Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2000-2012.doi: 10.3864/j.issn.0578-1752.2022.10.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods

ZHANG XueLin(),HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng   

  1. Agronomy College, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science /Collaborative Innovation Center of Henan Grain Crops for 2011, Zhengzhou 450002
  • Received:2021-03-19 Accepted:2021-06-10 Online:2022-05-16 Published:2022-06-02

Abstract:

【Objective】 The aim of this study was to understand the mechanism of arbuscular mycorrhizal fungi (AMF) on soil nitrous oxide (N2O) emissions, so as to provide the theoretical basis for increasing maize yield, improving nitrogen (N) use efficiency and reducing greenhouse gas emissions. 【Method】 A 2-factorial greenhouse experiment was established during maize growth periods in 2016 and 2017. The factors were as follows: (1) N fertilizer rates (180 kg N·hm-2 (N1) and 360 kg N·hm-2 (N2)), and (2) three mycorrhizae treatments, including a control (M0, neither roots nor AMF could enter the hyphal chamber from the growth chamber), an AMF treatment (M1, only AMF can enter the hyphal chamber from the growth chamber), and a root treatment (M2, both roots and AMF can enter the hyphal chamber from the growth chamber). Maize grain yield, plant biomass and their N accumulation, and soil N2O flux were measured. Soil bacterial community structure and diversity at maize maturity stage was determined by using the high throughput sequencing technique on Hiseq 2500 PE250. 【Result】 Both N fertilizer rates and mycorrhizae treatments significantly affected maize yield, plant N accumulation and soil N2O flux. Compared with M0, maize yield under M1 and M2 under the conditions of N1 input increased by 38% and 82%, by 30% and 52% for aboveground N accumulation, respectively, and reduced by 26% and 65% for soil inorganic N, respectively. However, under the conditions of N2 input, the maize yield under M1 and M2 increased by 16% and 48%, by 9% and 33% for aboveground N accumulation, and reduced by 34% and 55% for soil inorganic N, respectively. Compared with the M0, the total N2O emission of M1 and M2 treatments reduced by 17% and 40% under the conditions of N1 input, and by 41% and 67% for the N2O emission intensity, respectively; while under the conditions of N2 input, the total N2O emission reduced by 26% and 45%, and by 28% and 57% for the N2O emission intensity, respectively. Nonmetric multidimensional scaling analysis showed that both N fertilizer rates and mycorrhizae treatments had significant effects on bacterial communities’ composition. Compared with N1, the relative abundance of Proteobacteria and Gemmatimonadetes under N2 treatment on phyla level reduced by 6% and 15%, increased by 32% for Actinobacteria, while on genera level, the Streptomyces increased by 27%, and reduced by 8% for Gemmatimonas. Compared with M0 under the conditions of N1 input, the relative abundance of Streptomyces under M1 and M2 increased by 64% and 205%, by 31% and 53% for Gemmatimonas; however, under the conditions of N2 input, the relative abundance of Streptomyces under M1 and M2 increased by 10% and 93%, respectively, the Gemmatimonas for M1 reduced by 2%, and increased by 56% for M2. Moreover, the relative abundance of soil Streptomyces and Gemmatimonas was negatively related with soil N2O emission, but positively related with maize yield. 【Conclusion】 Arbuscular mycorrhizal fungi could reduce soil N2O emission under both higher and lower N fertilizer application rate by increasing the maize N uptake, and regulating the bacterial composition, especially increasing the relative abundance of Streptomyces and Gemmatimonas.

Key words: nitrogen fertilizer, arbuscular mycorrhizal fungi, maize, soil N2O flux, soil bacteria

Table 1

ANOVA on maize grain yield, plant N accumulation and soil inorganic N content"

处理
Treatment
产量
Yield (g/plant)
地上部氮素积累量
ANA (mg/plant)
根系氮素积累量
RNA (mg/plant)
硝态氮
NO3--N (mg·kg-1)
无机氮
Inorganic N (mg·kg-1)
2016 2017 2016 2017 2016 2017 2016 2017 2016 2017
N1M0 33.43c 38.91c 621.75d 1041.00d 51.18c 84.37c 101.37b 39.14b 108.05b 40.46b
N1M1 48.56c 55.38b 867.33c 1287.15cd 57.01bc 96.50c 54.40c 28.25d 61.93c 29.79d
N1M2 77.30b 61.61b 1041.61b 1493.88bc 77.59ab 147.92ab 39.34c 12.70f 44.62d 14.07f
N2M0 69.19b 61.65b 1040.61b 1566.71abc 60.31bc 129.03b 125.70a 51.99a 136.45a 53.24a
N2M1 70.44b 62.32b 1158.00b 1674.16ab 66.6abc 139.52b 60.09c 33.32c 66.11c 35.02c
N2M2 102.63a 76.34a 1580.41a 1893.64a 85.44a 163.87a 58.84c 22.41e 64.50c 23.86e
氮肥处理
Nitrogen (N)
167.06*** 16.64** 108.43*** 21.38*** 2.59 42.88*** 6.77* 45.02*** 7.22* 41.62***
菌根处理
Mycorrhizae (M)
120.83*** 8.86** 49.01*** 5.68* 7.98** 31.81*** 40.79*** 138.86*** 42.31*** 125.63***
N×M 3.80* 1.58 3.21 0.22 0.009 3.11 0.78 2.71 1.18 2.33

Fig. 1

Dynamics of soil N2O flux during maize growth periods in 2016 and 2017"

Fig. 2

Comparison of soil N2O flux, emission accumulation and emission intensity among the treatments"

Table 2

Comparison of bacterial observed species, OTU numbers, estimated indices (Chao 1, Shannon and Simpson) and coverage among different treatments in 2016"

处理Treatment Species OTU number Chao1 Shannon Simpson Coverage
N1M0 3137a 61950a 3560a 9.09b 0.987b 0.986b
N1M1 3135a 60272a 3488a 9.78a 0.996a 0.989a
N1M2 3250a 61658a 3659a 9.65a 0.995ab 0.987ab
N2M0 3133a 62337a 3546a 9.52ab 0.995a 0.987ab
N2M1 3349a 60040a 3750a 9.69a 0.995a 0.987ab
N2M2 3133a 62639a 3465a 9.61a 0.995a 0.988ab

Fig. 3

The relative abundance of soil bacterial community under phylum (A), class (B), order (C), family (D) and genus (E) classification levels among different treatments"

Fig. 4

Nonmetric multidimensional scaling analysis (NMDS) analysis of soil bacterial community Ellipses represent the 95% confidence interval of the OTU distribution in the specific soil management. N1M0: Red dot; N1M1: Red triangle; N1M2: Red rectangle; N2M0: Green dot; N2M1: Green triangle; N2M2: Green rectangle"

Fig. 5

Heat map of correlation between maize grain yield, soil N2O flux and other properties with relative abundance of bacteria communities in the phylum (A) and genus (B) level"

[1] RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949): 123-125. doi: 10.1126/science.1176985.
doi: 10.1126/science.1176985
[2] SHCHERBAK I, MILLAR N, ROBERTSON G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204. doi: 10.1073/pnas.1322434111.
doi: 10.1073/pnas.1322434111
[3] 张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4): 966-975.
doi: 10.3724/SP.J.1011.2011.00966
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00966
[4] FIRESTONE M K, FIRESTONE R B, TIEDJE J M. Nitrous oxide from soil denitrification: factors controlling its biological production. Science, 1980, 208(4445): 749-751. doi: 10.1126/science.208.4445.749.
doi: 10.1126/science.208.4445.749
[5] QIU Y P, JIANG Y, GUO L J, ZHANG L, BURKEY K O, ZOBEL R W, REBERG-HORTON S C, SHEW H D, HU S J. Shifts in the composition and activities of denitrifiers dominate CO2 stimulation of N2O emissions. Environmental Science & Technology, 2019, 53(19): 11204-11213. doi: 10.1021/acs.est.9b02983.
doi: 10.1021/acs.est.9b02983
[6] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. doi: 10.1146/annurev-arplant-042110-103846.
doi: 10.1146/annurev-arplant-042110-103846
[7] 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34(17): 4807-4815. doi: 10.5846/stxb201309242346.
doi: 10.5846/stxb201309242346
CHEN Y L, CHEN B D, LIU L, HU Y J, XU T L, ZHANG S. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecologica Sinica, 2014, 34(17): 4807-4815. doi: 10.5846/stxb201309242346. (in Chinese)
doi: 10.5846/stxb201309242346
[8] HODGE A, STORER K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 2015, 386(1/2): 1-19. doi: 10.1007/s11104-014-2162-1.
doi: 10.1007/s11104-014-2162-1
[9] CAVAGNARO T R, BARRIOS-MASIAS F H, JACKSON L E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and Soil, 2012, 353(1/2): 181-194. doi: 10.1007/s11104-011-1021-6.
doi: 10.1007/s11104-011-1021-6
[10] BENDER S F, PLANTENGA F, NEFTEL A, JOCHER M, OBERHOLZER H R, KÖHL L, GILES M, DANIELL T J, VAN DER HEIJDEN M G. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal, 2014, 8(6): 1336-1345. doi: 10.1038/ismej.2013.224.
doi: 10.1038/ismej.2013.224
[11] BENDER S F, CONEN F, VAN DER HEIJDEN M G A. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015, 80: 283-292. doi: 10.1016/j.soilbio.2014.10.016.
doi: 10.1016/j.soilbio.2014.10.016
[12] LAZCANO C, BARRIOS-MASIAS F H, JACKSON L E. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology and Biochemistry, 2014, 74: 184-192. doi: 10.1016/j.soilbio.2014.03.010.
doi: 10.1016/j.soilbio.2014.03.010
[13] ZHANG X, WANG L, MA F, SHAN D. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies. Water, Air, & Soil Pollution, 2015, 226(7): 1-10. doi: 10.1007/s11270-015-2493-4.
doi: 10.1007/s11270-015-2493-4
[14] GUI H, GAO Y, WANG Z H, SHI L L, YAN K, XU J C. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Science of the Total Environment, 2021, 774: 145133. doi: 10.1016/j.scitotenv.2021.145133.
doi: 10.1016/j.scitotenv.2021.145133
[15] HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759. doi: 10.1073/pnas.1005874107.
doi: 10.1073/pnas.1005874107
[16] PELLEGRINO E, ÖPIK M, BONARI E, ERCOLI L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 2015, 84: 210-217. doi: 10.1016/j.soilbio.2015.02.020.
doi: 10.1016/j.soilbio.2015.02.020
[17] LEIGH J, HODGE A, FITTER A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 2009, 181(1): 199-207. doi: 10.1111/j.1469-8137.2008.02630.x.
doi: 10.1111/j.1469-8137.2008.02630.x.
[18] VERESOGLOU S D, CHEN B D, RILLIG M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 2012, 46: 53-62. doi: 10.1016/j.soilbio.2011.11.018.
doi: 10.1016/j.soilbio.2011.11.018
[19] JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18(1): 35-46. doi: 10.1038/s41579-019-0265-7.
doi: 10.1038/s41579-019-0265-7
[20] 赵明明, 赵鑫盟, 希尼尼根, 于景丽. 农田土壤nirK和nirS型反硝化微生物的研究进展. 微生物前沿, 2018, 7(2): 65-72. doi: 10.12677/AMB.2018.72008.
doi: 10.12677/AMB.2018.72008
ZHAO M M, ZHAO X M, XI N N G, YU J L. Advances in nirK and nirS type denitrifying microbes of agricultural soils. Advances in Microbiology, 2018, 7(2): 65-72. doi: 10.12677/amb.2018.72008. (in Chinese)
doi: 10.12677/AMB.2018.72008
[21] 曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10): 1781-1798. doi: 10.11674/zwyf.18441.
doi: 10.11674/zwyf.18441
CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781-1798. doi: 10.11674/zwyf.18441. (in Chinese)
doi: 10.11674/zwyf.18441
[22] ATUL-NAYYAR A, HAMEL C, HANSON K, GERMIDA J. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza, 2009, 19(4): 239-246. doi: 10.1007/s00572-008-0215-0.
doi: 10.1007/s00572-008-0215-0
[23] 赵乾旭, 史静, 夏运生, 张乃明, 宁东卫, 岳献荣, 杨海宏. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响. 中国农业科学, 2017, 50(14): 2696-2705. doi: 10.3864/j.issn.0578-1752.2017.14.006.
doi: 10.3864/j.issn.0578-1752.2017.14.006
ZHAO Q X, SHI J, XIA Y S, ZHANG N M, NING D W, YUE X R, YANG H H. Effect of AMF inoculation on N uptake of interspecific competition between maize and soybean growing on the purple soil. Scientia Agricultura Sinica, 2017, 50(14): 2696-2705. doi: 10.3864/j.issn.0578-1752.2017.14.006. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.006
[24] 邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15(6): 1380-1385. doi: 10.11674/zwyf.2009.0619.
doi: 10.11674/zwyf.2009.0619
DENG Y, SHEN H, LUO W Q, GUO T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1380-1385. doi: 10.11674/zwyf.2009.0619. (in Chinese)
doi: 10.11674/zwyf.2009.0619
[25] STORER K, COGGAN A, INESON P, HODGE A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytologist, 2018, 220(4): 1285-1295. doi: 10.1111/nph.14931.
doi: 10.1111/nph.14931
[26] WALDER F, NIEMANN H, NATARAJAN M, LEHMANN M F, BOLLER T, WIEMKEN A. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797. doi: 10.1104/pp.112.195727.
doi: 10.1104/pp.112.195727
[27] MIRANSARI M. Arbuscular mycorrhizal fungi and nitrogen uptake. Archives of Microbiology, 2011, 193(2): 77-81. doi: 10.1007/s00203-010-0657-6.
doi: 10.1007/s00203-010-0657-6
[28] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, https://kns.cnki.net/kcms/detail/11.1809.s.20210301.1319.006.html.
ZHANG X L, LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, ZHOU Y N, HAO X F, YANG Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, https://kns.cnki.net/kcms/detail/11.1809.s.20210301.1319.006.html. (in Chinese)
[29] BARRETT G, CAMPBELL C D, FITTER A H, HODGE A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48(1): 102-105. doi: 10.1016/j.apsoil.2011.02.002.
doi: 10.1016/j.apsoil.2011.02.002
[30] 韦莉莉, 卢昌熠, 丁晶, 俞慎. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控. 生态学报, 2016, 36(14): 4233-4243.
WEI L L, LU C Y, DING J, YU S. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system. Acta Ecologica Sinica, 2016, 36(14): 4233-4243. (in Chinese)
[31] REYNOLDS H L, HARTLEY A E, VOGELSANG K M, BEVER J D, SCHULTZ P A. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytologist, 2005, 167(3): 869-880. doi: 10.1111/j.1469-8137.2005.01455.x.
doi: 10.1111/j.1469-8137.2005.01455.x.
[32] VERESOGLOU S D, SEN R, MAMOLOS A P, VERESOGLOU D S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99(6): 1339-1349. doi: 10.1111/j.1365-2745.2011.01863.x.
doi: 10.1111/j.1365-2745.2011.01863.x.
[33] 彭思利, 申鸿, 袁俊吉, 魏朝富, 郭涛. 丛枝菌根真菌对中性紫色土土壤团聚体特征的影响. 生态学报, 2011, 31(2): 498-505.
PENG S L, SHEN H, YUAN J J, WEI CF, GUO T. Impacts of arbuscular mycorrhizal fungi on soil aggregation dynamics of neutral purple soil. Acta Ecologica Sinica, 2011, 31(2): 498-505. (in Chinese)
[34] CHEN Y L, CHEN B D, HU Y J, LI T, ZHANG X, HAO Z P, WANG Y S. Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia, 2013, 56(4-6): 205-212. doi: 10.1016/j.pedobi.2013.07.003.
doi: 10.1016/j.pedobi.2013.07.003
[35] VIAENE T, LANGENDRIES S, BEIRINCKX S, MAES M, GOORMACHTIG S. Streptomyces as a plant's best friend? FEMS Microbiology Ecology, 2016, 92(8): fiw119. doi: 10.1093/femsec/fiw119.
doi: 10.1093/femsec/fiw119
[36] 高桂凤, 党博, 蔡柯, 霍勤. 1株解磷菌株鉴定及影响其解磷能力因素. 东北林业大学学报, 2020, 48(1): 102-104, 109. doi: 10.13759/j.cnki.dlxb.2020.01.018.
doi: 10.13759/j.cnki.dlxb.2020.01.018
GAO G F, DANG B, CAI K, HUO Q. Identification of A Streptomyces phosphorus-solubilizing strain and the factors affecting phosphorus-solubilizing ability. Journal of Northeast Forestry University, 2020, 48(1): 102-104, 109. doi: 10.13759/j.cnki.dlxb.2020.01.018. (in Chinese)
doi: 10.13759/j.cnki.dlxb.2020.01.018
[37] 李莹, 夏丽丹, 包明琢, 张燕林, 周垂帆. 铁氧化物影响下生物质炭对土壤细菌群落结构的影响. 福建农林大学学报(自然科学版), 2021, 50(1): 115-124. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016
LI Y, XIA L D, BAO M Z, ZHANG Y L, ZHOU C F. Effects of biochar on the composition of bacterial community in brown soil under the influence of iron oxides. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(1): 115-124. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016. (in Chinese)
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016
[38] 徐佳迎, 周金蓉, 吴杰, 王珏, 程粟裕, 赵鸽, 蒋静艳. 磺胺二甲嘧啶对稻田土壤微生物的中长期效应. 农业环境科学学报, 2020, 39(8): 1757-1766. doi: 10.11654/jaes.2020-0123.
doi: 10.11654/jaes.2020-0123
XU J Y, ZHOU J R, WU J, WANG J, CHENG S Y, ZHAO G, JIANG J Y. Medium-and long-term effects of the veterinary antibiotic sulfadiazine on soil microorganisms in a rice field. Journal of Agro-Environment Science, 2020, 39(8): 1757-1766. doi: 10.11654/jaes.2020-0123. (in Chinese)
doi: 10.11654/jaes.2020-0123
[39] KOBLÍŽEK M, DACHEV M, BÍNA D, NUPUR, PIWOSZ K, KAFTAN D. Utilization of light energy in phototrophic Gemmatimonadetes. Journal of Photochemistry and Photobiology B: Biology, 2020, 213: 112085. doi: 10.1016/j.jphotobiol.2020.112085.
doi: 10.1016/j.jphotobiol.2020.112085
[40] HERMAN D J, FIRESTONE M K, NUCCIO E, HODGE A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiology Ecology, 2012, 80(1): 236-247. doi: 10.1111/j.1574-6941.2011.01292.x.
doi: 10.1111/j.1574-6941.2011.01292.x.
[41] 张枝盛, 汪本福, 李阳, 杨晓龙, 胡杨, 王泠菲, 程建平. 氮肥模式对稻田温室气体排放和产量的影响. 农业环境科学学报, 2020, 39(6): 1400-1408. doi: 10.11654/jaes.2019-1185.
doi: 10.11654/jaes.2019-1185
ZHANG Z S, WANG B F, LI Y, YANG X L, HU Y, WANG L F, CHENG J P. Effects of different nitrogen regimes on greenhouse gas emissions and grain yields in paddy fields. Journal of Agro- Environment Science, 2020, 39(6): 1400-1408. doi: 10.11654/jaes.2019-1185. (in Chinese)
doi: 10.11654/jaes.2019-1185
[42] 刘平静, 肖杰, 孙本华, 高明霞, 张树兰, 杨学云, 冯浩. 长期不同施肥措施下土细菌群落结构变化及其主要影响因素. 植物营养与肥料学报, 2020, 26(2): 307-315. doi: 10.11674/zwyf.19102.
doi: 10.11674/zwyf.19102
LIU P J, XIAO J, SUN B H, GAO M X, ZHANG S L, YANG X Y, FENG H. Variation of bacterial community structure and the main influencing factors in Eum-orthic Anthrosols under different fertilization regimes. Plant Nutrition and Fertilizer Science, 2020, 26(2): 307-315. doi: 10.11674/zwyf.19102. (in Chinese)
doi: 10.11674/zwyf.19102
[43] 徐永刚, 宇万太, 马强, 周桦. 长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响. 应用生态学报, 2010, 21(8): 2078-2085. doi: 10.13287/j.1001-9332.2010.0288.
doi: 10.13287/j.1001-9332.2010.0288
XU Y G, YU W T, MA Q, ZHOU H. Effects of long-term fertilizations on microbial biomass C and N and bacterial community structure in an aquic brown soil. Chinese Journal of Applied Ecology, 2010, 21(8): 2078-2085. doi: 10.13287/j.1001-9332.2010.0288. (in Chinese)
doi: 10.13287/j.1001-9332.2010.0288
[44] 孙瑞波, 郭熙盛, 王道中, 褚海燕. 长期施用化肥及秸秆还田对砂姜黑土细菌群落的影响. 微生物学通报, 2015, 42(10): 2049-2057. doi: 10.13344/j.microbiol.china.150031.
doi: 10.13344/j.microbiol.china.150031
SUN R B, GUO X S, WANG D Z, CHU H Y. The impact of long-term application of chemical fertilizers and straw returning on soil bacterial community. Microbiology China, 2015, 42(10): 2049-2057. doi: 10.13344/j.microbiol.china.150031. (in Chinese)
doi: 10.13344/j.microbiol.china.150031
[45] 马琳, 孙本华, 孙瑞, 高明霞, 杨学云, 张树兰. 长期不同施肥对塿土细菌群落多样性的影响. 西北农业学报, 2015, 24(6): 162-170. doi: 10.7606/j.issn.1004-1389.2015.06.026.
doi: 10.7606/j.issn.1004-1389.2015.06.026
MA L, SUN B H, SUN R, GAO M X, YANG X Y, ZHANG S L. Effects of long-term different fertilization on bacterial community diversity in an anthropogenic lou soil. Acta Agriculturae Boreali- occidentalis Sinica, 2015, 24(6): 162-170. doi: 10.7606/j.issn.1004-1389.2015.06.026. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2015.06.026
[46] ZHANG S J, LEHMANN A, ZHENG W S, YOU Z Y, RILLIG M C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytologist, 2019, 222(1): 543-555. doi: 10.1111/nph.15570.
doi: 10.1111/nph.15570
[47] 冯固, 白灯莎, 杨茂秋, 李晓林, 张福锁, 李生秀. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000, 26(6): 743-750.
FENG G, BAI D S, YANG M Q, LI X L, ZHANG F S, LI S X. Influence of inoculating arbuscular mycorrhizal fungi on growth and salinity tolerance parameters of maize plants. Acta Agronomica Sinica, 2000, 26(6): 743-750. (in Chinese)
[48] TOLJANDER J F, SANTOS-GONZÁLEZ J C, TEHLER A, FINLAY R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology, 2008, 65(2): 323-338. doi: 10.1111/j.1574-6941.2008.00512.x.
doi: 10.1111/j.1574-6941.2008.00512.x.
[49] BAKHSHANDEH S, CORNEO P E, MARIOTTE P, KERTESZ M A, DIJKSTRA F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture, Ecosystems & Environment, 2017, 247: 130-136. doi: 10.1016/j.agee.2017.06.027.
doi: 10.1016/j.agee.2017.06.027
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!