Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2000-2012.doi: 10.3864/j.issn.0578-1752.2022.10.010
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
ZHANG XueLin(),HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng
[1] |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949): 123-125. doi: 10.1126/science.1176985.
doi: 10.1126/science.1176985 |
[2] |
SHCHERBAK I, MILLAR N, ROBERTSON G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204. doi: 10.1073/pnas.1322434111.
doi: 10.1073/pnas.1322434111 |
[3] |
张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4): 966-975.
doi: 10.3724/SP.J.1011.2011.00966 |
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00966 |
|
[4] |
FIRESTONE M K, FIRESTONE R B, TIEDJE J M. Nitrous oxide from soil denitrification: factors controlling its biological production. Science, 1980, 208(4445): 749-751. doi: 10.1126/science.208.4445.749.
doi: 10.1126/science.208.4445.749 |
[5] |
QIU Y P, JIANG Y, GUO L J, ZHANG L, BURKEY K O, ZOBEL R W, REBERG-HORTON S C, SHEW H D, HU S J. Shifts in the composition and activities of denitrifiers dominate CO2 stimulation of N2O emissions. Environmental Science & Technology, 2019, 53(19): 11204-11213. doi: 10.1021/acs.est.9b02983.
doi: 10.1021/acs.est.9b02983 |
[6] |
SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. doi: 10.1146/annurev-arplant-042110-103846.
doi: 10.1146/annurev-arplant-042110-103846 |
[7] |
陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34(17): 4807-4815. doi: 10.5846/stxb201309242346.
doi: 10.5846/stxb201309242346 |
CHEN Y L, CHEN B D, LIU L, HU Y J, XU T L, ZHANG S. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecologica Sinica, 2014, 34(17): 4807-4815. doi: 10.5846/stxb201309242346. (in Chinese)
doi: 10.5846/stxb201309242346 |
|
[8] |
HODGE A, STORER K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 2015, 386(1/2): 1-19. doi: 10.1007/s11104-014-2162-1.
doi: 10.1007/s11104-014-2162-1 |
[9] |
CAVAGNARO T R, BARRIOS-MASIAS F H, JACKSON L E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and Soil, 2012, 353(1/2): 181-194. doi: 10.1007/s11104-011-1021-6.
doi: 10.1007/s11104-011-1021-6 |
[10] |
BENDER S F, PLANTENGA F, NEFTEL A, JOCHER M, OBERHOLZER H R, KÖHL L, GILES M, DANIELL T J, VAN DER HEIJDEN M G. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal, 2014, 8(6): 1336-1345. doi: 10.1038/ismej.2013.224.
doi: 10.1038/ismej.2013.224 |
[11] |
BENDER S F, CONEN F, VAN DER HEIJDEN M G A. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015, 80: 283-292. doi: 10.1016/j.soilbio.2014.10.016.
doi: 10.1016/j.soilbio.2014.10.016 |
[12] |
LAZCANO C, BARRIOS-MASIAS F H, JACKSON L E. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology and Biochemistry, 2014, 74: 184-192. doi: 10.1016/j.soilbio.2014.03.010.
doi: 10.1016/j.soilbio.2014.03.010 |
[13] |
ZHANG X, WANG L, MA F, SHAN D. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies. Water, Air, & Soil Pollution, 2015, 226(7): 1-10. doi: 10.1007/s11270-015-2493-4.
doi: 10.1007/s11270-015-2493-4 |
[14] |
GUI H, GAO Y, WANG Z H, SHI L L, YAN K, XU J C. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Science of the Total Environment, 2021, 774: 145133. doi: 10.1016/j.scitotenv.2021.145133.
doi: 10.1016/j.scitotenv.2021.145133 |
[15] |
HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759. doi: 10.1073/pnas.1005874107.
doi: 10.1073/pnas.1005874107 |
[16] |
PELLEGRINO E, ÖPIK M, BONARI E, ERCOLI L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 2015, 84: 210-217. doi: 10.1016/j.soilbio.2015.02.020.
doi: 10.1016/j.soilbio.2015.02.020 |
[17] |
LEIGH J, HODGE A, FITTER A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 2009, 181(1): 199-207. doi: 10.1111/j.1469-8137.2008.02630.x.
doi: 10.1111/j.1469-8137.2008.02630.x. |
[18] |
VERESOGLOU S D, CHEN B D, RILLIG M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 2012, 46: 53-62. doi: 10.1016/j.soilbio.2011.11.018.
doi: 10.1016/j.soilbio.2011.11.018 |
[19] |
JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18(1): 35-46. doi: 10.1038/s41579-019-0265-7.
doi: 10.1038/s41579-019-0265-7 |
[20] |
赵明明, 赵鑫盟, 希尼尼根, 于景丽. 农田土壤nirK和nirS型反硝化微生物的研究进展. 微生物前沿, 2018, 7(2): 65-72. doi: 10.12677/AMB.2018.72008.
doi: 10.12677/AMB.2018.72008 |
ZHAO M M, ZHAO X M, XI N N G, YU J L. Advances in nirK and nirS type denitrifying microbes of agricultural soils. Advances in Microbiology, 2018, 7(2): 65-72. doi: 10.12677/amb.2018.72008. (in Chinese)
doi: 10.12677/AMB.2018.72008 |
|
[21] |
曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10): 1781-1798. doi: 10.11674/zwyf.18441.
doi: 10.11674/zwyf.18441 |
CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781-1798. doi: 10.11674/zwyf.18441. (in Chinese)
doi: 10.11674/zwyf.18441 |
|
[22] |
ATUL-NAYYAR A, HAMEL C, HANSON K, GERMIDA J. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza, 2009, 19(4): 239-246. doi: 10.1007/s00572-008-0215-0.
doi: 10.1007/s00572-008-0215-0 |
[23] |
赵乾旭, 史静, 夏运生, 张乃明, 宁东卫, 岳献荣, 杨海宏. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响. 中国农业科学, 2017, 50(14): 2696-2705. doi: 10.3864/j.issn.0578-1752.2017.14.006.
doi: 10.3864/j.issn.0578-1752.2017.14.006 |
ZHAO Q X, SHI J, XIA Y S, ZHANG N M, NING D W, YUE X R, YANG H H. Effect of AMF inoculation on N uptake of interspecific competition between maize and soybean growing on the purple soil. Scientia Agricultura Sinica, 2017, 50(14): 2696-2705. doi: 10.3864/j.issn.0578-1752.2017.14.006. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.006 |
|
[24] |
邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15(6): 1380-1385. doi: 10.11674/zwyf.2009.0619.
doi: 10.11674/zwyf.2009.0619 |
DENG Y, SHEN H, LUO W Q, GUO T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1380-1385. doi: 10.11674/zwyf.2009.0619. (in Chinese)
doi: 10.11674/zwyf.2009.0619 |
|
[25] |
STORER K, COGGAN A, INESON P, HODGE A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytologist, 2018, 220(4): 1285-1295. doi: 10.1111/nph.14931.
doi: 10.1111/nph.14931 |
[26] |
WALDER F, NIEMANN H, NATARAJAN M, LEHMANN M F, BOLLER T, WIEMKEN A. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797. doi: 10.1104/pp.112.195727.
doi: 10.1104/pp.112.195727 |
[27] |
MIRANSARI M. Arbuscular mycorrhizal fungi and nitrogen uptake. Archives of Microbiology, 2011, 193(2): 77-81. doi: 10.1007/s00203-010-0657-6.
doi: 10.1007/s00203-010-0657-6 |
[28] | 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, https://kns.cnki.net/kcms/detail/11.1809.s.20210301.1319.006.html. |
ZHANG X L, LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, ZHOU Y N, HAO X F, YANG Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, https://kns.cnki.net/kcms/detail/11.1809.s.20210301.1319.006.html. (in Chinese) | |
[29] |
BARRETT G, CAMPBELL C D, FITTER A H, HODGE A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48(1): 102-105. doi: 10.1016/j.apsoil.2011.02.002.
doi: 10.1016/j.apsoil.2011.02.002 |
[30] | 韦莉莉, 卢昌熠, 丁晶, 俞慎. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控. 生态学报, 2016, 36(14): 4233-4243. |
WEI L L, LU C Y, DING J, YU S. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system. Acta Ecologica Sinica, 2016, 36(14): 4233-4243. (in Chinese) | |
[31] |
REYNOLDS H L, HARTLEY A E, VOGELSANG K M, BEVER J D, SCHULTZ P A. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytologist, 2005, 167(3): 869-880. doi: 10.1111/j.1469-8137.2005.01455.x.
doi: 10.1111/j.1469-8137.2005.01455.x. |
[32] |
VERESOGLOU S D, SEN R, MAMOLOS A P, VERESOGLOU D S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99(6): 1339-1349. doi: 10.1111/j.1365-2745.2011.01863.x.
doi: 10.1111/j.1365-2745.2011.01863.x. |
[33] | 彭思利, 申鸿, 袁俊吉, 魏朝富, 郭涛. 丛枝菌根真菌对中性紫色土土壤团聚体特征的影响. 生态学报, 2011, 31(2): 498-505. |
PENG S L, SHEN H, YUAN J J, WEI CF, GUO T. Impacts of arbuscular mycorrhizal fungi on soil aggregation dynamics of neutral purple soil. Acta Ecologica Sinica, 2011, 31(2): 498-505. (in Chinese) | |
[34] |
CHEN Y L, CHEN B D, HU Y J, LI T, ZHANG X, HAO Z P, WANG Y S. Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia, 2013, 56(4-6): 205-212. doi: 10.1016/j.pedobi.2013.07.003.
doi: 10.1016/j.pedobi.2013.07.003 |
[35] |
VIAENE T, LANGENDRIES S, BEIRINCKX S, MAES M, GOORMACHTIG S. Streptomyces as a plant's best friend? FEMS Microbiology Ecology, 2016, 92(8): fiw119. doi: 10.1093/femsec/fiw119.
doi: 10.1093/femsec/fiw119 |
[36] |
高桂凤, 党博, 蔡柯, 霍勤. 1株解磷菌株鉴定及影响其解磷能力因素. 东北林业大学学报, 2020, 48(1): 102-104, 109. doi: 10.13759/j.cnki.dlxb.2020.01.018.
doi: 10.13759/j.cnki.dlxb.2020.01.018 |
GAO G F, DANG B, CAI K, HUO Q. Identification of A Streptomyces phosphorus-solubilizing strain and the factors affecting phosphorus-solubilizing ability. Journal of Northeast Forestry University, 2020, 48(1): 102-104, 109. doi: 10.13759/j.cnki.dlxb.2020.01.018. (in Chinese)
doi: 10.13759/j.cnki.dlxb.2020.01.018 |
|
[37] |
李莹, 夏丽丹, 包明琢, 张燕林, 周垂帆. 铁氧化物影响下生物质炭对土壤细菌群落结构的影响. 福建农林大学学报(自然科学版), 2021, 50(1): 115-124. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016 |
LI Y, XIA L D, BAO M Z, ZHANG Y L, ZHOU C F. Effects of biochar on the composition of bacterial community in brown soil under the influence of iron oxides. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(1): 115-124. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016. (in Chinese)
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016 |
|
[38] |
徐佳迎, 周金蓉, 吴杰, 王珏, 程粟裕, 赵鸽, 蒋静艳. 磺胺二甲嘧啶对稻田土壤微生物的中长期效应. 农业环境科学学报, 2020, 39(8): 1757-1766. doi: 10.11654/jaes.2020-0123.
doi: 10.11654/jaes.2020-0123 |
XU J Y, ZHOU J R, WU J, WANG J, CHENG S Y, ZHAO G, JIANG J Y. Medium-and long-term effects of the veterinary antibiotic sulfadiazine on soil microorganisms in a rice field. Journal of Agro-Environment Science, 2020, 39(8): 1757-1766. doi: 10.11654/jaes.2020-0123. (in Chinese)
doi: 10.11654/jaes.2020-0123 |
|
[39] |
KOBLÍŽEK M, DACHEV M, BÍNA D, NUPUR, PIWOSZ K, KAFTAN D. Utilization of light energy in phototrophic Gemmatimonadetes. Journal of Photochemistry and Photobiology B: Biology, 2020, 213: 112085. doi: 10.1016/j.jphotobiol.2020.112085.
doi: 10.1016/j.jphotobiol.2020.112085 |
[40] |
HERMAN D J, FIRESTONE M K, NUCCIO E, HODGE A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiology Ecology, 2012, 80(1): 236-247. doi: 10.1111/j.1574-6941.2011.01292.x.
doi: 10.1111/j.1574-6941.2011.01292.x. |
[41] |
张枝盛, 汪本福, 李阳, 杨晓龙, 胡杨, 王泠菲, 程建平. 氮肥模式对稻田温室气体排放和产量的影响. 农业环境科学学报, 2020, 39(6): 1400-1408. doi: 10.11654/jaes.2019-1185.
doi: 10.11654/jaes.2019-1185 |
ZHANG Z S, WANG B F, LI Y, YANG X L, HU Y, WANG L F, CHENG J P. Effects of different nitrogen regimes on greenhouse gas emissions and grain yields in paddy fields. Journal of Agro- Environment Science, 2020, 39(6): 1400-1408. doi: 10.11654/jaes.2019-1185. (in Chinese)
doi: 10.11654/jaes.2019-1185 |
|
[42] |
刘平静, 肖杰, 孙本华, 高明霞, 张树兰, 杨学云, 冯浩. 长期不同施肥措施下土细菌群落结构变化及其主要影响因素. 植物营养与肥料学报, 2020, 26(2): 307-315. doi: 10.11674/zwyf.19102.
doi: 10.11674/zwyf.19102 |
LIU P J, XIAO J, SUN B H, GAO M X, ZHANG S L, YANG X Y, FENG H. Variation of bacterial community structure and the main influencing factors in Eum-orthic Anthrosols under different fertilization regimes. Plant Nutrition and Fertilizer Science, 2020, 26(2): 307-315. doi: 10.11674/zwyf.19102. (in Chinese)
doi: 10.11674/zwyf.19102 |
|
[43] |
徐永刚, 宇万太, 马强, 周桦. 长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响. 应用生态学报, 2010, 21(8): 2078-2085. doi: 10.13287/j.1001-9332.2010.0288.
doi: 10.13287/j.1001-9332.2010.0288 |
XU Y G, YU W T, MA Q, ZHOU H. Effects of long-term fertilizations on microbial biomass C and N and bacterial community structure in an aquic brown soil. Chinese Journal of Applied Ecology, 2010, 21(8): 2078-2085. doi: 10.13287/j.1001-9332.2010.0288. (in Chinese)
doi: 10.13287/j.1001-9332.2010.0288 |
|
[44] |
孙瑞波, 郭熙盛, 王道中, 褚海燕. 长期施用化肥及秸秆还田对砂姜黑土细菌群落的影响. 微生物学通报, 2015, 42(10): 2049-2057. doi: 10.13344/j.microbiol.china.150031.
doi: 10.13344/j.microbiol.china.150031 |
SUN R B, GUO X S, WANG D Z, CHU H Y. The impact of long-term application of chemical fertilizers and straw returning on soil bacterial community. Microbiology China, 2015, 42(10): 2049-2057. doi: 10.13344/j.microbiol.china.150031. (in Chinese)
doi: 10.13344/j.microbiol.china.150031 |
|
[45] |
马琳, 孙本华, 孙瑞, 高明霞, 杨学云, 张树兰. 长期不同施肥对塿土细菌群落多样性的影响. 西北农业学报, 2015, 24(6): 162-170. doi: 10.7606/j.issn.1004-1389.2015.06.026.
doi: 10.7606/j.issn.1004-1389.2015.06.026 |
MA L, SUN B H, SUN R, GAO M X, YANG X Y, ZHANG S L. Effects of long-term different fertilization on bacterial community diversity in an anthropogenic lou soil. Acta Agriculturae Boreali- occidentalis Sinica, 2015, 24(6): 162-170. doi: 10.7606/j.issn.1004-1389.2015.06.026. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2015.06.026 |
|
[46] |
ZHANG S J, LEHMANN A, ZHENG W S, YOU Z Y, RILLIG M C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytologist, 2019, 222(1): 543-555. doi: 10.1111/nph.15570.
doi: 10.1111/nph.15570 |
[47] | 冯固, 白灯莎, 杨茂秋, 李晓林, 张福锁, 李生秀. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000, 26(6): 743-750. |
FENG G, BAI D S, YANG M Q, LI X L, ZHANG F S, LI S X. Influence of inoculating arbuscular mycorrhizal fungi on growth and salinity tolerance parameters of maize plants. Acta Agronomica Sinica, 2000, 26(6): 743-750. (in Chinese) | |
[48] |
TOLJANDER J F, SANTOS-GONZÁLEZ J C, TEHLER A, FINLAY R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology, 2008, 65(2): 323-338. doi: 10.1111/j.1574-6941.2008.00512.x.
doi: 10.1111/j.1574-6941.2008.00512.x. |
[49] |
BAKHSHANDEH S, CORNEO P E, MARIOTTE P, KERTESZ M A, DIJKSTRA F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture, Ecosystems & Environment, 2017, 247: 130-136. doi: 10.1016/j.agee.2017.06.027.
doi: 10.1016/j.agee.2017.06.027 |
[1] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[2] | CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78. |
[3] | LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709. |
[4] | XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748. |
[5] | LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762. |
[6] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[7] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[8] | LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616. |
[9] | ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. |
[10] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[11] | LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947. |
[12] | QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976. |
[13] | HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691. |
[14] | FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822. |
[15] | DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878. |
|