Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1556-1571.doi: 10.3864/j.issn.0578-1752.2020.08.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance

LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing(),CHEN ShanChun()   

  1. National Center for Citrus Variety Improvement, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2019-09-26 Accepted:2019-11-13 Online:2020-04-16 Published:2020-04-29
  • Contact: XiuPing ZOU,ShanChun CHEN E-mail:zouxiuping@cric.cn;scchen@cric.cn

Abstract:

【Background】Citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) is one of the most serious citrus diseases in the world, which is a quarantine disease. Due to the relatively backward research of citrus molecular pathology, the available resistance gene resources are relatively scarce. WRKY transcription factor is involved in plant responses to biotic and abiotic stress. The previous study has found that citrus WRKY transcription factor may play an important role in regulating host disease resistance response.【Objective】The objective of this study is to evaluate the canker resistance of transgenic citrus (Citrus sinensis) with over-expression of CsWRKY50, CsWRKY61 and CsWRKY72, clarify the biological function and disease resistance breeding value of these genes in citrus in response to Xcc. RNA-seq was further used to analyze the signaling pathway regulated by CsWRKY61.【Method】Agrobacterium-mediated method was used to obtain transgenic citrus plants with over-expression of CsWRKY50, CsWRKY61 and CsWRKY72. Real-time quantitative PCR (qRT-PCR) was used to analyze the expression level and copy number of the target genes. In vitro pinprick inoculation was used to evaluate the resistance of transgenic plants to canker disease. The molecular mechanism of CsWRKY61 improving citrus bacterial canker resistance was investigated by transcriptome sequencing analysis of over-expression CsWRKY61 and wild-type (WT) plants.【Result】The plant expression vectors of CAMV 35S promoter controlling the expression of CsWRKY50, CsWRKY61 and CsWRKY72 were constructed, and 6, 8 and 6 transgenic lines were obtained by GUS staining and PCR identification, respectively. The expression of the target gene in transgenic plants increased in different degrees. The copy number of exogenous genes in most transgenic plants was 1. Only the transgenic plants with over-expression of CsWRKY61 had significantly enhanced canker disease resistance, and the lesion area was significantly smaller than that of WT plants, while over-expression of CsWRKY50 and CsWRKY72 transgenic plants had no significant difference in disease resistance compared with WT. Transcriptomics analysis showed that biotic stress related pathways (including pathogen recognition, respiratory burst, transcription factors, defense genes, hormones, cell wall and secondary metabolism, etc.) and signal transduction-related pathways (mainly kinase receptors) were significantly activated in over-expression of CsWRKY61 transgenic plants. 【Conclusion】Over-expression of CsWRKY61 can activate pathways related to biotic stress and signal transduction, enhance citrus bacterial canker resistance. It is suggested that CsWRKY61 has potential application value in citrus disease resistance breeding.

Key words: Xanthomonas citri subsp. citri (Xcc), citrus bacterial canker, CsWRKY61, over-expression, disease resistance, transcriptome sequencing

Table 1

Primers for gene cloning and identification of transgenic plants"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
WRKY50-f ATC GGATCC ATGTCTAATATAAATCTTAT
WRKY50-r CTG GTCGAC CTAAGGATTGCTTTGGTGAG
WRKY61-f ACC AGATCT ATGGAGGAGAAAAGAGCTAT
WRKY61-r TTA GTCGAC TCAGTCAGTGTGCTCTCTAT
WRKY72-f TAG GGATCC ATGGAGGTTTTATTGAAAATG
WRKY72-r CAT GTCGAC TCAACTGCTTTGATCCTTGT
NPTII-f GGATTGCACGCAGGTTCTCCG
NPTII-r TCAGAAGAACTCGTCAAGAAGGCG
s-f TCTTCGTCAACATGGTGGAGCACGA
50-r ACTCATCAAAGGTCAAGTACTCAG
61-r TCTGGCAGTTTCAAGCTGATCATC
72-r ACAAGTTCAGACTCCATGATTTGAC

Fig. 1

Structural sketch of plant expression vector T-DNAs"

Table 2

Sequence of primers used in qRT-PCR"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
r-WRKY50-f
r-WRKY50-r
r-WRKY61-f
r-WRKY61-r
r-WRKY72-f
r-WRKY72-r
r-Actin-f
r-Actin-r
ACCTGAGAGTGATTCTGCTG
TCTGGACATACCCAAAAAGT
GAAACAGTGAAGGGCGG
TGGCAAAGAGTTAGGCG
TAGCAGGAAAAATGGTG
GGGCTTAGATTCGACAC
CATCCCTCAGCACCTTCC
CCAACCTTAGCACTTCTCC

Fig. 2

Identification of transgenic plants"

Table 3

qRT-PCR analysis of copy number of transgenes in transgenic lines"

株系
Line
2-ΔΔCt值2-ΔΔCt value 预测拷贝数
Estimated copy number
GUS NPTII
W50-1 1.32 1.39 1
W50-3 1.50 1.26 1
W50-5 1.90 1.64 2
W50-9 3.56 3.72 4
W50-10 2.84 2.76 3
W50-11 2.84 2.51 3
W61-1 1.07 1.47 1
W61-3 1.14 1.55 1
W61-5 1.07 0.98 1
W61-6 1.33 1.63 1
W61-7 1.13 1.14 1
W61-9 0.82 1.05 1
W61-11 0.97 0.82 1
W61-12 1.22 1.32 1
W72-1 2.57 2.41 2
W72-2 1.62 1.90 2
W72-4 2.68 2.96 3
W72-5 1.28 1.30 1
W72-7 1.32 1.49 1
W72-10 1.04 1.12 1

Fig. 3

qRT-PCR analysis of target gene expression in transgenic plants Statistical significance related to the WT control was determined by two-tailed Student’s t-test (*: P<0.05; **: P<0.01). The same as Fig. 4"

Fig. 4

Resistance evaluation of transgenic plants"

Fig. 5

Overview of the transcriptome results"

Fig. 6

Differential genes related to biotic stress"

Table 4

Differential genes related to biotic stress in transgenic lines"

通路Pathway 基因编号Gene ID 描述Description Log2 fold change
感知Recognition cs7g19210 抗病蛋白家族Disease resistance protein (TIR-NBS-LRR class) family 2.464
orange1.1t04440 抗病蛋白家族Disease resistance protein (TIR-NBS-LRR class) family 2.839
orange1.1t05036 Toll-Interleukin-Resistance (TIR) domain family protein 3.153
cs5g18230 Toll-Interleukin-Resistance (TIR) domain family protein 3.639
活性氧爆发Respiratory burst cs4g06920 NADPH/respiratory burst oxidase protein D (RbohD) 1.962
cs8g12000 核黄素合成酶样超家族蛋白Riboflavin synthase-like superfamily protein 2.631
信号转导
Signaling transduction
orange1.1t03802 alpha/beta-Hydrolases superfamily protein 3.683
cs5g04790 alpha/beta-Hydrolases superfamily protein 2.423
cs6g07420 PAR1 protein 3.644
cs7g07000 假定的配体门控离子通道亚家族Putative ligand-gated ion channel subunit family 3.786
cs1g16140 富亮氨酸重复I Leucine rich repeat I 4.144
orange1.1t03347 富亮氨酸重复II Leucine rich repeat II 3.177
orange1.1t04450 富亮氨酸重复VII Leucine rich repeat VII 3.279
cs2g29910 富亮氨酸重复XII Leucine rich repeat XII 4.256
orange1.1t04450 富亮氨酸重复XI Leucine rich repeat XI 3.279
cs2g29890 富亮氨酸重复XIII Leucine rich repeat XIII 2.459
cs2g13280 奇异果甜蛋白受体激酶Thaumatin like receptor kinases 3.153
cs2g13360 奇异果甜蛋白受体激酶Thaumatin like receptor kinases 3.199
cs1g11930 DUF 26受体激酶DUF 26 receptor kinases 3.791
cs1g11960 DUF 26受体激酶DUF 26 receptor kinases 3.052
cs8g12370 豆科凝集素Legume-lectin 5.351
cs2g13360 Wheat LRK10 like 3.199
cs1g11930 S位点糖蛋白S-locus glycoprotein like 3.791
cs1g11960 S位点糖蛋白S-locus glycoprotein like 3.052
cs8g01090 豆科凝集素Legume-lectin 2.194
cs8g14010 胞壁相关激酶Wall associated kinase 3.464
cs9g12300 胞壁相关激酶Wall associated kinase 3.013
cs9g14490 胞壁相关激酶Wall associated kinase 3.918
cs9g08050 赖氨酸基序Lysine motif 1.079
cs2g02680 赖氨酸基序Lysine motif 2.853
cs7g31060 褶皱样Crinkly like 2.283
cs5g17510 褶皱样Crinkly like 1.589
cs9g12040 Ralf-like 32 (RALFL32) 5.157
cs9g12160 Ralf-like 32 (RALFL32) 3.365
cs7g27120 钙调蛋白结合蛋白Calmodulin binding protein-like 3.590
cs9g02980 钙调蛋白结合蛋白Calmodulin binding protein-like 3.336
cs2g21150 蛋白激酶激酶Mitogen-activated protein kinase kinase 2.077
cs3g27320 受体样胞浆激酶VII Receptor like cytoplasmatic kinase VII 3.278
cs9g15620 受体样胞浆激酶VII Receptor like cytoplasmatic kinase VII 4.530
cs6g20470 AAA ATPase 1 5.065
cs5g18300 天冬氨酸蛋白酶Aspartate protease 4.689
orange1.1t03718 半胱氨酸蛋白酶Cysteine protease 3.775
cs2g19970 F-box和相关的相互作用域包含蛋白质
F-box and associated interaction domains-containing protein
4.369
cs2g31260 F-box和相关的相互作用域包含蛋白质
F-box and associated interaction domains-containing protein
7.072
转录因子
Transcription factor
orange1.1t02158 富含亮氨酸的重复单位Leucine-rich repeat 1.487
cs5g24240 抗病蛋白Disease resistance protein (TIR-NBS-LRR class) 3.080
cs5g04160 WRKY61 DNA结合蛋白WRKY DNA-binding protein 61 10.442
cs1g03870 WRKY51 DNA结合蛋白WRKY DNA-binding protein 51 7.885
cs7g06330 WRKY40 DNA结合蛋白WRKY DNA-binding protein 40 3.707
cs4g07780 R2R3 MYB 转录因子基因家族R2R3 MYB transcription factor gene family 6.169
cs8g12680 转录因子RLTR1 Transcription factor RLTR1 2.614
防御基因
Defense gene
orange1.1t04673 抗病蛋白Disease resistance protein 3.487
orange1.1t04706 抗病蛋白Disease resistance protein (TIR-NBS-LRR class) 2.892
orange1.1t04750 Toll-Interleukin receptor 3.454
orange1.1t05036 抗病蛋白Disease resistance protein (TIR-NBS-LRR class) 3.153
orange1.1t05250 Toll-Interleukin receptor 3.423
cs2g10790 NPR1-like protein 3 1.251

Fig. 7

Expression of receptor-like kinase genes and protein metabolism related genes"

[1] BRUNINGS A M, GABRIEL D W . Xanthomonas citri: breaking the surface. Molecular Plant Pathology, 2003,4(3):141-157.
[2] SCHUBERT T S, RIZVI S A, SUN X, GOTTWALD T R, GRAHAM J H, DIXON W N . Meeting the challenge of eradicating citrus canker in Florida—again. Plant Disease, 2001,85(4):340-356.
[3] BEHLAU F, BELASQUE J, BERGAMIN FILHO A, GRAHAM J H, LEITE R P, GOTTWALD T R . Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protection, 2008,27(3/5):807-813.
[4] DAS A K . Citrus canker-A review. Journal of Applied Horticulture, 2003,5(1):52-60.
[5] BAKSHI M, OELMÜLLER R . WRKY transcription factors: Jack of many trades in plants. Plant Signaling and Behavior, 2014,9(2):e27700.
[6] EULGEM T, RUSHTON P J, ROBATZEK S, SOMSSICH I E . The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000,5(5):199-206.
[7] EULGEM T, SOMSSICH I E . Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007,10(4):366-371.
[8] ROSS C A, LIU Y, SHEN Q J . The WRKY gene family in rice (Oryza sativa). Journal of Intergative Plant Biology, 2007,49(6):827-842.
[9] JIANG Y, DUAN Y, YIN J, YE S, ZHU J, ZHANG F, LU W, FAN D, LUO K . Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany, 2014,65(22):6629-6644.
[10] 刁卫平, 王述彬, 刘金兵, 潘宝贵, 郭广君, 戈伟 . 辣椒全基因组WRKY转录因子的分析. 园艺学报, 2015,42(11):2183-2196.
DIAO W P, WANG S B, LIU J B, PAN B G, GUO G J, GE W . Gemone-wide analysis of the WRKY transcription factor family in pepper. Acta Horticulturae Sinica, 2015,42(11):2183-2196. (in Chinese)
[11] 许瑞瑞, 张世忠, 曹慧, 束怀瑞 . 苹果WRKY转录因子家族基因生物信息学分析. 园艺学报, 2012,39(10):2049-2060.
XU R R, ZHANG S Z, CAO H, SHU H R . Bioinformatics analysis of WRKY transcription factor genes family in apple. Acta Horticulturae Sinica, 2012,39(10):2049-2060. (in Chinese)
[12] PHUKAN U J, JEENA G S, SHUKLA R K . WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 2016, 7: Article 760.
[13] DANG F F, WANG Y N, YU L, EULGEM T, LAI Y, LIU Z Q, WANG X, QIU A L, ZHANG T X, LIN J, CHEN Y S, GUAN D Y, CAI H Y, MOU S L, HE S L . CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell and Environment, 2013,36(4):757-774.
[14] MIAO Y, JIANG J, REN Y, ZHAO Z . The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiology, 2013,163(2):746-756.
[15] PANDEY S P, ROCCARO M, SCHÖN M, LOGEMANN E, SOMSSICH I E . Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal for Cell and Molecular Biology, 2010,64(6):912-923.
[16] QIU Y P, YU D Q . Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009,65(1):35-47.
[17] KLOTH K J, WIEGERS G L, BUSSCHER-LANGE J, VAN HAARST J C, KRUIJER W, BOUWMEESTER H J, DICKE M, JONGSMA M A . AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. Journal of Experimental Botany, 2016,67(11):3383-3396.
[18] ABBRUSCATO P, NEPUSZ T, MIZZI L, CORVO M D, MORANDINI P, FUMASONI I, MICHEL C, PACCANARO A, GUIDERDONI E, SCHAFFRATH U, MOREL J B, PIFFANELLI P, FAIVRE-RAMPANT O . OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology, 2012,13(8):828-841.
[19] KIM K C, LAI Z, FAN B, CHEN Z . Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell, 2008,20(9):2357-2371.
[20] LAI Z, VINOD K M, ZHENG Z, FAN B, CHEN Z . Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biology, 2008,8:68.
[21] LIU J, CHEN X, LIANG X, ZHOU X, YANG F, LIU J, HE S Y, GUO Z . Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiology, 2016,171(2):1427-1442.
[22] LIU S, KRACHER B, ZIEGLER J, BIRKENBIHL R P, SOMSSICH I E . Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife, 2015,4:e07295.
[23] LIU X, BAI X, WANG X, CHU C . OsWRKY71, a rice transcription factor, is involved in rice defense response. Journal of Plant Physiology, 2007,164(8):969-979.
[24] WU K L, GUO Z J, WANG H H, LI J . The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 2005,12:9-26.
[25] PANDEY S P, SOMSSICH I E . The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009,150(4):1648-1655.
[26] ÜLKER B, MUKHTAR M S, SOMSSICH I E . The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 2007,226(1):125-137.
[27] XU X, CHEN C, FAN B, CHEN Z . Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell, 2006,18(5):1310-1326.
[28] ZHOU X, JIANG Y, YU D . WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecules and Cells, 2011,31(4):303-313.
[29] SHI Q, FEBRES V J, JONES J B, MOORE G A . Responsiveness of different citrus genotypes to the Xanthomonas citri ssp. citri-derived pathogen-associated molecular pattern (PAMP) flg22 correlates with resistance to citrus canker. Molecular Plant Pathology, 2015,16(5):507-520.
[30] VIVES-PERIS V, MARMANEU D, GÓMEZ-CADENAS A, PÉREZ-CLEMENTE R M . Characterization of Citrus WRKY transcription factors and their responses to phytohormones and abiotic stresses. Biologia Plantarum, 2018,62(1):33-44.
[31] AYADI M, HANANA M, KHARRAT N, MERCHAOUI H, MARZOUG R B, LAUVERGEAT V, REBAÏ A, MZID R . The WRKY transcription factor family in citrus: Valuable and useful candidate genes for citrus breeding. Applied Biochemistry and Biotechnology, 2016,180(3):516-543.
[32] ŞAHIN-ÇEVIK M, MOORE G A . Identification of a drought- and cold-stress inducible wrky gene in the cold-hardy citrus relative Poncirus trifoliata. New Zealand Journal of Crop and Horticultural Science, 2013,41(2):57-68.
[33] ZOU X, LI D, LUO X, LUO K, PEI Y . An improved procedure for Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata L. Raf.) via indirect organogenesis. In Vitro Cellular and Developmental Biology Plant, 2008,44(3):169-177.
[34] 周鹏飞 . 柑橘溃疡病相关WRKY转录因子和PR基因的筛选与功能分析[D]. 重庆: 西南大学, 2017.
ZHOU P F . Screening and functional analysis of WRKY transcription factor and pathogenesis-related protein genes associated with citrus canker[D]. Chongqing: Southwest University, 2017. (in Chinese)
[35] 王军政 . Cecropin B分泌型融合基因的构建及其转化柑桔的研究[D]. 重庆: 西南大学, 2012.
WANG J Z . Construction and citrus transformation of novel cecropin B gene for improving extracellualr secretion of antibacterial peptide[D]. Chongqing: Southwest University, 2012. (in Chinese)
[36] JEFFERSON R A, KAVANAGH T A, BEVAN M W . Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 1987,6(13):3901-3907.
[37] 许兰珍, 何永睿, 雷天刚, 彭爱红, 姚利晓, 姜国金, 李强, 邹修平, 陈善春 . 转基因柑橘外源基因拷贝数的实时荧光定量PCR检测. 园艺学报, 2016,43(6):1186-1194.
XU L Z, HE Y R, LEI T G, PENG A H, YAO L X, JIANG G J, LI Q, ZOU X P, CHEN S C . Identification of the copy number of exogenous gene in transgenic citurs by quantitative real-time PCR. Acta Horticulturae Sinica, 2016,43(6):1186-1194. (in Chinese)
[38] WU Z, BURNS J K . Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. Journal of Experimental Botany, 2003,54(385):1183-1191.
[39] 李云锋, 李祥 . 柑桔溃疡病菌存活期的研究. 植物检疫, 2002,16(2):69-72, 77.
LI Y F, LI X . Survival period of Xanthomonas axonopodis pv. citri. Plant Quarantine, 2002,16(2):69-72, 77. (in Chinese)
[40] 李云锋, 李祥 . 柑桔溃疡病菌离体叶接种检验法的研究. 华中农业大学学报, 2000,19(5):421-423.
LI Y F, LI X . Detection method of inoculation on citurs leaves in vitro with Xanthomonas axonopodis pv. citri. Journal of Huazhong Agricultural University, 2000,19(5):421-423. (in Chinese)
[41] THIMM O, BLASING O, GIBON Y, NAGEL A, MEYER S, KRUGER P, SELBIG J, MULLER L A, RHEE S Y, STITT M . MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 2004,37(6):914-939.
[42] WANG H, HAO J, CHEN X, HAO Z, WANG X, LOU Y, PENG Y, GUO Z . Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology, 2007,65(6):799-815.
[43] ZHENG Z, QAMAR S A, CHEN Z, MENGISTE T . Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 2006,48(4):592-605.
[44] WANG X, GUO R, TU M, WANG D, GUO C, WAN R, LI Z, WANG X . Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Frontiers in Plant Science, 2017, 8: Article 97.
[45] 朱镜如 . 毛果杨PtWRKY89转录因子基因的克隆与功能分析[D]. 重庆: 西南大学, 2013.
ZHU J R . Isolation and functional analysis of PtWRKY89 in Populus trichocarpa. Chongqing: Southwest University, 2013. (in Chinese)
[46] HEATH M C . Hyper sensitive response-related death. Plant Molecular Biology, 2000,44(3):321-334.
[47] GREENBERG J T, YAO N . The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology, 2004,6(3):201-211.
[48] ROBERT-SEILANIANTZ A, GRANT M, JONES J D G . Hormone crosstalk in plant disease and defense: More than just jasmonate- salicylate antagonism. Annual Review of Phytopathology, 2011,49:317-343.
[49] HÜCKELHOVEN R . Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology, 2007,45:101-127.
[50] VAIRAPPAN C S, ANANGDAN S P, KAI L T, MATSUNAGA S . Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. Journal of Applied Phycology, 2010,22(3):305-311.
[51] 郭艳玲, 张鹏英, 郭默然, 陈靠山 . 次生代谢产物与植物抗病防御反应. 植物生理学报, 2012,48(5):429-434.
GUO Y L, ZHANG P Y, GUO M R, CHEN K S . Secondary metabolites and plant defence against pathogenic disease. Plant Physiology Journal, 2012,48(5):429-434. (in Chinese)
[52] YANG K Y, LIU Y, ZHANG S . Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(2):741-746.
[53] GAO R, LIU P, YONG Y, WONG S M . Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Scientific Reports, 2016,6:24604.
[54] YAN L, QI X, YOUNG N D, OLSEN K M, CAICEDO A L, JIA Y . Characterization of resistance genes to rice blast fungus Magnaporthe oryzae in a “Green Revolution” rice variety. Molecular Breeding, 2015,35:52.
[55] 范晓江, 郭小华, 牛芳芳, 杨博, 江元清 . 拟南芥WRKY61转录因子的转录活性与互作蛋白分析. 西北植物学报, 2018,38(1):1-8.
FAN X J, GUO X H, NIU F F, YANG B, JIANG Y Q . Exploring the transcriptional activity and interacting proteins of WRKY61 transcriptional factor in Arabidopsis thaliana. Acta Botanica Boreali-Occidentalia Sinica, 2018,38(1):1-8. (in Chinese)
[56] GAO Q M, VENUGOPAL S, NAVARRE D, KACHROO A . Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology, 2011,155(1):464-476.
[57] BHATTARAI K K, ATAMIAN H S, KALOSHIAN I, EULGEM T . WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. The Plant Journal, 2010,63(2):229-240.
[1] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[9] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[10] QU XiaoLing,JIAO YuBing,LUO JianDa,SONG LiYun,LI Ying,SHEN LilLi,YANG JinGuang,WANG FengLong. Cloning of Nicotiana benthamiana NAC062 and Its Inhibitory Effect on Potato Virus Y Infection [J]. Scientia Agricultura Sinica, 2021, 54(19): 4110-4120.
[11] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[12] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[13] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[14] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[15] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!