Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 4018-4032.doi: 10.3864/j.issn.0578-1752.2021.18.019

• RESEARCH NOTES • Previous Articles    

Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties

HUANG ZiYue1(),LIU WenJun2,QIN RenLiu1,PANG ShiChan1,XIAO Jian1,YANG ShangDong1()   

  1. 1Agricultural College of Guangxi University, National Experimental Teaching Demonstration Center of Plant Science, Nanning 530004
    2Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2020-10-19 Accepted:2021-06-08 Online:2021-09-16 Published:2021-09-26
  • Contact: ShangDong YANG E-mail:670790340@qq.com;ysd706@gxu.edu.cn

Abstract:

【Objective】The aim of this study was to provide a theoretical basis for utilizing functional strains of endophytic bacteria in different varieties of pumpkins, as well as to explore new directions for pumpkin breeding. 【Method】The endophytic bacterial community composition and PICRUSt gene functions of 5 pumpkins varieties were analyzed based on MiSeq high-throughput sequencing results. The diversity and richness of endophytic bacterial community compositions in terms of 5 different pumpkin varieties were compared at phylum and genus levels.【Results】In total, 18 phyla, 30 classes, 101 orders, 199 families, 362 genera, 567 species and 863 OTUs could be obtained as the endophytic bacterial composition in 5 pumpkin varieties. There was no significant difference in endophytic bacteria diversity among pumpkin varieties. Significant differences in total numbers of endophytic bacteria were observed at different classification levels among pumpkin varieties. The proteobacteria was the dominant bacteria in terms of different 5 pumpkin varieties at the phylum level, but the abundance and proportion in every pumpkin variety were quite different. Moreover, Pseudomonas, Mycobacterium, Ensifer and Devosia were the dominant endophytic bacteria at genus level of different 5 pumpkin varieties, but their composition and abundance varied with pumpkin varieties. The composition and proportion of dominant endophytes at the phylum and genus level were similar between the hybrid and parent species. PICRUSt analysis also showed that endophytic bacteria inhabited in terms of different pumpkin varieties, mainly involved in 6 biological metabolic pathways and 46 sub-functions. However, there were no significant differences of endophytic bacterial genes in terms of different pumpkin varieties at the secondary functional layer. However, the numbers of gene functional copies varied with different varieties. The diversity and abundance of endophytic bacteria in terms of pumpkin were significantly affected by environmental factors. Moreover, the different endophytic bacterial community structures could be found in different pumpkin varieties. Meanwhile, a higher abundance of endophytic bacteria tended to enrich in terms of higher quality hybrids. Bacteria in 13 genera of bacteria, including Pseudomonas, Mycobacterium, Ensifer, and Devosia, etc, were the dominant endophytic bacterial genera in terms of 5 different pumpkin varieties. By contrast, Glycomyces, Candidatus_Rubidus, and Actinokineospora were the specific dominant endophytic bacterial genera in terms of Guifeng NO.7. In addition, 37 secondary functional layer functions were all the highest endophytic bacterial genes in terms of Guifeng NO.7 among the five pumpkin varieties, which involved the metabolisms of carbohydrate, amino acid, cofactors, and vitamins.【Conclusion】The higher dominant endophytic bacterial genus and the richer secondary functional genes were essential reasons for higher quality of Guifeng NO.7 than that of other four pumpkin varieties. Glycomyces, Candidatus_Rubidus, and Actinokineospora could be considered as the alternative benefit endophytic bacterial genera for improving pumpkin quality.

Key words: pumpkin (Cucurbita moschata Duch.), endophytic Bacteria, diversity, Miseq High-Throughput Sequencing, function rediction

Table 1

Quality characters of different pumpkin varieties"

样品
Sample
南瓜品种名称
Pumpkin variety
可溶性固形物
Soluble solid (%)
VC含量
Vitamin C (mg/100 g)
可溶性蛋白
Soluble protein (g/100 g)
淀粉含量
Starch content (g/100 g)
1 桂丰7号香芋南瓜 Guifeng NO.7 7.97±0.9a 2.96±0.55a 3.09±0.22a 7.13±0.70a
2 桂丰8号南瓜Guifeng NO.8 6.87±0.15b 0.53±0.39d 2.79±0.33a 4.76±1.11b
3 杂交F1代 Hybrid(G1519×G1511) 5.27±0.06c 1.7±0.04b 1.72±0.69b 3.52±0.05c
4 G1519 5.33±0.06c 0.95±0.27cd 1.59±0.16b 1.84±0.05d
5 G1511 4.97±0.12c 1.27±0.46bc 2.6±0.25a 1.58±0.10d

Table 2

The primer name and sequence"

引物名称
Primer name
引物类型
Primer type
引物序列
Primer sequence
测序平台
Sequencing platform
测序长度
Sequencing length (bp)
799F_1193R 植物内生细菌
Bacterial endophytes
5′-AACMGGATTAGATACCCKG-3′ MiSeq 394

Table 3

Alpha diversity index of endophytic bacteria in terms of different pumkin varieties"

样品
Sample
香浓指数
Shannon index
辛普森指数
Simpson index
Ace指数
Ace index
Chao1指数
Chao1 index
覆盖率
Coverage rate
桂丰7号香芋南瓜 Guifeng NO.7 3.65±0.47a 0.11±0.06a 524.14±29.83a 508.14±43.73a 0.99
桂丰8号南瓜 Guifeng NO.8 3.45±0.73a 0.16±0.16a 535.75±94.62a 499.81±53.18a 0.99
杂交F1代 Hybrid (G1519×G1511) 4.05±0.60a 0.08±0.06a 565.45±83.11a 554.50±78.32a 0.99
G1519 3.88±0.33a 0.07±0.05a 533.63±11.88a 531.93±16.20a 0.99
G1511 3.77±0.69a 0.11±0.08a 559.50±40.47a 571.41±34.24a 0.99

Table 4

Statistical table of species abundance of different pumpkin varieties"

品种
Varity

Phylum

Class

Order

Family

Genus

Species
OTU
桂丰7号香芋南瓜 Guifeng NO.7 19 28 88 158 294 434 604
桂丰8号南瓜 Guifeng NO.8 17 29 87 161 289 432 606
杂交F1代 Hybrid (G1519×G1511) 17 27 87 166 312 473 686
G1519 18 29 89 171 306 449 628
G1511 17 29 89 165 299 444 646
总计 Total 18 30 101 199 362 567 863

Fig. 1

Venn diagram of endophytic bacteria at OTU level in different pumpkin varieties"

Fig. 2

Relative abundance of endophytic bacteria at phylum level in different pumpkin varieties"

Table 5

Percent of dominant bacterial community on Phylum level"

门分类水平
Phylum level
桂丰7号
Guifeng NO.7
桂丰8号
Guifeng NO.8
杂交F1
Hybrid (G1519×G1511)
G1519 G1511
变形菌门 Proteobacteria 63.74% 76.26% 63.49% 76.55% 63.66%
放线菌门 Actinobacteria 30.55% 14.55% 28.55% 18.98% 32.28%
厚壁菌门 Firmicutes 3.31% 2.76% 4.51% 2.81% 2.10%
拟杆菌门 Bacteroidetes 1.46% 2.47% 1.64% - 1.06%
衣原体门 Chlamydiae - 2.27% - - -
其他 Others - 1.70% 1.77% - -

Fig. 3

Relative abundance of endophytic bacteria on genus level in different pumpkin varieties"

Table 6

Percent of dominant community on Genus level of bacteria"

属分类水平
Genus level
桂丰7号
Guifeng NO.7
桂丰8号
Guifeng NO. 8
杂交F1
Hybrid (G1519×G1511)
G1519 G1511
假单胞菌属 Pseudomonas 26.86% 33.02% 19.45% 12.93% 25.88%
分支杆菌属 Mycobacterium 10.08% 1.75% 4.22% 3.06% 4.33%
Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium 2.41% 2.95% 5.98% 5.27% 1.28%
剑菌属 Ensifer 2.66% 1.56% 1.36% 8.28% 1.18%
unclassified_f__Rhizobiaceae 1.54% 3.79% 1.83% 6.77% 1.04%
德沃斯氏菌属 Devosia 1.64% 4.24% 3.14% 4.16% 1.74%
苯基杆菌属 Phenylobacterium 1.63% 1.03% 2.82% 3.26% 4.25%
鞘氨醇单胞菌属 Sphingomonas 3.07% 1.72% 3.31% 2.86% 1.93%
链霉菌属 Streptomyces 2.42% 1.50% 3.10% 1.32% 3.91%
细杆菌属 Microbacterium 1.29% 1.25% 1.46% 1.11% 4.93%
生根瘤菌属 Mesorhizobium 3.00% 1.49% 1.05% 1.91% 1.47%
假黄色单胞菌属 Pseudoxanthomonas 2.11% 1.41% 2.48% 1.03% 1.72%
芽孢杆菌属 Bacillus 1.77% 2.05% 1.96% 1.06% 1.09%
糖霉菌属 Glycomyces 3.48% - - - -
Candidatus_Rubidus 2.22% - - - -
Actinokineospora 1.55% - - - -
纤发菌属 Methylibium - - - 1.84% -

Fig. 4

The variation of predicted functional profiles in different pumpkin samples (hierarchy level 1)"

Table 7

The proportion of predicted functional profiles in different pumpkin samples (Pathway level 1)"

一级功能层
Pathway level 1
桂丰7号
Guifeng NO.7
桂丰8号
Guifeng NO.8
杂交F1
Hybrid (G1519×G1511)
G1519 G1511
代谢 Metabolism 67.46% 65.45% 67.43% 66.44% 67.66%
环境信息处理 Environmental Information Processing 10.89% 11.77% 10.60% 11.25% 10.41%
细胞过程 Cellular Processes 7.51% 8.31% 7.31% 7.95% 7.19%
遗传信息处理 Genetic Information Processing 7.03% 7.12% 7.52% 7.01% 7.59%
人类疾病 Human Diseases 4.82% 5.16% 4.81% 5.14% 4.79%
有机系统 Organismal Systems 2.29% 2.19% 2.32% 2.21% 2.36%

Fig. 5

The variation of predicted functional profiles in different samples (hierarchy level 2)"

Table 8

The proportion of some predicted functional profiles in different samples (Pathway level 2)"

二级功能层
Pathway level 2
桂丰7号
Guifeng NO.7
桂丰8号
Guifeng NO.8
杂交F1
Hybrid (G1519×G1511)
G1519 G1511
能量代谢 Energy metabolism 23.36% 19.44% 15.78% 19.90% 21.52%
类脂化合物代谢作用 Lipid metabolism 24.51% 19.17% 15.68% 19.32% 21.33%
碳水化合物代谢 Carbohydrate metabolism 23.53% 19.13% 15.92% 19.62% 21.80%
氨基酸代谢 Amino acid metabolism 23.79% 19.46% 15.60% 19.56% 21.60%
辅助因子和维生素的代谢 Metabolism of cofactors and vitamins 23.26% 19.80% 15.76% 19.63% 21.56%
其他氨基酸的代谢 Metabolism of other amino acids 23.85% 19.87% 15.55% 19.70% 21.03%
细胞运动 Cell motility 21.77% 22.53% 14.79% 20.98% 19.92%
循环系统 Circulatory system 21.45% 21.58% 15.20% 21.09% 20.68%
感染性疾病:病毒性 Infectious diseases: Viral 18.01% 27.21% 14.22% 20.36% 20.21%
信号分子和相互作用 Signaling molecules and interaction 21.17% 10.33% 43.16% 12.53% 12.81%
发育 Development 20.59% 21.21% 23.68% 19.04% 15.48%
细胞生长和死亡 Cell growth and death 21.58% 19.74% 15.44% 23.15% 20.08%
环境适应 Environmental adaptation 21.55% 20.17% 15.49% 22.56% 20.23%
消化系统 Digestive system 22.64% 19.28% 17.45% 17.83% 22.79%
[1] 熊建华, 罗秋水, 闵嗣璠, 周雯雯, 孙文刚. 蜜本南瓜不同部位营养成分分析与评价. 湖北农业科学, 2009, 48(9): 2239-2241.
XIONG J H, LUO Q S, MIN S F, ZHOU W W, SUN W G. Analysis and evaluation on the nutritional components in different parts of miben pumpkin. Hubei Agricultural Sciences, 2009, 48(9): 2239-2241. (in Chinese)
[2] 葛宇, 韩文昊, 刘大伟. 南瓜属作物育种研究回顾和展望. 中国蔬菜, 2016(4): 12-21.
GE Y, HAN W H, LIU D W. Review and outlook on Cucurbita breeding research. China Vegetables, 2016(4): 12-21. (in Chinese)
[3] 黄丽, 张荣易, 谭志琼, 陈德强, 宋根苗. 海南五指山野生美花兰根部内生真菌研究. 西南农业学报, 2012, 25(2): 657-660.
HUANG L, ZHANG R Y, TAN Z Q, CHEN D Q, SONG G M. Researches on fungal endophyte in root of wild Cymbidium insigne from Wuzhi mountain. Southwest China Journal of Agricultural Sciences, 2012, 25(2): 657-660. (in Chinese)
[4] 古丽尼沙∙沙依木, 张志东, 杨波, 章世奎, 唐琦勇, 宋素琴, 朱静, 郭春苗, 顾美英. 不同品种苹果树内生细菌群落多样性及功能. 微生物学通报, 2020, 47(2): 500-511.
GULINISHA∙SHAYIMU, ZHANG Z D, YANG B, ZHANG S K, TANG Q Y, SONG S Q, ZHU J, GUO C M, GU M Y. Endophytic bacterial community diversity and function in apple trees of different varieties. Microbiology China, 2020, 47(2): 500-511. (in Chinese)
[5] MINAMISAWA K, NISHIOKA K, MIYAKI T, YE B, MIYAMOTO T, YOU M, SAITO A, SAITO M, BARRAQUIO W L, TEAUMROONG N, SEIN T, SATO T. Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants. Applied and Environmental Microbiology, 2004, 70(5): 3096-3102.
doi: 10.1128/AEM.70.5.3096-3102.2004
[6] 王宇婷, 易有金, 杨建奎, 曾静. 植物内生菌抗菌活性物质的研究进展. 农产品加工∙学刊, 2013(2): 1-5.
WANG Y T, YI Y J, YANG J K, ZENG J. Progress in antimicrobial components from endophyte. Academic Periodical of Farm Products Processing, 2013(2): 1-5. (in Chinese)
[7] 张冠庆, 魏文静, 白雪, 刘同祥. 植物内生菌药用研究进展. 中央民族大学学报(自然科学版), 2013, 22(2): 60-62.
ZHANG G Q, WEI W J, BAI X, LIU T X. Advances of pharmaceutical research on plant endophytes. Journal of MinZu University of China (Natural Sciences Edition), 2013, 22(2): 60-62. (in Chinese)
[8] AHLHOLM J U, HELANDER M, HENRIKSSON J, METZLER M, SAIKKONE K. Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution, International Journal of Organic Evolution, 2002, 56(8): 1566-1573.
doi: 10.1111/evo.2002.56.issue-8
[9] ZHANG J, ZHANG C W, YANG J, ZHANG R J, GAO J S, ZHAO X, ZHAO J J, ZHAO D F, ZHANG X X. Insights into endophytic bacterial community structures of seeds among various Oryza sativa L. rice genotypes. Journal of Plant Growth Regulation, 2019, 38(1): 93-102.
doi: 10.1007/s00344-018-9812-0
[10] LAMIT L J, LAU M K, STHULTZ C M, WOOLEY S C, WHITHAM T G, GEHRING C A. Tree genotype and genetically based growth traits structure twig endophyte communities. American Journal of Botany, 2014, 101(3): 467-478.
doi: 10.3732/ajb.1400034
[11] HARDOIM P R, ANDREOTE F D, REINHOLD-HUREK B, SESSITSCH A, VAN OVERBEEK L S, VAN ELSAS J D. Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiology Ecology, 2011, 77:154-164.
doi: 10.1111/fem.2011.77.issue-1
[12] XU N, TAN G C, WANG H Y, GAI X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016, 74:1-8.
doi: 10.1016/j.ejsobi.2016.02.004
[13] 孙珂岱. 严重烧伤后肠黏膜屏障损伤的机理及防治研究[D]. 重庆: 第三军医学, 2015.
SUN K D. The mechanism and treatment of intestinal mucosa barrier damage post severe burn[D]. Chongqing: Third Military Medical University, 2015. (in Chinese)
[14] 徐帅, 林奕岑, 周梦佳, 倪学勤, 曾东, 曾燕. 基于高通量测定肉鸡回肠微生物多样性及PICRUSt基因预测分析. 动物营养学报, 2016(8): 2581-2588.
XU S, LIN Y C, ZHOU M J, NI X Q, ZENG D, ZENG Y. Analyzing of ileum microbial diversity of chickens by high-throughput sequencing and PICRUSt predicted. Chinese Journal of Animal Nutrition, 2016(8): 2581-2588.(in Chinese)
[15] GUERRERO-ZÚÑIGA A L, LÓPEZ-LÓPEZ E, RODRÍGUEZ- TOVAR A V, RODRÍGUEZ-DORANTES A. Functional diversity of plant endophytes and their role in assisted phytoremediation. Bioremediation of Industrial Waste for Environmental Safety, 2019, 237-255.
[16] 张琼琼, 黄兴如, 郭逍宇. 湿地植物内生细菌多样性研究进展. 湿地科学, 2015, 13(2): 233-243.
ZHANG Q Q, HUANG X R, GUO X Y. Advance in endophytic bacterial diversity of wetland plants. Wetland Science, 2015, 13(2): 233-243. (in Chinese)
[17] HAMEED A, YEH M W, HSIEH Y T, CHUNG W C, LO C T, YOUNG L S. Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant and Soil, 2015, 394(1): 177-197.
doi: 10.1007/s11104-015-2506-5
[18] 高增贵, 陈捷, 刘限, 薛春生. 玉米品种遗传多态性与根系内生细菌种群的相互关系. 生态学报, 2006, 26(6): 1920-1925.
GAO Z G, CHEN J, LIU X, XUE C S. The correlation between maize genetic polymorphisms and endophytic bacteria population in plant roots. Acta Ecologica Sinica, 2006, 26(6): 1920-1925. (in Chinese)
[19] 刘洋, 赵燃, 黎妮, 曹艳花, 张超, 白飞荣, 张欣, 袁隆平, 王伟平, 程池. 超级杂交水稻种子内生细菌群落结构及其多样性. 食品与发酵工业, 2016(1): 31-36.
LIU Y, ZHAO R, LI N, CAO Y H, ZHANG C, BAI F R, ZHANG X, YUAN L P, WANG W P, CHENG C. Diversity of endophytic bacterial communities in seeds of super hybrid rice (Oryza sativa L.). Food and Fermentation Industries, 2016(1): 31-36. (in Chinese)
[20] 刘波, 胡桂萍, 朱育菁, 郑雪芳, 苏明星. 水稻内生细菌与根系土壤细菌群落结构的相关性// 中国植物病理学会2010年学术年会论文集, 2010.
LIU B, HU G P, ZHU Y J, ZHENG X F, SU M X. Correlation between rice endophytic bacteria and root soil bacterial community structure// Proceedings of the 2010 Annual Conference of the Chinese Society for Plant Pathology, 2010. (in Chinese)
[21] 吴燕燕, 徐伟芳, 罗琴, 王玲莉, 刘祎杨, 陈凯, 谢洁. Illumina MiSeq高通量测序分析不同品种桑树内生细菌多样性. 蚕学通讯, 2018, 38(3): 1-10.
WU Y Y, XU W F, LUO Q, WANG L L, LIU Y Y, CHEN K, XIE J. An illumina-based analysis of the diversity of endophytic bacteria from different mulberry genotypes. Newsletter of Sericultural Science, 2018, 38(3): 1-10. (in Chinese)
[22] 马冠华, 肖崇刚. 烟草内生细菌种群动态研究. 微生物学杂志, 2004, 24(4): 7-11.
MA G H, XIAO C G. Population dynamics of endophytic bacteria in symptom-free tobacco plants. Journal of Microbiology, 2004, 24(4): 7-11. (in Chinese)
[23] 陈泽斌, 夏振远, 雷丽萍, 黄鹤平, 张永福, 莫丽玲, 靳松. 云南烟草内生细菌菌群密度及分布特征. 西南农业学报, 2014, 27(2): 682-687.
CHEN Z B, XIA Z Y, LEI L P, HUANG H P, ZHANG Y F, MO L L, JIN S. Study on population density and distribution characteristics of endophytic bacteria in tobacco in Yunnan. Southwest China Journal of Agricultural Sciences, 2014, 27(2): 682-687. (in Chinese)
[24] BODENHAUSEN N, HORTON M W, BERGELSON J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE, 2013, 8(2): e56329.
doi: 10.1371/journal.pone.0056329
[25] 沙月霞. 不同水稻组织内生细菌的群落多样性. 微生物学报, 2018, 58(12): 2216-2228.
SHA Y X. Diversity of bacterial endophytic community in different rice tissues. Acta Microbiologica Sinica, 2018, 58(12): 2216-2228. (in Chinese)
[26] BAKKER M G, MANTER D K, SHEFLIN A M, WEIR T L, VIVANCO J M. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 2012, 360(1): 1-13.
doi: 10.1007/s11104-012-1361-x
[27] SHARMA M, DANGI P, CHOUDHARY M. Actinomycetes: Source, identification, and their applications. International Journal of. Current Microbiology and Applied Sciences, 2014, 3(2): 801-832.
[28] BÉRDY J. Thoughts and facts about antibiotics: where we are now and where we are heading. The Journal of Antibiotics, 2012, 65(8): 385-395.
doi: 10.1038/ja.2012.27
[29] MAHESHWARI D K. Bacteria in agrobiology: Plant growth responses. Springer Berlin Heidelberg, 2011.
[30] QIN S, XING K, JIANG J H, XU L H, LI W J. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology, 2011, 89(3): 457-473.
doi: 10.1007/s00253-010-2923-6
[31] BARKA E A, VATSA P, SANCHEZ L, GAVEAU-VAILLANT N, JACQUARD C, MEIER-KOLTHOFF J P, KLENK H P, CLÉMENT C, OUHDOUCH Y, VAN WEZEL G P. Taxonomy, physiology, and natural products of actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80(1): 1-43.
doi: 10.1128/MMBR.00019-15
[32] KOYAMA R, MATSUMOTO A, INAHASHI Y, OMURA S, TAKAHASHI Y. Isolation of actinomycetes from the root of the plant, Ophiopogon japonicus, and proposal of two new species, Actinoallomurus liliacearum sp. nov. and Actinoallomurus vinaceus sp. nov. Journal of Antibiotics, 2012, 65(7): 335-340.
doi: 10.1038/ja.2012.31
[33] TANVIR R, SAJID I, HASNAIN S. Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae. Natural Product Research, 2014, 28(22): 2048-2052.
doi: 10.1080/14786419.2014.919579
[34] VERMA V C, SINGH S K, PRAKASH S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. Journal of Basic Microbiology, 2011, 51(5): 550-556.
doi: 10.1002/jobm.v51.5
[35] 梁亚萍, 宗兆锋, 马强. 6株野生植物内生放线菌防病促生作用的初步研究. 西北农林科技大学学报(自然科学版), 2007, 35(7): 131-136.
LIANG Y P, ZONG Z F, MA Q. Inhibiting and promoting effect on plants of six strains endophytic actinomycetes isolated from wild plants. Journal of Northwest a & F University (Natural Science Edition), 2007, 35(7): 131-136. (in Chinese)
[36] LI J, ZHAO G Z, HUANG H Y, QIN S, ZHU W Y, ZHAO L X, XU L H, ZHANG S, LI W J, STROBEL G. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie Van Leeuwenhoek, 2012, 101(3): 515-527.
doi: 10.1007/s10482-011-9661-3
[37] 张华勇, 李振高. 土壤芽孢杆菌及其资源的持续利用. 土壤, 2001, 33(2): 92-97.
ZHANG H Y, LI Z G. Soil bacilli and their sustainable application. Soils, 2001, 33(2): 92-97. (in Chinese)
[38] 胡容平, 邓香洁, 龚国淑, 唐志燕, 张世熔. 成都市郊区土壤芽孢杆菌的解磷、解钾潜力. 四川农业大学学报, 2008, 26(2): 167-169.
HU R P, DENG X J, GONG G S, TANG Z Y, ZHANG S R. Study on the Potential of Phosphorus-releasing and Potassium releasing by Bacillus spp.in Chengdu Suburbs Soil. Journal of Sichuan Agricultural University, 2008, 26(2): 167-169.(in Chinese)
[39] 陈中义, 张杰, 黄大昉. 植物病害生防芽孢杆菌抗菌机制与遗传改良研究. 植物病理学报, 2003, 33(2): 97-103.
CHEN Z Y, ZHANG J, HUANG D F. Research progress on antimicrobial mechanism and genetic engineering of Bacillus for plant diseases biocontrol. Acta Phytopathologica Sinica, 2003, 33(2): 97-103.(in Chinese)
[40] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8), 478-486.
doi: 10.1016/j.tplants.2012.04.001
[41] 方珍娟, 张晓霞, 马立安. 植物内生菌研究进展. 长江大学学报(自然版), 2018, 15(10): 41-45.
FANG Z J, ZHANG X X, MA L A. Research advance of endophytes. Journal of Yangtze University (Natural Science Edition), 2018, 15(10): 41-45. (in Chinese)
[42] NASSAL D, SPOHN M, ELTLBANY N, JACQUIOD S, SMALLA K, MARHAN S, KANDELER E. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant and Soil, 2018, 427(1): 17-37.
doi: 10.1007/s11104-017-3528-y
[43] KANG S M, RADHAKRISHNAN R, KHAN A L, KIM M J, PARK J M, KIM B R, SHIN D H, LEE I J. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 2014, 84:115-124.
doi: 10.1016/j.plaphy.2014.09.001
[44] SANDHYA V, ALI S Z, GROVER M, REDDY G, VENKATESWARLU B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 2010, 62(1): 21-30.
doi: 10.1007/s10725-010-9479-4
[45] QIN S, WANG H B, CHEN H H, ZHANG Y Q, JIANG C L, XU L H, LI W J. Glycomyces endophyticus sp. nov. an endophytic actinomycete isolated from the root of Carex baccans Nees. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(11): 2525-2528.
doi: 10.1099/ijs.0.2008/000398-0
[46] GUAN T W, XIA Z F, XIAO J, WU N, CHEN Z J, ZHANG L L, ZHANG X P. Glycomyces halotolerans sp. nov., a novel actinomycete isolated from a hypersaline habitat in Xinjiang, China. Antonie Van Leeuwenhoek, 2011, 100(1): 137-143.
doi: 10.1007/s10482-011-9574-1
[47] QIN S, CHEN H H, KLENK H P, ZHAO G Z, LI J, XU L H, LI W J. Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from medicinal plants in China. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(5): 1023-1027.
doi: 10.1099/ijs.0.2008/005942-0
[48] TAMURA T, HAYAKAWA M, NONOMURA H, YOKOTA A, HATANO K. Four New Species of the Genus Actinokineospora: Actinokineospora inagensis sp. nov. Actinokineospora globicatena sp. nov. Actinokineospora terrae sp. nov. and Actinokineospora diospyrosa sp. nov. International Journal of Systematic Bacteriology, 1995, 45(2): 371-378.
doi: 10.1099/00207713-45-2-371
[49] 苏小惠, 白玉超, 佘玮, 杨瑞芳, 崔丹丹, 李林林, 王继龙, 崔国贤. 不同苎麻品种根际微生物多样性群落结构分析. 中国麻业科学, 2019, 41(3): 114-121.
SU X H, BAI Y C, SHE W, YANG R F, CUI D D, LI L L, WANG J L, CUI G X. Microbial community structures and diversities in different ramie varieties rhizosphere soils. Plant Fiber Sciences in China, 2019, 41(3): 114-121. (in Chinese)
[50] 张芳芳, 宋希强, 朱国鹏. 不同生境下五唇兰根部可培养内生细菌多样性研究. 植物科学学报, 2016, 34(1): 135-142.
ZHANG F F, SONG X Q, ZHU G P. Diversity of culturable endophytic bacteria isolated from the root tissues of Phalaenopsis pulcherrima in two different habitats. Plant Sclence Journal, 2016, 34(1): 135-142. (in Chinese)
[51] 陈泽斌, 黄丽, 夏振远, 赵兴能, 徐胜光, 林丽, 任禛, 靳松, 王墨浪. 云南不同地区烟草内生细菌多样性特征. 西南农业学报, 2015, 28(2): 857-861.
CHEN Z B, HUANG L, XIA Z Y, ZHAO X N, XU S G, LIN L, REN Z, JIN S, WANG M L. Species diversity characteristics of endophytic bacteria in tobacco at different regions of Yunnan Province. Southwest China Journal of Agricultural Sciences, 2015, 28(2): 857-861.(in Chinese)
[52] 楚敏, 张丽娟, 刘晓静, 朱静, 王玮, 顾美英, 谢玉清, 张志东. 不同产地及品种大蒜内生菌群落多样性分析及拮抗作用测定. 新疆农业科学, 2017(11): 2067-2074.
CHU M, ZHANG L J, LIU X J, ZHU J, WANG W, GU M Y, XIE Y Q, ZHANG Z D. Diversity of the endophytes and screening of antagonistic microbes in Garlic varieties from different producing areas. Xinjiang Agricultural Sciences, 2017(11): 2067-2074. (in Chinese)
[53] 王永章, 张大鹏. 乙烯对成熟期新红星苹果果实碳水化合物代谢的调控. 园艺学报, 2000, 27(6): 391-395.
WANG Y Z, ZHANG D P. Regulating effects of ethylene on carbohydrate metabolism in ‘starkrimson’ apple fruit during the ripening period. Acta Horticulturae Sinica, 2000, 27(6): 391-395.(in Chinese)
[54] LINCOLNTAIZ, EDUARDOZEIGER. 植物生理学. 第5版. 北京: 科学出版社, 2015.
LINCOLNTAIZ, EDUARDOZEIGER. Plant Physiology. 5th ed. Beijing: Science Press, 2015. (in Chinese)
[55] ISHIKAWA T, SHIGEOKA S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology, and Biochemistry, 2008, 72(5): 1143-1154.
doi: 10.1271/bbb.80062
[56] ISHIKAWA T, DOWDLE J, SMIRNOFF N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum, 2006, 126:343-355.
doi: 10.1111/ppl.2006.126.issue-3
[57] PIGNOCCHI C, FOYER C H. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 2003, 6(4): 379-389.
doi: 10.1016/S1369-5266(03)00069-4
[58] 燕辉, 彭晓邦, 薛建杰. NaCl胁迫对花棒叶片光合特性及游离氨基酸代谢的影响. 应用生态学报, 2012, 23(7): 1790-1796.
YAN H, PENG X B, XUE J J. Effects of NaCl stress on leaf photosynthesis characteristics and free amino acid metabolism of Heyedysarum scoparium. Chinese Journal of Applied Ecology, 2012, 23(7): 1790-1796. (in Chinese)
[59] ALI S, CHARLES T C, GLICK B R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 2014, 80:160-167.
doi: 10.1016/j.plaphy.2014.04.003
[60] FENG H, LI Y C, LIU Q G. Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. African Journal of Microbiology Research, 2013, 7(15): 1311-1318.
doi: 10.5897/AJMR
[61] ALI S, CHARLES T C, GLICK B R. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. Journal of Applied Microbiology, 2012, 113(5): 1139-1144.
doi: 10.1111/jam.2012.113.issue-5
[1] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[2] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[3] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[4] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[5] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[8] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[9] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[10] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[11] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[15] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!