Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1820-1829.doi: 10.3864/j.issn.0578-1752.2020.09.010

• PLANT PROTECTION • Previous Articles     Next Articles

Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene

Yun PENG,TianGang LEI(),XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN()   

  1. National Center for Citrus Variety Improvement, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2019-12-09 Accepted:2020-01-28 Online:2020-05-01 Published:2020-05-13
  • Contact: TianGang LEI,ShanChun CHEN E-mail:156280591@qq.com;scchen@cric.cn

Abstract:

【Objective】In the previous study, single nucleotide polymorphisms (SNPs) of citrus varieties were screened based on transcriptome, and 14 SNPs were defined to be associated with citrus bacterial canker (CBC) resistance via association analysis. In this study, it is aimed to verify the correlation between these SNP loci and CBC resistance in order to obtain significantly related SNPs and to find the inducible expression profiles of corresponding genes by plant hormones and Xanthomonas citri subsp. citri (Xcc) infection. 【Method】The sensitive and resistant varieties and their F1 populations were used for CBC resistance identification via in vitro acupuncture inoculation and SNP-based genotyping was conducted via high resolution melting (HRM) technology. The phenotypes and genotypes were then associated by software DPS, and inducible expression profiles of SNP (HP031) related calcium-dependent protein kinase gene (CDPK) were analyzed by quantitative real-time PCR (qRT-PCR). 【Result】The lesion areas of F1 populations ranged from 0.75 to 3.29 mm2, and the disease index ranged from 30.2 to 100, while the resistant variety Jindan had a disease index of 11.1, and disease index of the susceptible variety Bingtangcheng was 100. For the offspring of hybrids with a low disease index, at least one of their parents is a disease-tolerant variety, and most of the female parents have strong disease-tolerance. According to the disease index, the populations could be grouped into immune (1 variety), highly resistant (17), moderately resistant (31), moderately sensitive (38), and highly sensitive (56). The SNP typing results showed that all the 14 SNP loci were polymorphic among 143 test materials, which could be divided into 3 different genotypes, 2 homozygous types and 1 heterozygous type. The results of simple correlation analysis showed that the genotypes of multiple SNP loci were significantly correlated with the lesion area and disease index. The results of canonical correlation analysis showed that the correlation between the 5 SNP loci and the lesion area was high, the absolute values of the correlation coefficients were all >0.2, and their numbers were HP31, HP42, HP85, HP87, and HP170. The genotypes of these 5 SNP loci could be used to predict the tolerance to CBC. SNP HP31 located in the coding region of CsCDPK (CAP ID: Cs4g10370). The expression of CsCDPK was analyzed at 6, 12, 24, 48 and 72 hpi (hours post inoculation), it was found that the expression of CsCDPK all increased first and then decreased, and reached the highest relative expression at 48 hpi in Jindan (highly resistant), Xinshengxi No. 3 (moderately resistant), and Bingtangcheng (highly sensitive) varieties. At 12 hpi, the relative expression level of CsCDPK in Jindan was 3 times of that in the control, but there was no significant difference in Xinshengxi No. 3 and Bingtangcheng. Besides, CsCDPK was also differently induced by salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) in CBC resistant and sensitive varieties. 【Conclusion】Five SNPs associated with CBC resistance were verified, which can be used for marker-assistant selection. SNP HP31 related gene CsCDPK can be induced by Xcc and phytohormones, which may play an important role in the signal transduction process of citrus response to Xcc.

Key words: citrus bacterial canker (CBC), Xanthomonas citri subsp. citri (Xcc), single nucleotide polymorphism (SNP), calcium-dependent protein kinase gene (CDPK), induced expression

Table 1

SNP loci and the PCR primers used for SNP genotyping by HRM"

SNP编号
SNP number
SNP位点
SNP loci
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
HP02 GGTTTTT
GGTGTTT
AGAGCTGCCTTAGTGGTGTC CAGTCTCTACTGCCCCGTTC
HP17 ATATCCC
ATAGCCC
ACCAGTTACTCTCCGTCCGA TTAGGGTTTGGCGAGGACG
HP18 GATCGAA
GATTGAA
CAGAACATTATCCGGCATGGG CCTGAATGAGAGGTGCTGATTT
HP31 GCCATAT
GCCGTAT
TGGCAGAATGTTGGGTAGGG CCACTCAAGAGCCGCCTTAT
HP40 ACGCTCA
ACGTTCA
ATCCTCCTTCTCCCGTCACC TGGGTTTGGTCATGTCCTTCC
HP42 ATTCTCC
ATTTTCC
ATCAAGTAACACACTCCCTTTACG TGAGACTTTATATTTGTGATTGCGA
HP54 TGCCCTT
TGCTCTT
GGGTTCCCCGTTTCAGATGT CCACCTCCGATGGAAAGAAGT
HP75 TTACTCC
TTATTCC
TCCTTCTGCCCGGATGATGA TCCTTCTGCCCGGATGATGA
HP85 TTGCCC
TTGTCC
CACAAGTCACAAGCCGCAAT AAGTACGATTGCCCGAGGTC
HP87 ACAGTAG
ACATTAG
ATCAATGGGGTCACCAACCC ATTGGTGGTGGCGTTAGTCC
HP108 CATACCAA
CATATCAA
TGAAAGTGAACTTCAACGATGC TCGTTGAGGAGAGGTCCAAGA
HP127 CTCTTTCC
CTCTCTCC
TCGGCTTTTGTCGCGTTTAC TAGCTGACACGACACCGTTT
HP128 ATCCCTTT
ATCACTT
TGGATCCCACCATGGAATTGT AGCGATGAGTTTAAGGAGAAGGG
HP170 AACTCGA
AACCCGA
ATGGATCCTTTTGAGAGAAGAAAACTGT TGTCATTCTTGCCTTTTCCTTTCT

Table 2

Primer sequences for qRT-PCR"

基因Gene 上游引物序列Upstream primer sequence (5′-3′) 下游引物序列Downstream primer sequence (5′-3′)
CsCDPK CTACCCGGTTTGCCTTGCTA CAGCTCTGTTGCCTGACTGA
actin CATCCCTCAGCACCTTCC CCAACCTTAGCACTTCTCC

Fig. 1

Melting curve and genotyping of locus 31"

Table 3

Significance test results of canonical correlation"

相关系数
Correlation coefficient
Wilks统计量
Wilks Lambda
卡方值
Chi-Square
自由度
Degree of freedom (df)
P
P value
病斑面积Lesion area 0.4849 0.6547 55.2766 28 0.0016
病情指数Disease index 0.3796 0.8559 20.2999 13 0.088

Table 4

Typical correlation coefficient matrix"

HP
02
HP
17
HP
18
HP
31
HP
40
HP
42
HP
54
HP
75
HP
85
HP
87
HP
108
HP
127
HP
128
HP
170
病斑面积 Lesion area 0.13 0.12 -0.01 -0.30 -0.16 -0.30 0.01 0.07 0.24 -0.28 -0.14 -0.04 0.11 0.20
病情指数 Disease index 0.09 0.05 0.04 -0.23 -0.12 -0.23 0.06 0.01 0.27 -0.24 -0.15 -0.02 0.01 0.24

Fig. 2

Bioinformatics analysis of CsCDPK"

Fig. 3

CsCDPK relative expression in 3 citrus varieties induced by Xcc and exogenous hormones"

[1] SENDIN L N, FILIPPONE M P . The genetic transformation of sweet orange (Citrus sinensis L. Osbeck) for enhanced resistance to citrus canker: Methods and protocols// Transgenic Plants, 2019: 179-190.
[2] KAH M, NAVARRO D, KOOKANA R S, KIRBY J K, SANTRA S, OZCAN A, KABIRI S . Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Environmental Chemistry, 2019,16(6):401-410.
[3] PERKEL J . SNP genotyping: Six technologies that keyed a revolution. Nature Methods, 2008,5(5):447-453.
doi: 10.1038/nmeth0508-447
[4] DONG Q H, CAO X, YANG G, YU H P, NICHOLAS K K, WANG C, FANG J G . Discovery and characterization of SNPs in Vitis vinifera and genetic assessment of some grapevine cultivars. Scientia Horticulturae, 2010,125(3):233-238.
doi: 10.1016/j.scienta.2010.03.023
[5] BEHLAU F, CANTEROS B I, MINSAVAGE G V, JONES J B, GRAHAM J H . Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 2011,77(12):4089-4096.
doi: 10.1128/AEM.03043-10 pmid: 21515725
[6] 向旭 . 柑桔抗病分子育种研究进展. 分子植物育种, 2006,4(2):262-268.
XIANG X . Progresses on molecular breeding for citrus disease resistance. Molecular Plant Breeding, 2006,4(2):262-268. (in Chinese)
[7] DENG Z A, XIAO S Y, HUANG S, JR, GMITTER F G . Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome, 1997,40(5):697-704.
doi: 10.1139/g97-792 pmid: 18464859
[8] LING P, DUNCAN L W, DENG Z, DUNN D, HU X, HUANG S, HUANG S, HUANG S, JR, GMITTER F G . Inheritance of citrus nematode resistance and its linkage with molecular markers. Theoretical and Applied Genetics, 2000,100(7):1010-1017.
doi: 10.1007/s001220051382 pmid: 12582928
[9] 谭李梅, 刘慧, 朱志媚, 周东, 汤甜, 邓子牛 . 柠檬自交后代抗柑橘溃疡病的离体鉴定. 湖南农业科学, 2017(3):58-62.
TAN L M, LIU H, ZHU Z M, ZHOU D, TANG T, DENG Z N . Vitro identification of lemon self-crossed seedlings for the resistance to citrus canker disease. Hunan Agricultural Sciences, 2017(3):58-62. (in Chinese)
[10] RANDHAWA H S, ASIF M, POZNIAK C, CLARKE J M, GRAF R J, FOX S L, HUMPHREYS D G, KNOX R E, DEPAUW R M, SINGH A K, CUTHBERT R D, HUCL P, SPANER D . Application of molecular markers to wheat breeding in Canada. Plant Breeding, 2013,132(5):458-471.
[11] RIBAUT J M, HOISINGTON D . Marker-assisted selection: New tools and strategies. Trends in Plant Science, 1998,3(6):236-239.
doi: 10.1016/S1360-1385(98)01240-0
[12] LIU Z J, CORDESB J F . DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004,238(1):1-37.
doi: 10.1016/j.aquaculture.2004.05.027
[13] KIM B, HWANG I S, LEE H J, LEE J M, SEO E, CHOI D, OH C S . Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theoretical and Applied Genetics, 2018,131(5):1017-1030.
doi: 10.1007/s00122-018-3054-1 pmid: 29352323
[14] DUNEMANN F, PEIL A, URBANIETZ A, GARCIA-LIBREROS T . Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breeding, 2007,126(5):476-481.
doi: 10.1111/pbr.2007.126.issue-5
[15] ERDIN N, TARTARINI S, BROGGINI G A, GENNARI F, SANSAVINI S, GESSLER C, PATOCCHI A . Mapping of the apple scab-resistance gene Vb. Genome, 2006,49(10):1238-1245.
doi: 10.1139/g06-096 pmid: 17213905
[16] 刘升锐 . 柑橘高密度遗传连锁图谱的构建及落叶性状的QTL定位[D]. 武汉: 华中农业大学, 2016.
LIU S R . High-density genetic map construction and identification of QTLs controlling deciduous trait in citrus[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[17] BARBA P, CADLE‐DAVIDSON L, HARRIMAN J, GLAUBITZ J C, BROOKS S, HYMA K, REISCH B . Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theoretical and Applied Genetics, 2014,127(1):73-84.
doi: 10.1007/s00122-013-2202-x pmid: 24072208
[18] OLIVEIRA R P D, CRISTOFANI M, MACHADO M A . Genetic mapping for citrus variegated chlorosis resistance. Laranja, 2002,23(1):247-261.
doi: 10.1128/AEM.67.5.2263-2269.2001 pmid: 11319110
[19] BASTIANEL M, CRISTOFANI-YALY M, OLIVEIRA A C, FREITAS-ASTÚA J, GARCIA A A F, RESENDE M D V, RODRIGUES V, MACHADO M A . Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Citrus reticulata Blanco×C. sinensis L. Osbeck) × C. sinensis L. Osb. Euphytica, 2009,169(1):101-111.
doi: 10.1007/s10681-009-9950-3
[20] PENG A H, XU L Z, HE Y R, LEI T G, YAO L X, CHEN S C, ZOU X P . Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Citrus sinensis Osbeck) with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell, Tissue and Organ Culture, 2015,123(1):1-13.
[21] ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTRO E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E, GROSDIDIER A, HERNANDEZ C, IOANNIDIS V, KUZNETSOV D, LIECHTI R, MORETTI S, MOSTAGUIR K, REDASCHI N, ROSSIER G, XENARIOS I, STOCKINGER H . ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012,40(W1):W597-W603.
doi: 10.1093/nar/gks400 pmid: 22661580
[22] 吴柳, 白晓晶, 文庆利, 谢竹, 何永睿, 王丽娟, 陈善春, 邹修平 . 柑橘黄龙病病原菌Las在叶圆片嫁接接种的‘锦橙’中早期扩散研究. 园艺学报, 2018,45(11):2121-2128.
WU L, BAI X J, WEN Q L, XIE Z, HE Y R, WANG L J, CHEN S C, ZOU X P . Early spread characteristics of Candidatus Liberibacter asiaticus in Jincheng orange(Citrus sinensis Osbeck) by leafdisc grafting. Acta Horticulturae Sinica, 2018,45(11):2121-2128. (in Chinese)
[23] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P . Engineering canker‐resistant plants through CRISPR/Cas9‐ targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 2017,15(12):1509-1519.
doi: 10.1111/pbi.12733 pmid: 28371200
[24] MORGUTTI S, NEGRINI N, NOCITO F F, GHIANI A, BASSI D, COCUCC M . Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes. New Phytologist, 2006,171(2):315-328.
doi: 10.1111/j.1469-8137.2006.01763.x pmid: 16866939
[25] DEVITT L C, FANNING K, DIETZGEN R G, HOLTON T A . Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya(Carica papaya L.). Journal of Experimental Botany, 2010,61(1):33-39.
doi: 10.1093/jxb/erp284 pmid: 19887502
[26] SÁNCHEZ-PÉREZ R, HOWAD W, GARCIA-MAS J, ARÚS P, MARTÍNEZ-GÓMEZ P, DICENTA F . Molecular markers for kernel bitterness in almond. Tree Genetics and Genomes, 2010,6(2):237-245.
doi: 10.3390/genes9080385 pmid: 30065184
[27] DELORMEL T Y, BOUDSOCQ M . Properties and functions of calcium‐dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytologist, 2019,224(2):585-604.
doi: 10.1111/nph.16088 pmid: 31369160
[28] HARMON A C, PUTNAM-EVANS C, CORMIER M J . A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiology, 1987,83(4):830-837.
doi: 10.1104/pp.83.4.830 pmid: 16665348
[29] 王金磊 . 弓形虫钙依赖性蛋白激酶的功能及免疫保护性研究[D]. 北京: 中国农业科学院, 2017.
WANG J L . Studies of the basic functions and immunoprotective effect of Toxoplasma gondii calcium-dependent protein kinases[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[30] XU W W, HUANG W C . Calcium-dependent protein kinases in phytohormones signaling pathways. International Journal of Molecular Sciences, 2017,18(11):E2436.
doi: 10.3390/ijms18112436 pmid: 29156607
[31] URAO T, KATAGIRI T, MIZOGUCHI T, YAMAGUCHI-SHINOZAKI K, HAYASHIDA N, SHINOZAKI K . Two genes that encode Ca 2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Molecular and General Genetics, 1994,244(4):331-340.
doi: 10.1007/BF00286684 pmid: 8078458
[32] WANG B F, ZHANG Y X, BI Z Z, LIU Q E, XU T T, YU N, CAO Y R, ZHU A K, WU W X, ZHAN X D, ANIS G B, YU P, CHEN D B, CHENG S H, CAO L Y . Impaired function of the calcium-dependent protein kinase, OsCPK12, leads to early senescence in rice (Oryza sativa L.). Frontiers in Plant Science, 2019,10: Article 52.
doi: 10.3389/fpls.2019.00052 pmid: 30778363
[33] ZHAO R, SUN H L, MEI C, WANG X J, YAN L, LIU R, ZHANG X F, WANG X F, ZHANG D P . The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologist, 2011,192(1):61-73.
doi: 10.1111/j.1469-8137.2011.03793.x pmid: 21692804
[34] ZHAO R, WANG X F, ZHANG D P . CPK12: A Ca 2+-dependent protein kinase balancer in abscisic acid signaling. Plant Signaling and Behavior, 2011,6(11):1687-1690.
doi: 10.4161/psb.6.11.17954 pmid: 22041934
[35] BOTELLA J R, ARTECA J M, SOMODEVILLA M, ARTECA R N . Calcium-dependent kinase gene expression in response to physiol and chemical stimuli in mungbean (Vigna radiata). Plant Molecular Biology, 1996,30(6):1129-1137.
doi: 10.1007/BF00019547 pmid: 8704124
[36] BREVIARIO D, MORELLO L, GIANÌ S . Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinase. Plant Molecular Biology, 1995,27(5):953-967.
doi: 10.1007/BF00037023 pmid: 7766885
[37] ROMEIS T, PIEDRAS P, JONES J D . Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defence response. The Plant Cell, 2000,12(5):803-816.
doi: 10.1105/tpc.12.5.803 pmid: 10810151
[38] CAMPOS-SORIANO L, GÓMEZ-ARIZA J, BONFANTE P, SAN SEGUNDO B . A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2011,11:90.
doi: 10.1186/1471-2229-11-90 pmid: 21595879
[39] WEAVER C D, ROBERTS D M . Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry, 1992,31(37):8954-8959.
doi: 10.1021/bi00152a035 pmid: 1390682
[1] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
[4] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[5] HU AnHua,QI JingJing,ZHANG QingWen,CHEN ShanChun,ZOU XiuPing,XU LanZhen,PENG AiHong,LEI TianGang,YAO LiXiao,LONG Qin,HE YongRui,LI Qiang. Cloning and Expression Analysis of the Citrus Bacterial Canker-Related Gene CsPGIP in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(4): 639-650.
[6] DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255.
[7] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
[8] HE YuJuan, JU Di, WANG Yue, YANG XueQing, WANG XiaoQi . Compositive and Inductive Expression Patterns of Protease Inhibitor Genes OsLTPL164 and OsLTPL151 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2018, 51(12): 2311-2321.
[9] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[10] YING Bi, CHANG Xiao-yu, LIU Zhi-wen, ZHOU Tong, CHEN Yao, ZHONG Ping-an, XU Bo. Food-Grade Induced Expression and Enzymatic Properties of Nitrite Reductase from Lactobacillus plantarum WU14 Under Nitrite Stress [J]. Scientia Agricultura Sinica, 2015, 48(7): 1415-1427.
[11] ZHANG Li-Qun-1, WEI Kang-1, WANG Li-Yuan-1, CHENG Hao-1, LIU Ben-Ying-2, GONG Wu-Yun-1. The Structure and Single Nucleotide Polymorphism Analysis of Chalcone Synthase Genes in Tea Plant (Camellia sinenesis) [J]. Scientia Agricultura Sinica, 2014, 47(1): 133-144.
[12] WANG Ji-Ying, WANG Hai-Xia, CHI Rui-Bin, GUO Jian-Feng, WU Ying. Progresses in Research of Genome-Wide Association Studies in Livestock and Poultry [J]. Scientia Agricultura Sinica, 2013, 46(4): 819-829.
[13] YUAN Ya-Nan, LIU Wen-Zhong, LIU Jian-Hua, QIAO Li-Ying, WU Jian-Liang. The Base Mutation of Ovine UCP1 Gene and Its Relationship   with Protein Structure and Function [J]. Scientia Agricultura Sinica, 2012, 45(14): 2973-2980.
[14] YUE Ai-Qin,LI Ang,MAO Xin-Guo,CHANG Xiao-Ping,LI Run-Zhi,JIA Ji-Zeng,JING Rui-Lian. Single Nucleotide Polymorphism and Mapping of 6-SFT-A Gene Responsible for Fructan Biosynthesis in Common Wheat [J]. Scientia Agricultura Sinica, 2011, 44(11): 2216-2224 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!