Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 920-931.doi: 10.3864/j.issn.0578-1752.2022.05.007

• PLANT PROTECTION • Previous Articles     Next Articles

Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres

WANG YuTai(),XU ZhiFan(),LIU Jie,ZHONG GuoHua()   

  1. College of Plant Protection, South China Agricultural University, Guangzhou 510642
  • Received:2021-05-15 Accepted:2021-06-16 Online:2022-03-01 Published:2022-03-08
  • Contact: GuoHua ZHONG E-mail:578554241@qq.com;seekfunmeso@163.com;guohuazhong@scau.edu.cn

Abstract:

【Objective】The objective of this study is to prepare microsphere of degrading bacterium Pseudomonas stutzeri (ACCC 02521) with sodium alginate as carrier, and to establish the application conditions for degrading indoxacarb in farmland.【Method】Through the micro drop embedding ball forming method, bacteria were suspended and added into sodium alginate solution. After mixing, it was dropped into CaCl2 for granulation. It was washed with 0.9% NaCl after fixing at low temperature. The mass transfer performance and mechanical strength of degrading bacteria microspheres were measured to determine the optimal concentration of sodium alginate. The best formulation was obtained by single factor optimization. 1.0%-5.0% CaCl2, 40-200 g·L -1 bacteria or 20-100 g·L-1preparation were dropped into 3.0% sodium alginate, respectively. The CaCl2 concentration, embedded bacteria and preparation dosage in the degrading bacteria microspheres were determined according to the degradation rate of indoxacarb. The morphology of microspheres, cell morphology and distribution of degrading bacteria were observed by scanning electron microscope. Quantitative degrading bacteria microspheres were put into different types of soil suspension, temperature, pH or treatment time. The effects of environmental factors on the release capacity, degradation effect and stability of degrading bacteria microspheres were evaluated by calculating the amount of released bacteria (CFU/mL) or the degradation rate of indoxacarb. Two days after the routine application of pesticides, the degrading bacteria microsphere preparation was applied. Topsoil was collected to detect the residue of indoxacarb, the field application of dose was determined, and the field application conditions of the preparation were determined. The residual concentrations of indoxacarb were detected and tracked by HPLC.【Result】The preparation was composed of 3.0% sodium alginate, 2.0% CaCl2 and 80 g·L-1 degrading bacteria. The particle size was about 3.0 mm. The degrading bacteria microspheres had uniform particle size, moderate mechanical strength, good mass transfer performance, degradation activity and storage stability. Scanning electron microscopy showed that the degrading bacteria were evenly distributed in sodium alginate microspheres and their morphology was normal. In the soil with 10-30℃ and pH of 6.0-8.0, the degrading bacteria were released stably, and the degradation rate of indoxacarb was more than 85%. The release performance was not affected by soil type, the stability was good, and was less affected by environmental conditions. When 90-900 kg·hm-2 of degrading bacteria microspheres were applied 2 d after field spraying of 150 g·L-1 of EC active ingredient 20 mg·L-1, the residual half-life (T1/2) of indoxacarb in soil was shortened to 2.49-3.32 d (7.53 d for blank control area); furthermore when 450 kg·hm-2 of degrading bacteria microspheres were applied 2 d after spraying indoxacarb with 5, 20 and 50 mg·L-1, the values of T1/2 was shortened from 6.03-7.45 d to 2.34-3.59 d.【Conclusion】The preparation of degrading bacteria P. stutzeri microspheres with sodium alginate as carrier has stable performance, can significantly degrade indoxacarb residues in farmland and shorten T1/2 time, provides technical and product support for bioremediation of soil pesticide residue pollution, and has the potential for further optimization and application.

Key words: indoxacarb residue, bioremediation, sodium alginate, Pseudomonas stutzeri, degrading bacteria preparation

Table 1

Effect of sodium alginate dosage on the properties of degrading bacteria microspheres"

海藻酸钠用量
Sodium alginate dosage (%)
造粒难易程度
Granulation difficulty
形变程度
Deformation degree (mm)
RSD (%) 传质性能
Transfer performance (RawIntDen)
1.0 未成球No balling
1.5 成球较易Balling easily 2.34a 2.1 55045
2.0 成球易Balling more easily 2.03a 1.2 50970
2.5 成球易Balling more easily 1.84ab 1.3 48845
3.0 成球易Balling more easily 1.51b 1.8 45796
3.5 黏度较大,成球较难High viscosity, balling relatively difficult 1.18c 3.7 37073
4.0 黏度大,成球难Higher viscosity, balling difficult 0.83c 4.2 30928

Fig. 1

Determination of the formulation of degrading bacteria microspheres"

Fig. 2

SEM of degrading bacteria microspheres"

Fig. 3

Effect of temperature on degradation characteristics of degrading bacteria microspheres"

Fig. 4

Effect of pH on the release capacity (A) and degradation rate (B) of degrading bacteria microspheres"

Fig. 5

Effect of soil types on the release capacity of degrading bacteria microspheres"

Fig. 6

Storage stability of degrading bacteria microspheres"

Fig. 7

Degradation effect of indoxacarb in soil by bacteria microspheres under field condition"

Table 2

Effect of degrading bacteria microspheres on half-life of indoxacarb in soil under field condition"

菌液或微球及用量
Bacteria suspension or microspheres
and their dosages
动力学方程
Kinetic equation (y=)
速率常数
Rate constant
半衰期T1/2
(d)
相关系数
Correlation coefficient (R2, %)
CK 1.0534e-0.092x 0.092 7.53 0.971
微球Microsphere CK 0.9397e-0.110x 0.110 6.30 0.899
菌液Bacteria suspension 1.0095e-0.165x 0.165 4.20 0.967
微球Microsphere 90 kg·hm-2 0.8243e-0.209x 0.209 3.32 0.945
微球Microsphere 450 kg·hm-2 0.9273e-0.245x 0.245 2.83 0.992
微球Microsphere 900 kg·hm-2 0.9988e-0.278x 0.278 2.49 0.962

Fig. 8

Degradation effect of different initial contents of indoxacarb in soil by bacteria microspheres"

Table 3

Effect of degrading bacteria microspheres treated with 450 kg·hm-2 on half-life of indoxacarb in soil"

处理
Treatment
动力学方程
Kinetic equation (y=)
速率常数
Rate constant
半衰期
T1/2 (d)
相关系数
Correlation coefficient (R2, %)
5 mg·L-1 CK 0.9739e-0.115x 0.115 6.03 0.975
20 mg·L-1 CK 1.3636e-0.103x 0.103 6.73 0.987
50 mg·L-1 CK 2.064e-0.093x 0.093 7.45 0.962
5 mg·L-1+450 kg·hm-2 0.8701e-0.296x 0.296 2.34 0.862
20 mg·L-1+450 kg·hm-2 1.0536e-0.242x 0.242 2.86 0.969
50 mg·L-1+450 kg·hm-2 1.6731e-0.193x 0.193 3.59 0.957
[1] 刘长令. 新型高效杀虫剂茚虫威. 农药, 2003, 42(2):42-44.
LIU C L. New high effective insecticide indoxacarb. Agrochemicals, 2003, 42(2):42-44. (in Chinese)
[2] 李富根, 艾国民, 李友顺, 朱春雨, 高希武. 茚虫威的作用机制与抗性研究进展. 农药, 2013, 52(8):558-560, 572.
LI F G, AI G M, LI Y S, ZHU C Y, GAO X W. Progress on mechanism of action and insecticide resistance of the oxadiazine indoxacarb in insects. Agrochemicals, 2013, 52(8):558-560, 572. (in Chinese)
[3] ZHANG S Z, ZHANG X L, SHEN J, LI D Y, WAN H, YOU H, LI J H. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology, 2017, 140:85-89.
doi: 10.1016/j.pestbp.2017.06.011
[4] 董丰收, 郑永权, 沙宪英, 李硕, 姚建仁. 茚虫威15%悬浮剂在棉花和土壤中的残留动态研究. 农业环境科学学报, 2005, 24(5):1027-1031.
DONG F S, ZHENG Y Q, SHA X Y, LI S, YAO J R. Residue dynamics of indoxacarb 15% SC in cotton and soil. Journal of Agro-Environment Science, 2005, 24(5):1027-1031. (in Chinese)
[5] 李畅方, 何强, 徐伟松, 杨群华, 江燕玲, 李桂英. 茚虫威在甘蓝和土壤中的残留量及消解动态研究. 农药科学与管理, 2005, 26(12):8-11.
LI C F, HE Q, XU W S, YANG Q H, JIANG Y L, LI G Y. Residue and dynamic degradation studies of indoxacarb in cabbage and soil. Pesticide Science and Administration, 2005, 26(12):8-11. (in Chinese)
[6] 彭筱, 龚道新. 茚虫威在水稻田中的消解动态. 农药, 2013, 52(4):284-286.
PENG X, GONG D X. Residual dynamics of indoxacarb in paddy field. Agrochemicals, 2013, 52(4):284-286. (in Chinese)
[7] 陈坚峰, 胡勃, 张丽娜, 胡楚源, 胡雄飞. 茚虫威对大鼠的亚慢性毒性. 中国工业医学杂志, 2014, 27(1):44-45, 47.
CHEN J F, HU B, ZHANG L N, HU C Y, HU X F. Subchronic toxicity of indoxacarb in rats. Chinese Journal of Industrial Medicine, 2014, 27(1):44-45, 47. (in Chinese)
[8] 俞瑞鲜, 赵学平, 吴长兴, 吴声敢, 苍涛, 陈丽萍, 王强. 茚虫威对环境生物的安全性评价. 农药, 2009, 48(1):47-49.
YU R X, ZHAO X P, WU C X, WU S G, CANG T, CHEN L P, WANG Q. Evaluation of indoxacarb to environmental organisms. Agrochemicals, 2009, 48(1):47-49. (in Chinese)
[9] 冯青, 赖柯华, 黄伟康, 刘禹杉, 李江, 章程辉, 范咏梅. 茚虫威对斑马鱼的急性毒性及遗传毒性. 生态毒理学报, 2015, 10(4):226-234.
FENG Q, LAI K H, HUANG W K, LIU Y S, LI J, ZHANG C H, FAN Y M. Acute and genetic toxicity of indoxacarb to zebrafish (Brachydanio rerio). Asian Journal of Ecotoxicology, 2015, 10(4):226-234. (in Chinese)
[10] MONTEIRO H R, PESTANA J L, NOVAIS S C, SOARES A M, LEMOS M F. Toxicity of the insecticides spinosad and indoxacarb to the non-target aquatic midge Chironomus riparius. Science of the Total Environment, 2019, 666:1283-1291.
doi: 10.1016/j.scitotenv.2019.02.303
[11] 徐汉虹. 植物化学保护学. 5版. 北京: 中国农业出版社, 2018: 239-240.
XU H H. Plant Chemical Protection. 5th ed. Beijing: China Agriculture Press, 2018: 239-240. (in Chinese)
[12] MORILLO E, VILLAVERDE J. Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 2017, 586:576-597.
doi: 10.1016/j.scitotenv.2017.02.020
[13] ALEXANDRINO D A M, MUCHA A P, ALMEIDA C M R, CARVALHO M F. Microbial degradation of two highly persistent fluorinated fungicides - Epoxiconazole and fludioxonil. Journal of Hazardous Materials, 2020, 394:122545.
doi: 10.1016/j.jhazmat.2020.122545
[14] VALDIVIA-RIVERA S, AYORA-TALAVERA T, LIZARDI- JIMÉNEZ M A, GARCÍA-CRUZ U, CUEVAS-BERNARDINO J C, PACHECO N. Encapsulation of microorganisms for bioremediation: Techniques and carriers. Reviews in Environmental Science and Bio/Technology, 2021, 20:815-838.
doi: 10.1007/s11157-021-09577-x
[15] BASTIDA F, JEHMLICH N, LIMA K, MORRIS B, RICHNOW H, HERNANDEZ T, BERGEN M, GARCIA C. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Journal of Proteomics, 2016, 135:162-169.
doi: 10.1016/j.jprot.2015.07.023
[16] CHEN M, XU P, ZENG G M, YANG C P, HUANG D L, ZHANG J C. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 2015, 33(6):745-755.
doi: 10.1016/j.biotechadv.2015.05.003
[17] 杨宗政, 许文帅, 吴志国, 曹井国, 武莉娅, 王春虎, 赵晓宇. 微生物固定化及其在环境污染治理中的应用研究进展. 微生物学通报, 2020, 47(12):4278-4292.
YANG Z Z, XU W S, WU Z G, CAO J G, WU L Y, WANG C H, ZHAO X Y. Microbial immobilization in environmental pollution treatment: A review. Microbiology China, 2020, 47(12):4278-4292. (in Chinese)
[18] YUAN Y, ZHOU L H, HOU R, WANG Y, ZHOU S G. Centimeter-long microbial electron transport for bioremediation applications. Trends in Biotechnology, 2021, 39(2):181-193.
doi: 10.1016/j.tibtech.2020.06.011
[19] 李海玲, 陈丽华, 肖朝虎, 哈斯其美格. 微生物固定化载体材料的研究进展. 现代化工, 2020, 40(8):58-61, 66.
LI H L, CHEN L H, XIAO C H, HA S Q M G. Research progress in microorganisms immobilized carrier materials. Modern Chemical Industry, 2020, 40(8):58-61, 66. (in Chinese)
[20] BOUABIDI Z B, EL-NAAS M H, ZHANG Z E. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters, 2019, 17:241-257.
doi: 10.1007/s10311-018-0795-7
[21] 张晶晶, 杨孟然, 刘婕, 蒋刚彪, 钟国华. 硝磺草酮降解菌HZ-2制剂固定化载体材料性能的比较. 华南农业大学学报, 2016, 37(3):86-89.
ZHANG J J, YANG M R, LIU J, JIANG G B, ZHONG G H. Pexformance comparison of different carrier materials for immobilization of mesotrione-degrading strain HZ-2. Journal of South China Agricultural University, 2016, 37(3):86-89. (in Chinese)
[22] 肖烜, 蔡天明, 陈立伟, 姜灿烂, 李辉信. 一株醚苯磺隆降解菌的分离、鉴定及固定化应用研究. 环境工程, 2015, 33(12):24-28, 68.
XIAO X, CAI T M, CHEN L W, JIANG C L, LI H X. Isolation, identification and immobilization application of a triasulfuron degrading strain. Environmental Engineering, 2015, 33(12):24-28, 68. (in Chinese)
[23] 李琦, 杨晓玫, 张建贵, 冯影, 杨琰珊, 白洁, 姚拓. 农用微生物菌剂固定化技术研究进展. 农业生物技术学报, 2019, 27(10):1849-1857.
LI Q, YANG X M, ZHANG J G, FENG Y, YANG Y S, BAI J, YAO T. Research progress on immobilization technology of agricultural microbial agents. Journal of Agricultural Biotechnology, 2019, 27(10):1849-1857. (in Chinese)
[24] 刘炉英, 刘锦辉, 胡小刚. 基于核酸适配体修饰复合纳米纤维的分散固相萃取技术在赭曲霉毒素A检测中的应用. 分析化学, 2021, 49(12):2096-2105.
LIU L Y, LIU J H, HU X G. Dispersive solid-phase extraction technology based on aptamer modified composite nanofibers and its application in detection of ochratoxin A. Chinese Journal of Analytical Chemistry, 2021, 49(12):2096-2105. (in Chinese)
[25] SANCHEZ-BALLESTER N M, BATAILLE B, SOULAIROL I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydrate Polymers, 2021, 270:118399.
doi: 10.1016/j.carbpol.2021.118399
[26] OUYANG X F, YIN H, YU X L, GUO Z Y, ZHU M H, LU G N, DANG Z. Enhanced bioremediation of 2,3′,4,4′,5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar. Science of the Total Environment, 2021, 788:147774.
doi: 10.1016/j.scitotenv.2021.147774
[27] BHATT P, RENE E R, KUMAR A J, GANGOLA S, KUMAR G, SHARMA A, ZHANG W P, CHEN S H. Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. Chemosphere, 2021, 276:130156.
doi: 10.1016/j.chemosphere.2021.130156
[28] ZDARTA J, MEYER A S, JESIONOWSKI T, PINELO M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Advances in Colloid and Interface Science, 2018, 258:1-20.
doi: 10.1016/j.cis.2018.07.004
[29] YAÑEZ-OCAMPO G, SANCHEZ-SALINAS E, JIMENEZ-TOBON G A, PENNINCKX M, ORTIZ-HERNÁNDEZ M L. Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle. Journal of Hazardous Materials, 2009, 168(2/3):1554-1561.
doi: 10.1016/j.jhazmat.2009.03.047
[30] 吴贺军. 固定化白腐真菌对农药污染土壤的原位修复[D]. 沈阳: 沈阳工业大学, 2016.
WU H J. In situ remediation of pesticide contaminated soil by immobilized white rot fungi[D]. Shenyang: Shenyang University of Technology, 2016. (in Chinese)
[31] LIU J, DING Y, MA L, GAO G H, WANG Y Y. Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation. International Biodeterioration and Biodegradation, 2017, 120:15-20.
doi: 10.1016/j.ibiod.2017.01.039
[32] 侯连刚, 李军, 陈光辉, 梁东博. 微生物菌体包埋固定化技术在废水处理中的应用. 水处理技术, 2019, 45(1):1-5.
HOU L G, LI J, CHEN G H, LIANG D B. Application of microorganism immobilization in wastewater treatment. Technology of Water Treatment, 2019, 45(1):1-5. (in Chinese)
[33] THAKUR S, SHARMA B, VERMA A, CHAUDHARY J, TAMULEVICIUS S, THAKUR V K. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of Cleaner Production, 2018, 198:143-159.
doi: 10.1016/j.jclepro.2018.06.259
[34] HECHT H, SREBNIK S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules, 2016, 17(6):2160-2167.
doi: 10.1021/acs.biomac.6b00378
[35] DOU R N, SUN J T, LU J, DENG F C, YANG C, LU G N, DANG Z. Bacterial communities and functional genes stimulated during phenanthrene degradation in soil by bio-microcapsules. Ecotoxicology and Environmental Safety, 2021, 212:111970.
doi: 10.1016/j.ecoenv.2021.111970
[36] LIU J, MORALES-NARVÁEZ E, VICENT T, MERKOÇI A, ZHONG G H. Microorganism-decorated nanocellulose for efficient diuron removal. Chemical Engineering Journal, 2018, 354:1083-1091.
doi: 10.1016/j.cej.2018.08.035
[37] LIU J, CHEN S H, DING J, XIAO Y, HAN H T, ZHONG G H. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Applied Microbiology and Biotechnology, 2015, 99(24):10839-10851.
doi: 10.1007/s00253-015-6935-0
[1] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!