution. Meat Science, 2008,78(1/2):77-89.
[5] ERCOLINI D, CASABURI A, NASI A, FERROCINO I, DI MONACO R, FERRANTI P, MAURIELLO G, VILLANI F. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers. International Journal of Food Microbiology, 2010,142(1/2):120-131.
[6] WANG G Y, MA F, WANG H H, XU X L, ZHOU G H. Characterization of extracellular polymeric substances produced by Pseudomonas fragi under air and modified atmosphere packaging. Journal of Food Science, 2017,82(9):2151-2157.
pmid: 28869650
[7] CALDERA L, FRANZETTI L V, VAN COILLIE E, DE VOS P, STRAGIER P, DE BLOCK J, HEYNDRICKX M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiology, 2016,54:142-153.
[8] WANG G Y, MA F, CHEN X J, HAN Y Q, WANG H H, XU X L, ZHOU G H. Transcriptome analysis of the global response of Pseudomonas fragi NMC25 to modified atmosphere packaging stress. Frontiers in Microbiology, 2018,9:1277.
pmid: 29942299
[9] BRANDT U. Energy converting NADH: Quinone oxidoreductase (complex I). Annual Review of Biochemistry, 2006,75:69-92.
[10] ERHARDT H, STEIMLE S, MUDERS V, POHL T, WALTER J, FRIEDRICH T. Disruption of individual nuo-genes leads to the formation of partially assembled NADH: Ubiquinone oxidoreductase (complex I) in Escherichia coli. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012,1817(6):863-871.
[11] FRIEDRICH T, DEKOVIC D K, BURSCHEL S. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (respiratory complex I). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016,1857(3):214-223.
[12] SCHNEIDER D, POHL T, WALTER J, D RNER DT M, BERGER A, SPEHR V, FRIEDRICH T. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (complex I). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008,1777(7/8):735-739.
[13] SPERO M A, AYLWARD F O, CURRIE C R, DONOHUE T J. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH: quinone oxidoreductase (complex I) across bacteria. mBio, 2015,6(2):e00389-15.
[14] SAZANOV L A. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. Journal of Bioenergetics and Biomembranes, 2014,46(4):247-253.
doi: 10.1007/s10863-014-9554-z pmid: 24943718
[15] KUSSMAUL L, HIRST J. The mechanism of superoxide production by NADH: Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proceedings of the National Academy of Sciences, 2006,103(20):7607-7612.
[16] FUKUI H, MORAES C T. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis. Trends in Neurosciences, 2008,31(5):251-256.
[17] RHEIN V, SONG X, WIESNER A, ITTNER L M, BAYSANG G, MEIER F, OZMEN L, BLUETHMANN H, DR SE S, BRANDT U. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proceedings of the National Academy of Sciences, 2009,106(47):20057-20062.
[18] LIN M T, BEAL M F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006,443(7113):787-795.
pmid: 17051205
[19] ZICKERMANN V, WIRTH C, NASIRI H, SIEGMUND K, SCHWALBE H, HUNTE C, BRANDT U. Mechanistic insight from the crystal structure of mitochondrial complex I. Science, 2015,347(6217):44-49.
[20] VINOTHKUMAR K R, ZHU J P, HIRST J. Architecture of mammalian respiratory complex I. Nature, 2014,515(7525):80-84.
pmid: 25209663
[21] TICHI M A, MEIJER W G, TABITA F R. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. Journal of Bacteriology, 2001,183(24):7285-7294.
doi: 10.1128/JB.183.24.7285-7294.2001 pmid: 11717288
[22] WEERAKOON D R, OLSON J W. The Campylobacter jejuni NADH: Ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. Journal of Bacteriology, 2008,190(3):915-925.
doi: 10.1128/JB.01647-07 pmid: 18065531
[23] WELTE C, DEPPENMEIER U. Membrane-bound electron transport in Methanosaeta thermophila. Journal of Bacteriology, 2011,193(11):2868-2870.
[24] BATTCHIKOVA N, EISENHUT M, ARO E M. Cyanobacterial NDH-1 complexes: Novel insights and remaining puzzles. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011,1807(8):935-944.
[25] WANG G Y, LI M, MA F, WANG H H, XU X L, ZHOU G H. Physicochemical properties of Pseudomonas fragi isolates response to modified atmosphere packaging. FEMS Microbiology Letters, 364(11): fnx106.
pmid: 33693760
[26] XU H, ZOU Y Y, LEE H Y, AHN J. Effect of NaCl on the biofilm formation by foodborne pathogens. Journal of Food Science, 2010,75(9):M580-M585.
doi: 10.1111/j.1750-3841.2010.01865.x pmid: 21535614
[27] CONG Y G, WANG J, CHEN Z J, XIONG K, XU Q W, HU F Q. Characterization of swarming motility in Citrobacter freundii. FEMS Microbiology Letters, 2011,317(2):160-171.
[28] HIDALGO G, CHAN M, TUFENKJI N. Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials. Applied and Environmental Microbiology, 2011,77(19):6852-6857.
doi: 10.1128/AEM.05561-11 pmid: 21821749
[29] 王虎虎. 肉源沙门氏菌生物菌膜的形成及转移规律研究[D]. 南京: 南京农业大学, 2014.
WANG H H. Biofilm formation of meat-borne Salmonella and its transferring[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
[30] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中挥发性盐基氮的测定: GB 5009.228-2016. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission. National Food Safety Standard Determination of TVBN in foods: GB 5009.228-2016. Beijing: Standards Press of China, 2017. (in Chinese)
[31] KANG Z L, WANG P, XU X L, ZHU C Z, ZOU Y F, LI K, ZHOU G H. Effect of a beating process, as a means of reducing salt content in Chinese-style meatballs (kung-wan): A dynamic rheological and Raman spectroscopy study. Meat Science, 2014,96(2):669-674.
[32] ZHANG X X, WANG H H, LI N, LI M, XU X L. High CO2-modified atmosphere packaging for extension of shelf-life of chilled yellow- feather broiler meat: A special breed in Asia. LWT-Food Science and Technology, 2015,64(2):1123-1129.
[33] PENNACCHIA C, ERCOLINI D, VILLANI F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, 2011,28(1):84-93.
pmid: 21056779
[34] ZOTTA T, PARENTE E, IANNIELLO R G, DE FILIPPIS F, RICCIARDI A. Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. International Journal of Food Microbiology, 2019,293:102-113.
doi: 10.1016/j.ijfoodmicro.2019.01.008 pmid: 30677559
[35] 张若煜, 董鹏程, 朱立贤, 毛衍伟, 罗欣, 张一敏, 韩明山, 韩广星. 生鲜肉中假单胞菌致腐机制的研究进展. 食品科学, 2020,41(17):291-297.
ZHANG R Y, DONG P C, ZHU L X, MAO Y W, LUO X, ZHANG Y M, HAN M S, HAN G X. Progress in understanding the mechanism by which Pseudomonas spp. causes the spoilage of raw meat. Food Science, 2020,41(17):291-297. (in Chinese)
[36] FLEMMING D, HELLWIG P, FRIEDRICH T. Involvement of Tyrosines 114 and 139 of Subunit NuoB in the Proton Pathway around Cluster N2 in Escherichia coli NADH: Ubiquinone Oxidoreductase. Journal of Biological Chemistry, 2003,278(5):3055-3062.
[37] PRUESS B, NELMS J M, PARK C, WOLFE A J. Mutations in NADH: Ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. Journal of Bacteriology, 1994,176(8):2143-2150.
doi: 10.1128/jb.176.8.2143-2150.1994 pmid: 8157582
[38] 王光宇. 气调包装对冷鲜鸡肉中莓实假单胞菌致腐效应的抑制机制[D]. 南京: 南京农业大学, 2018.
WANG G Y. Inhibition mechanisms of MAP against chilled chicken spoilage associated with Pseudomonas fragi[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[39] DOULGERAKI A I, ERCOLINI D, VILLANI F, NYCHAS G J E. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 2012,157(2):130-141.
doi: 10.1016/j.ijfoodmicro.2012.05.020
[40] LEBERT I, BEGOT C, LEBERT A. Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8-7.0), water activity (0.97-1.00) and temperature (7-25℃). International Journal of Food Microbiology, 1998,39(1/2):53-60.
doi: 10.1016/S0168-1605(97)00116-5
[41] 张雯, 卞丹, 阮成旭, 时祥柱, 倪莉. 大黄鱼源腐败菌的黏附特性与生物膜特性分析. 食品科学, 2019,40(14):84-90.
ZHANG W, BIAN D, RUAN C X, SHI X Z, NI L. Adhesive properties and biofilm characteristics of Pseudosciaena crocea spoilage bacteria. Food Science, 2019,40(14):84-90. (in Chinese)
[42] DI BONAVENTURA G, PICCOLOMINI R, PALUDI D, D’ORIO V, VERGARA A, CONTER M, IANIERI A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. Journal of Applied Microbiology, 2008,104(6):1552-1561.
doi: 10.1111/j.1365-2672.2007.03688.x pmid: 18194252
[43] GRZEŚKOWIAK Ł, COLLADO M C, SALMINEN S. Evaluation of aggregation abilities between commensal fish bacteria and pathogens. Aquaculture, 2012,356:412-414.
[44] KALMOKOFF M, LANTHIER P, TREMBLAY T-L, FOSS M, LAU P C, SANDERS G, AUSTIN J, KELLY J, SZYMANSKI C M. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. Journal of Bacteriology, 2006,188(12):4312-4320.
doi: 10.1128/JB.01975-05 pmid: 16740937
[45] LIU D S, LIANG L, XIA W S, REGENSTEIN J M, ZHOU P. Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at -3 and 0℃. Food Chemistry, 2013,140(1/2):105-114.
doi: 10.1016/j.foodchem.2013.02.034
[46] WANG G Y, MA F, ZENG L Y, BAI Y, WANG H H, XU X L, ZHOU G H. Modified atmosphere packaging decreased Pseudomonas fragi cell metabolism and extracellular proteolytic activities on meat. Food Microbiology, 2018,76:443-449.
doi: 10.1016/j.fm.2018.07.007 pmid: 30166172
[47] BARBUT S, ZHANG L, MARCONE M. Effects of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poultry Science, 2005,84(5):797-802.
doi: 10.1093/ps/84.5.797 pmid: 15913193
[48] COOMBS C E, HOLMAN B W, FRIEND M A, HOPKINS D L. Long-term red meat preservation using chilled and frozen storage combinations: A review. Meat Science, 2017,125:84-94.
doi: 10.1016/j.meatsci.2016.11.025 pmid: 27918929
[49] ODEYEMI O A, ALEGBELEYE O O, STRATEVA M, STRATEV D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 2020,19(2):311-331.
doi: 10.1111/1541-4337.12526 pmid: 33325162
[50] WANG G Y, WANG H H, HAN Y W, XING T, YE K P, XU X L, ZHOU G H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 2017,63:139-146.
doi: 10.1016/j.fm.2016.11.015 pmid: 28040161
[51] BJORKROTH J, KORKEALA H. Ropy slime-producing Lactobacillus sake strains possess a strong competitive ability against a commercial biopreservative. International Journal of Food Microbiology, 1997,38(2/3):117-123.
doi: 10.1016/S0168-1605(97)00097-4
[52] JAFFRES E, LALANNE V, MACE S, CORNET J, CARDINAL M, S ROT T, DOUSSET X, JOFFRAUD J J. Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME-GC-MS analysis. International Journal of Food Microbiology, 2011,147(3):195-202.
doi: 10.1016/j.ijfoodmicro.2011.04.008
[53] JOFFRAUD J J, CARDINAL M, CORNET J, CHASLES J S, LÉON S, GIGOUT F, LEROI F. Effect of bacterial interactions on the spoilage of cold-smoked salmon. International Journal of Food Microbiology, 2006,112(1):51-61.
doi: 10.1016/j.ijfoodmicro.2006.05.014 pmid: 16949172
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[10] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[11] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[12] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[13] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[14] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[15] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!