Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5144-5162.doi: 10.3864/j.issn.0578-1752.2021.23.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau

CHEN ChaoXi(),LI YuHan,TAN Min,WANG Lu(),HUANG ZhiHong   

  1. College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041
  • Received:2020-10-22 Accepted:2021-01-06 Online:2021-12-01 Published:2021-12-06
  • Contact: Lu WANG E-mail:chaoxi8832@163.com;luwangbest@163.com

Abstract:

【Objective】To improve the understanding of biological properties of drug resistance status, virulence characteristics and the predominant phylogroups of Escherichia coli (E.coli) isolated from yaks and Tibetan pigs in northwest Sichuan Plateau, biofilm-forming ability, antibacterial resistance genes, virulence genes, integrase genes and phylogenetic analyses were carried out in current study.【Method】Fecal samples and gastrointestinal contents from yaks and Tibetan pigs were collected for E.coli isolation and identification using MacConkey agar and 15e enterobacteriaceae bacterial biochemical coding identification tube. Modified semi-quantitative crystal violet staining method and microdilution broth method were used for biofilm-forming ability and antibacterial sensitivity testing to 24 antibacterial agents, respectively. Meanwhile, the detection of 28 antibacterial resistance genes, 2 integrase genes and 15 virulence genes and phylogenetic analyses were performed by conventional PCR or multiple PCR method. 【Result】The results showed that: (1) 329 strains of E.coli were isolated and identified from 471 feces and gastrointestinal samples collected from yaks and Tibetan pigs, and the isolation rate was 78.9%. (2) Most of the 329 strains of E.coli performed weak or absent biofilm-forming ability, and only 2 strains showed strong biofilm formation phenotype (one isolated from yak and the other isolated from Tibetan pig). (3) Most of the 329 strains of E.coli revealed drug resistance to 24 antibacterial agents and were multi-drug resistant, among which, the drug resistance rates to Sulfamethoxazole, Sulfadimidine, Streptomycin, Chloramphenicol, Ampicillin, Rifampicin, and Oxytetracycline were relatively high, and were sensitive to Aminoglycosides (Kanamycin, Amikacin, Spectinomycin), β-lactams(Ceftiofur, Ceftriaxone, Cefazolin), Quinolones (Nalidixic acid, Sarafloxacin, Enrofloxacin, Ciprofloxacin, Danofloxacin, Levofloxacin) and Colistin B. (4) Twenty-one antibacterial resistance genes (ARGs) were detected positive and the other seven ARGs (cat1, cat2, blaCMY-2, blaSHV, tetC, tetG, and tetX) were detected negative, among which aac(6')-Ib was the most prevalent gene, followed by sul1 and floR, with the detection rates over 30%. There existed correlation between drug resistance to quinolones antibiotics and qnrA in Tibetan pig-derived E.coli, and for yak-derived E.coli, the strains resistant to β-lactam antibiotics existed correlation between blaTEM and blaDHA. (5) The detection rates of integrase genes intⅠ1 and intⅠ2 were 30.09% (99/329) and 4.56% (15/329), respectively. And integrase genes intⅠ1 and intⅠ2 were simultaneously detected in 10 isolates (2 yak-derived and 8 Tibetan pig-derived, respectively). (6) Virulence genes of agn43, sitA, ompT, eaeA, bcsA, fimC, LT, fyuA and irp2 were all positively detected, but stx1, stx2, ehxA, bcsB, hlyA, and hlyE were not detected. There existed 38 different virulence genotypes in 329 strains of E.coli and 285 of which carried at least one of the seven virulence genes except for agn43 and bcsA, some strains carried six virulence genes at most. (7) Among the 21 ARGs, types of ARGs in phylogroup A and B1 were more abundant than those of phylogroup B2 and D; In phylogroup A, sul3, qnrS, tetM were the most widely distributed ARGs, and for phylogroup B1 most widely distributed ARGs were sul1 and aac(6')-Ib, without tetM and qnrA; Seven virulence genes were mainly distributed in phylogroup A and B1, fimC, sitA and ompT genes were mainly distributed in phylogroup A and B1, and eaeA, fyuA and irp2 were the mainly distributed genes in phylogroup B1; LT was mainly distributed in phylogroup A (only one distributed in phylogroup D).【Conclusion】 In summary, the resistance status of 329 strains of E.coli was serious, revealing various drug resistance profiles and virulence genotypes. The current study could provide data support and theoretical basis for yak and Tibetan pig colibacillosis treatment, mechanism of pathogenesis and rational use of antibacterial agents in northwest Sichuan Plateau.

Key words: E. coli, biofilm, antibacterial resistance genes (ARGs), integrase genes, virulence genes, phylogenetic background

Table 1

Information of PCR primers for ARGs and integrase genes amplification"

抗菌药物类别
Classes of antibacterial agents
基因名称
Gene name
引物序列(5′→3′)
Primer sequence (5′→3′)
扩增片段大小
Amplification size (bp)
退火温度
Annealing temperature (℃)
参考文献或序列号
Reference or sequence number
四环素类
Tetracyclines
tetA F-CACTATGGCATTCTGCTGGC 948 60 [18]
R-CATAGATCGCCGTGAAGAGG
tetB F-GCCCAGTGCTGTTGTTGTC 553 60 [18]
R-AAGACCAAGACCCGCTAATG
tetC F-TCCTGCTCGCTTCGCTACT 730 58 [18]
R-TGGTCGTCATCTACCTGC
tetD F-AAACCATTACGGCATTCTGC 787 56 [19]
R-GACCGGATACACCATCCATC
tetG F-CGGTCTTATGGGTGCTCTA 721 58 [18]
R-CCTTGCTTGTTACTGAC
tetM F-TTATCAACGGTTTATCAGG 397 55 [20]
R-CGTATATATGCAAGACG
tetX F-CAATAATTGGTGGTGGACCC 468 56 [21]
R-TTCTTACCTTGGACATCCCG
磺胺类
Sulfonamides
sul1 F-TCAGACGTCGTGGATGTCG 393 57 [22]
R-CGAAGAACCGCACAATCTCG
sul2 F-CCTGTTTCGTCCGACACAGA 435 59 [23]
R-GAAGCGCAGCCGCAATTCAT
sul3 F-AGATGTGATTGATTTGGGAGC 443 53 [24]
R-TAGTTGTTTCTGGATTAGAGCCT
喹诺酮类
Quinolones
qnrA F-TCAGCAAGAGGATTTCTCA 627 55 [25]
R-GGCAGCACTATTACTCCCA
qnrB F-ACGATGCCTGGTAGTTGTCC 469 55 [25]
R-ACGACATTCGTCAACTGCAA
抗菌药物类别
Classes of antibacterial agents
基因名称
Gene name
引物序列(5′→3′)
Primer sequence (5′→3′)
扩增片段大小
Amplification size (bp)
退火温度
Annealing temperature (℃)
参考文献或序列号
Reference or sequence number
qnrS F-ACGACATTCGTCAACTGCAA 417 55 [25]
R-TAAATTGGCACCCTGTAGGC
qepA F-GCAGGTCCAGCAGCGGGTAG 299 56 [25]
R-CTTCCTGCC CGAGTATCGTG
β-内酰胺类
β-lactams
blaDHA F-AACTTTCACAGGTGTGCTGGGT 387 59 [26]
R-CCGTACGCATACTGGCTTTGC
blaTEM F-ATAAAATTCTTGAAGACGAAA 1080 52 [26]
R-GACAGTTACCAATGCTTAATC
blaCMY-2 F-ATGATGAAAAAATCGTTATGC 1143 57 [26]
R-TTGCAGCTTTTCAAGAATGCG
blaSHV F-CACTCAAGGATGTATTGTG 885 53 [26]
R-TTAGCGTTGCCAGTGCTCG
酰氨醇类
Amphenicols
floR F-CTGAGGGTGTCGTCATCTAC 673 54 [23]
R-GCTCCGACAATGCTGACTAT
cmlA F-CGCCACGGTGTTGTTGTTAT 394 59 [23]
R-GCGACCTGCGTAAATGTCAC
cmlB F-ACTCGGCATGGACATGTACT 284 57 [23]
R-ACGGACTGCGGAATCCATAG
氨基糖苷类
Aminoglycosides
cat1 F-CTTGTCGCCTTGCGTATAAT 508 53 [23]
R-ATCCCAATGGCATCGTAAAG
cat2 F-AACGGCATGATGAACCTGAA 547 53 [23]
R-ATCCCAATGGCATCGTAAAG
aac(3’)-Ⅳ F-GGCCACTTGGACTGATCGAG 409 58 X01385
R-GCGGATGCAGGAAGATCAAC
aadA2 F-GGTGCTAAGCGTCATTGAGC 470 57 AB154408
R-GCTTCAAGGTTTCCCTCAGC
rmtB F-ACATCAACGATGCCCTCAC 472 53 AB103506
R-AAGTTCTGTTCCGATGGTC
aac(6’)-Ib F-TTGCGATGCTCTATGAGTGGCTA 482 56 [27]
R-CTCGAATGCCTGGCGTGTTT
aph (3’)-Ⅶ F-TCCACAGGATGGCAAGATCC 690 55 AY260546
R-TTCAACGGGAAACGTCTTGC
整合酶基因
Integrase genes
intⅠ1 F-CCTCCCGCACGATGATC 280 57 [28]
R-TCCACGCATCGTCAGGC
intⅠ2 F-TTATTGCTGGGATTAGGC 233 52 [28]
R-ACGGCTACCCTCTGTTATC

Table 2

Information of PCR primers for virluence genes amplification"

毒力基因类别
Types of virluence genes
基因名称
Gene name
引物序列(5′→3′)
Primer sequence(5′→3′)
扩增片段大小
Amplification size(bp)
退火温度
Annealing temperature (℃)
参考文献或序列号
Reference or sequence number
产志贺毒素毒力基因
Shiga toxin-producing virulence gene
stx1 F-ACACTGGATGATCTCAGTGG 614 58 [29]
R-CTGAATCCCCCTCCATTATG
stx2 F-CCTGTCAACTGAGCACTTTG 779 58 [29]
R-CCATGACAACGGACAGCAGTT
非菌毛黏附素
Non-fimbrial adhesin
eaeA F-ATGCTTAGTGCTGGTTTAGG 248 55 EF079676
R-GCCTTCATCATTTCGCTTTC
EHEC溶血素
EHEC hemolysin
ehxA F-CAATAATTGGTGGTGGACCC 583 55 EF088504
R-TTCTTACCTTGGACATCCCG
相变抗原
Phase variation antigen
agn43 F-GACTATGACCGGATTSTGGCAGGCT 499 67 [30]
R-GTGGCTCCAGCATCARTTGTCAG
铁结合蛋白
Iron transport periplasmic-binding protein
sitA F-AGGGGGCACAACTGATTCTCG 608 57 [31]
R-TACCGGGCCGTTTTCTGTGC
溶血素
Hemolysin
hlyF F-GGCGATTTAGGCATTCCGATACTC 599 55 [31]
R-ACGGGGTCGCTAGTTAAGGAG
hlyA F-AACAAGGATAAGCACTGTTCTGGCT 1177 55 [32]
R-ACCATATAAGCGGTCATTCCCGTCA
耶尔森菌强毒力岛
Yersinia high-pathogenicity island
fyuA F-TGATTAACCCCGCGACGGGAA 880 55 [32]
R-CGCAGTAGGCACGATGTTGTA
纤维素合成酶基因
Cellulose synthase operon genes
bcsA F-GTATCGGTAGAAAGCAAACAGG 185 55 [33]
R-GAACGGTACACGAGAAGAGG
bcsB F-CTCGTGTACCGTTCAGGATTTCT 388 55 [33]
R-CAGCCCAACTTCATTACCCAT
Ⅰ型菌毛亚基
Type Ⅰ fimbriae
fimC F-GGAAATAACATTCTGCTTGC 288 56 [34]
R-TTTGTTGCATCAAGAATACG
外膜蛋白基因
Outer membrane protein
ompT F-ATCTAGCCGAAGAAGGAGGC 559 55 [34]
R-CCCGGGTCATAGTGTTCATC
铁离子摄取相关基因
Iron uptake-related gene
irp2 F-AAGGATTCGCTGTTACCGGAC 280 55 [34]
R-TCGTCGGGCAGCGTTTCTTCT
热敏肠毒素
Heat-stable enterotoxin
LT F-ATGAGTACTTCGATAGAGG 279 55 [34]
R-ATGGTATTCCACCTAACGC

Fig.1

Biofilm-forming ability of 329 E.coli"

Table 3

Antibacterial sensitivity testing of 329 E.coli to 24 antibacterial agents"

抗菌药物
Antibacterial agents
耐药率 Antibiotic resistance rate (%) 中介率 Antibiotic mediate rate (%) 敏感率 Antibiotic sensitivity rate (%)
牦牛
Yaks
藏猪
Tibetan pigs
小计
Sub-total
牦牛
Yaks
藏猪
Tibetan pigs
小计
Sub-total
牦牛
Yaks
藏猪
Tibetan pigs
小计
Sub-total
链霉素Streptomycin 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
庆大霉素Gentamicin 27.7 46.3 34.7 5.3 4.9 5.2 67.0 48.8 60.2
妥布霉素Tobramycin 1.5 1.6 1.5 4.4 4.9 4.6 94.2 93.5 93.9
卡那霉素Kanamycin 0.0 0.0 0.0 4.9 17.1 9.4 95.1 82.9 90.6
大观霉素Spectinomycin 0.0 0.0 0.0 57.3 73.2 63.2 42.7 26.8 36.8
阿米卡星Amikacin 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0
氯霉素Chloramphenicol 96.6 97.6 97.0 1.5 1.6 1.5 1.9 0.8 1.5
氟苯尼考Florphenicol 9.7 30.9 17.6 38.8 36.6 38.0 51.5 32.5 44.4
磺胺二甲嘧啶Sulfadimidine 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
磺胺甲噁唑 Sulfamethoxazole 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
利福平Rifampicin 52.9 62.6 56.5 24.3 31.7 27.1 22.8 5.7 16.4
多黏菌素B Colistin B 3.4 1.6 2.7 5.8 8.9 7.0 90.8 89.4 90.3
土霉素Oxytetracycline 41.3 83.7 57.1 6.8 4.1 5.8 51.9 12.2 37.1
多西环素Doxycycline 25.2 48.8 34.0 11.2 25.2 16.4 63.6 26.0 49.5
萘啶酸Nalidixic acid 11.2 17.9 13.7 0.0 0.0 0.0 88.8 82.1 86.3
沙拉沙星Sarafloxacin 7.8 3.2 6.1 9.2 9.8 9.4 83.0 87.0 84.5
恩诺沙星Enrofloxacin 6.8 4.9 6.1 4.4 8.9 6.1 88.8 86.2 87.8
环丙沙星Ciprofloxacin 5.8 4.9 5.5 0.0 0.8 0.3 94.2 94.3 94.2
达氟沙星Danofloxacin 5.8 3.3 4.9 8.3 13.0 10.0 85.9 83.7 85.1
左氧氟沙星 Levofloxacin 4.4 2.4 3.6 1.0 0.0 0.6 94.7 97.6 95.7
氨苄西林Ampicillin 27.7 49.6 35.9 1.5 1.6 1.5 70.9 48.8 62.6
头孢噻呋Ceftiofur 1.9 8.9 4.6 0.5 1.6 0.9 97.6 89.4 94.5
头孢曲松Ceftriaxone 1.9 12.2 5.8 1.0 0.8 0.9 97.1 87.0 93.3
头孢唑啉Cefazolin 0.5 0.0 0.3 0.0 0.0 0.0 99.5 100.0 99.7

Table 4

Summary of antibacterial susceptibility profiles of 329 E.coli"

耐药表型
Antibacterial susceptibility profiles
菌株数 Strain numbers (%)
牦牛 Yaks 藏猪 Tibetan pigs 小计 Sub-total
AMP/CHL/CIP/CRO/CTF/DAN/DOX/ENR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR/TOB 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CRO/CTF/DAN/ENR/FLR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR/TOB 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/DOX/ENR/FLR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR 2 (0.97) 1 (0.80) 3 (0.91)
AMP/CHL/CIP/CZO/DAN/DOX/ENR/FLR/GEN/LVX/NAL/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/DOX/ENR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/ENR/FLR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/DOX/ENR/GEN/LVX/NAL/OXY/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/ENR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/ENR/GEN/LVX/NAL/OXY/SAR/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CIP/DAN/DOX/ENR/GEN/LVX/NAL/OXY/SAR/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CIP/CZO/DAN/ENR/GEN/NAL/OXY/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/DAN/DOX/ENR/GEN/NAL/OXY/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CRO/CTF/CZO/DOX/FLR/GEN/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/ENR/FLR/GEN/OXY/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CIP/CZO/DOX/FLR/GEN/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CIP/DAN/ENR/GEN/NAL/OXY/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CRO/CTF/CZO/DOX/NAL/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/CTF/DOX/GEN/FLR/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/GEN/NAL/OXY/RIF/SMX/SM2/STR 2 (0.97) 0 (0.00) 2 (0.61)
AMP/CHL/CRO/CTF/DOX/FLR/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/CZO/DOX/FLR/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/DOX/FLR/GEN/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/CTF/GEN/NAL/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CTF/DOX/GEN/OXY/POL/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/GEN/OXY/POL/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/GEN/OXY/RIF/SMX/SM2/STR 0 (0.00) 2 (1.63) 2 (0.61)
AMP/CHL/CZO/DOX/GEN/OXY/POL/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/CRO/CZO/DOX/GEN/NAL/OXY/POL/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/CZO/DOX/FLR/GEN/NAL/OXY/SMX/SM2/STR/TOB 0 (0.00) 1 (0.80) 1 (0.30)
CHL/DOX/ENR/FLR/GEN/NAL/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/CTF/DOX/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/OXY/POL/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/GEN/OXY/RIF/SMX/SM2/STR 2 (0.97) 1 (0.80) 3 (0.91)
AMP/CHL/CZO/FLR/GEN/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/DOX/GEN/FLR/OXY/RIF/SMX/SM2/STR 3 (1.46) 2 (1.63) 5 (1.52)
AMP/CHL/DOX/GEN/OXY/RIF/STR/SMX/SM2/TOB 1 (0.49) 0 (0.00) 1 (0.30)
耐药表型
Antibacterial susceptibility profiles
菌株数 Strain numbers (%)
牦牛 Yaks 藏猪 Tibetan pigs 小计 Sub-total
CHL/CZO/DOX/GEN/NAL/OXY/RIF/SMX/SM2/STR 1 (0.49) 1 (0.80) 2 (0.61)
AMP/CHL/CRO/CTF/DOX/GEN/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/CTF/DOX/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CTF/DOX/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/DOX/FLR/OXY/SMX/SM2/STR 1 (0.49) 1 (0.80) 2 (0.61)
AMP/CHL/CZO/DOX/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/FLR/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CZO/GEN/RIF/OXY/SMX/SM2/STR 2 (0.97) 1 (0.80) 3 (0.91)
AMP/CHL/DOX/FLR/GEN/OXY/SMX/SM2/STR 0 (0.00) 2 (1.63) 2 (0.61)
AMP/CHL/DOX/FLR/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/DOX/GEN/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/FLR/GEN/OXY/RIF/SMX/SM2/STR 2 (0.97) 1 (0.80) 3 (0.91)
AMP/CHL/GEN/OXY/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/CZO/DOX/FLR/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/CZO/DOX/GEN/NAL/OXY/SMX/SM2/STR 1 (0.49) 1 (0.80) 2 (0.61)
CHL/CZO/DOX/GEN/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/DOX/GEN/FLR/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/CTF/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/CRO/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/DOX/ FLR/OXY/SMX/SM2/STR 3 (1.46) 0 (0.00) 3 (0.91)
AMP/CHL/DOX/GEN/OXY/SMX/SM2/STR 3 (1.46) 3 (2.44) 6 (1.82)
AMP/CHL/DOX/OXY/RIF/SMX/SM2/STR 1 (0.49) 1 (0.80) 2 (0.61)
AMP/CHL/GEN/FLR/OXY/SMX/SM2/STR 0 (0.00) 3 (2.44) 3 (0.91)
AMP/CHL/GEN/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
AMP/CHL/GEN/OXY/RIF/SMX/SM2/STR 6 (2.91) 1 (0.80) 7 (2.13)
AMP/CHL/NAL/OXY/RIF/SMX/SM2/STR 0 (0.00) 2 (1.63) 2 (0.61)
CHL/CRO/FLR/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/CTF/DOX/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/CZO/DOX/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/CZO/GEN/OXY/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/DOX/FLR/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/DOX/GEN/NAL/OXY/SMX/SM2/STR 2 (0.97) 1 (0.80) 3 (0.91)
CHL/DOX/GEN/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/GEN/FLR/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CTF/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/CZO/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/DOX/OXY/SMX/SM2/STR 0 (0.00) 2 (1.63) 2 (0.61)
AMP/CHL/OXY/RIF/SMX/SM2/STR 4 (1.94) 0 (0.00) 4 (1.22)
AMP/CHL/GEN/OXY/SMX/SM2/STR 0 (0.00) 8 (6.50) 8 (2.43)
AMP/GEN/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/CIP/FLR/RIF/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/CZO/OXY/TOB/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
耐药表型
Antibacterial susceptibility profiles
菌株数 Strain numbers (%)
牦牛 Yaks 藏猪 Tibetan pigs 小计 Sub-total
CHL/DOX/FLR/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/DOX/GEN/OXY/SMX/SM2/STR 2 (0.97) 2 (1.63) 4 (1.22)
CHL/DOX/NAL/OXY/SMX/SM2/STR 2 (0.97) 0 (0.00) 2 (0.61)
CHL/DOX/OXY/RIF/SMX/SM2/STR 10 (4.85) 1 (0.80) 11 (3.34)
CHL/GEN/OXY/POL/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/FLR/GEN/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/GEN/NAL/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/GEN/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
GEN/OXY/RIF/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/GEN/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/OXY/SMX/SM2/STR 0 (0.00) 2 (1.63) 2 (0.61)
AMP/CHL/RIF/SMX/SM2/STR 3 (1.46) 0 (0.00) 3 (0.91)
AMP/DOX/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/CZO/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/DOX/OXY/SMX/SM2/STR 4 (1.94) 10 (8.13) 14 (4.26)
CHL/ENR/RIF/SMX/SM2/STR 0 (0.00)) 1 (0.80) 1 (0.30)
CHL/FLR/OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
CHL/FLR/RIF/SMX/SM2/STR 2 (0.97) 0 (0.00) 2 (0.61)
CHL/GEN/OXY/SMX/SM2/STR 1 (0.49) 2 (1.63) 3 (0.91)
CHL/NAL/OXY/SMX/SM2/STR 0 (0.00) 3 (2.44) 3 (0.91)
CHL/POL/RIF/SMX/SM2/STR 3 (1.46) 0 (0.00) 3 (0.91)
CHL/OXY/RIF/SMX/SM2/STR 5 (2.43) 1 (0.80) 6 (1.82)
DOX/GEN/OXY/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
DOX/OXY/RIF/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
AMP/CHL/SMX/SM2/STR 4 (1.94) 2 (1.63) 6 (1.82)
CHL/CRO/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/DOX/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/ENR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/FLR/SMX/SM2/STR 2 (0.97) 0 (0.00) 2 (0.61)
CHL/GEN/SMX/SM2/STR 1 (0.49) 1 (0.80) 2 (0.61)
CHL/OXY/SMX/SM2/STR 1 (0.49) 9 (7.32) 10 (3.04)
CHL/SAR/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
CHL/RIF/SMX/SM2/STR 36 (17.48) 4 (3.25) 40 (12.16)
CHL/SMX/SM2/STR 57 (27.67) 9 (7.32) 66 (20.06)
GEN/SMX/SM2/STR 1 (0.49) 0 (0.00) 1 (0.30)
OXY/SMX/SM2/STR 0 (0.00) 1 (0.80) 1 (0.30)
SMX/SM2/STR 2 (0.97) 1 (0.80) 3 (0.91)

Fig. 2

Electrophoretogram of integrase genes amplified products"

Table 5

ARGs carriage information of integrase genes positive E.coli strains"

抗菌药物类别
Classes of antibacterial agents
基因名称
Gene name
动物来源
Animal origin
耐药基因阳性菌株数 Strain number of ARGs positive
整合酶阳性 Integrase genes positive 整合酶阴性 Integrase genes negative
四环素类
Tetracyclines
tetA 牦牛 Yaks 8 7
藏猪Tibetan pigs 24 15
tetB 牦牛 Yaks 3 4
藏猪Tibetan pigs 10 13
tetD 牦牛 Yaks 7 7
藏猪Tibetan pigs 12 11
tetM 牦牛 Yaks 0 3
藏猪Tibetan pigs 1 1
磺胺类
Sulfonamides
Sul1 牦牛 Yaks 13 79
藏猪Tibetan pigs 7 15
Sul2 牦牛 Yaks 20 19
藏猪Tibetan pig 16 25
Sul3 牦牛 Yak 3 17
藏猪Tibetan pig 16 25
喹诺酮类
Quinolones
qnrA 牦牛 Yak 0 2
藏猪Tibetan pigs 4 2
qnrB 牦牛 Yaks 1 9
藏猪Tibetan pigs 10 14
qnrS 牦牛 Yaks 8 18
藏猪Tibetan pigs 40 20
qepA 牦牛 Yaks 0 2
藏猪Tibetan pigs 0 0
β-内酰胺类
β-lactams
blaTEM 牦牛 Yaks 10 3
藏猪Tibetan pigs 22 6
blaDHA 牦牛 Yaks 28 16
藏猪Tibetan pigs 10 13
酰氨醇类
Amphenicols
floR 牦牛 Yaks 16 34
藏猪Tibetan pigs 40 20
cmlA 牦牛 Yaks 1 12
藏猪Tibetan pigs 21 5
cmlB 牦牛 Yaks 1 3
藏猪Tibetan pigs 5 5
氨基糖苷类
Aminoglycosides
aac(3’)-Ⅳ 牦牛 Yaks 4 18
藏猪Tibetan pigs 9 17
rmtB 牦牛 Yaks 4 20
藏猪Tibetan pigs 10 16
aadA2 牦牛 Yaks 2 35
藏猪Tibetan pigs 18 13
aac(6’)-Ib 牦牛 Yaks 16 64
藏猪Tibetan pigs 18 18
aph(3’)-Ⅶ 牦牛 Yaks 14 31
藏猪Tibetan pigs 21 18

Fig. 3

Electrophoretogram of nine virulence genes amplified products a: M: DL2000 Marker; 1: bcsA; 2: LT; 3: fyuA; 4: irp2; 5: eaeA; 6: fimC; 7: sitA; 8: ompT. b: M: DL2000 Marker; 1-6: PCR amplified products of agn43; 1, 3, 4, 5: positive samples; 2, 6: negative samples"

Table 6

Virulence genotypes of 329 E.coli"

毒力基因谱型
Virulence genotypes
菌株数 Strain number (%)
牦牛 Yaks 藏猪 Tibetan pigs 小计 Sub-total
eaeA/fimC/fyuA/irp2/ompT/sitA 2(0.97) 7(5.69) 9(2.74)
eaeA/fimC/fyuA/irp2/LT/sitA 0(0.00) 1(0.80) 1(0.30)
eaeA/fimC/fyuA/irp2/ompT 0(0.00) 1(0.80) 1(0.30)
eaeA/fyuA/irp2/ompT/sitA 1(0.49) 0(0.00) 1(0.30)
fimC/fyuA/irp2/ompT/sitA 1(0.49) 0(0.00) 1(0.30)
eaeA/fimC/fyuA/irp2 0(0.00) 1(0.80) 1(0.30)
eaeA/fimC/irp2/ompT 1(0.49) 1(0.80) 2(0.61)
eaeA/fimC/LT/ompT 0(0.00) 1(0.80) 1(0.30)
eaeA/fimC/LT/sitA 1(0.49) 1(0.80) 2(0.61)
eaeA/fimC/ompT/sitA 5(2.43) 11(8.94) 16(4.86)
fimC/fyuA/irp2/ompT 0(0.00) 1(0.80) 1(0.30)
eaeA/fyuA/irp2/sitA 1(0.49) 0(0.00) 1(0.30)
fimC/irp2/LT/sitA 1(0.49) 0(0.00) 1(0.30)
fimC/irp2/ompT/sitA 0(0.00) 1(0.80) 1(0.30)
eaeA/fimC/fyuA 1(0.49) 0(0.00) 1(0.30)
eaeA/fimC/ompT 5(2.43) 6(4.88) 11(3.34)
eaeA/fimC/sitA 6(2.91) 9(7.32) 15(4.56)
eaeA/ompT/sitA 0(0.00) 2(1.63) 2(0.61)
fimC/fyuA/irp2 1(0.49) 1(0.80) 2(0.61)
fimC/fyuA/ompT 1(0.49) 0(0.00) 1(0.30)
fimC/irp2/LT 3(1.46) 3(2.44) 6(1.82)
fimC/irp2/ompT 0(0.00) 1(0.80) 1(0.30)
fimC/irp2/sitA 0(0.00) 1(0.80) 1(0.30)
fimC/LT/ompT 1(0.49) 2(1.63) 3(0.91)
fimC/LT/sitA 14(6.79) 3(2.44) 17(5.17)
fimC/ompT/sitA 17(8.25) 7(5.69) 24(7.29)
LT/ompT/sitA 0(0.00) 1(0.80) 1(0.30)
eaeA/fimC 14(6.79) 13(10.57) 27(8.21)
eaeA/sitA 0(0.00) 5(4.07) 5(1.52)
fimC/LT 4(1.94) 2(1.63) 6(1.82)
fimC/ompT 25(12.14) 10(8.13) 35(10.64)
fimC/sitA 28(13.59) 5(4.07) 33(10.03)
ompT/sitA 2(0.97) 0(0.00) 2(0.61)
eaeA 0(0.00) 5(4.07) 5(1.52)
fimC 5(2.43) 3(2.44) 58(17.63)
LT 2(0.97) 0(0.00) 2(0.61)
ompT 2(0.97) 0(0.00) 2(0.61)
sitA 10(4.85) 7(5.69) 17(5.17)
ND 31(15.05) 13(10.57) 44(13.37)

Fig. 4

Electrophoretogram of phylogenetic analyses M: DL500 Marker; 1, 6: phylogroup D; 2, 7: phylogroup B2; 3: phylogroup B1; 4, 5: phylogroup A"

Table 7

Phylogenetic analyses of 329 E.coli"

菌株来源
Strain origin
菌株数
Strain number
遗传谱系百分比 Percentage of phylogroup (%)
A B1 B2 D
牦牛源Yak origin 206 74(35.92) 103(50.0) 17(8.25) 12(5.82)
藏猪源Tibetan pig origin 123 89(72.36) 26(21.14) 3(2.44) 5(4.07)
总计Total 329 163(49.54) 129(39.21) 20(6.08) 17(5.18)

Fig. 5

Distribution of ARGs and virulence genes in phylogroups"

[1] 李佛生, 胡舒昶, 谢鑫, 李一璠, 汪杭, 冯兰, 杨鑫. 牦牛腹泻粪样的细菌分离鉴定与耐药性检测. 实验技术与管理, 2018, 35(12):51-56. doi: 10.16791/j.cnki.sjg.2018.12.014
doi: 10.16791/j.cnki.sjg.2018.12.014
LI F S, HU S C, XIE X, LI Y F, WANG H, FENG L, YANG X. Isolation, identification and antibiotics resistance test of bacteria in diarrhea fecal sample from yaks. Experimental Technology and Management, 2018, 35(12):51-56. doi: 10.16791/j.cnki.sjg.2018.12.014. (in Chinese)
doi: 10.16791/j.cnki.sjg.2018.12.014
[2] 叶兵兵, 彭青, 李荣丽, 汤佩琦. 藏猪源大肠杆菌的分离鉴定及药敏试验. 现代农业科技, 2018, 24:223-226.
YE B B, PENG Q, LI R L, TANG P Q. Isolation, identification and antibiotics resistance test of Escherichia coli isolated from Tibetan pigs. Modern Agricultural Science and Technology, 2018, 24:223-226. (in Chinese)
[3] 陈朝喜, 贺冬梅, 汤承. 川西北高原2009—2016年牦牛源大肠杆菌耐药性变迁和整合子携带分析. 中国农业科学, 2017, 50(9):1705-1713. doi: 10.3864/j.issn.0578-1752.2017.09.016.
doi: 10.3864/j.issn.0578-1752.2017.09.016
CHEN C X, HE D M, TANG C. Vicissitude of drug resistance and integron-carrying of Escherichia coli isolated from yak between 2009 and 2016 in northwest Sichuan plateau. Scientia Agricultura Sinica, 2017, 50(9):1705-1713. doi: 10.3864/j.issn.0578-1752.2017.09.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.09.016
[4] THABIT A K, CRANDON J L, NICOLAU D P. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opinion on Pharmacotherapy, 2015, 16(2):159-177. doi: 10.1517/14656566.2015.993381.
doi: 10.1517/14656566.2015.993381
[5] JIANG H X, LÜ D H, CHEN Z L, WANG X M, CHEN J R, LIU Y H, LIAO X P, LIU J H, ZENG Z L. High prevalence and widespread distribution of multi-resistant Escherichia coli isolates in pigs and poultry in China. Veterinary Journal (London, England), 2011, 187(1):99-103. doi: 10.1016/j.tvjl.2009.10.017.
doi: 10.1016/j.tvjl.2009.10.017
[6] 白雪. 猪源大肠杆菌耐药性分析及ESBLs类基因的质粒传播[D]. 杨凌: 西北农林科技大学, 2018.
BAI X. Study on the antibacterial resistance of Escherichia coli in swine origin and the transmission of ESBL genes by plasmids[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[7] 杨承霖, 舒刚, 赵小玲, 王爽, 林居纯. 2010—2016年四川省食品动物源大肠杆菌的耐药性研究. 西北农林科技大学学报(自然科学版), 2020(9):24-30, 36.
YANG C L, SHU G, ZHAO X L, WANG S, LIN J C. Drug resistance of Escherichia coli isolates from food-animals obtained from 2010 to 2016 in Sichuan. Journal of Northwest A & F University (Natural Science Edition), 2020(9):24-30, 36. (in Chinese)
[8] 陆光武. 鸡、猪、奶牛源大肠杆菌的耐药性与其I类整合子和质粒相关性研究[D]. 扬州: 扬州大学, 2016.
LU G W. Study on the antibiotic resistance of Escherichia coli isolated from chickens, pigs, cows and its correlation with class 1integron and plasmids[D]. Yangzhou:Yangzhou University, 2016. (in Chinese)
[9] HALL-STOODLEY L, STOODLEY P. Evolving concepts in biofilm infections. Cellular Microbiology, 2009, 11(7):1034-1043. doi: 10.1111/j.1462-5822.2009.01323.x.
doi: 10.1111/j.1462-5822.2009.01323.x
[10] RIBEIRO S M, FELÍCIO M R, BOAS E V, GONÇALVES S, COSTA F F, SAMY R P, SANTOS N C, FRANCO O L. New frontiers for anti-biofilm drug development. Pharmacology & Therapeutics, 2016, 160:133-144. doi: 10.1016/j.pharmthera.2016.02.006.
doi: 10.1016/j.pharmthera.2016.02.006
[11] SHARMA G, SHARMA S, SHARMA P, CHANDOLA D, DANG S, GUPTA S, GABRANI R. Escherichia coli biofilm: Development and therapeutic strategies. Journal of Applied Microbiology, 2016, 121(2):309-319. doi: 10.1111/jam.13078.
doi: 10.1111/jam.13078
[12] 陈朝喜, 杨金福, 陈伟明. 大肠杆菌毒力因子agn43与生物被膜表型相关性研究. 中国畜牧兽医, 2012(4):76-78.
CHEN C X, YANG J F, CHEN W M. Studies on correlation between E. coli virulence factor agn43 and Biofilm-forming ability. China Animal Husbandry & Veterinary Medicine, 2012(4):76-78. (in Chinese)
[13] VOGELEER P, TREMBLAY Y D, MAFU A A, JACQUES M, HAREL J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Frontiers in Microbiology, 2014, 5:317. doi: 10.3389/fmicb.2014.00317.
doi: 10.3389/fmicb.2014.00317
[14] RIJAVEC M, MÜLLER-PREMRU M, ZAKOTNIK B, ŽGUR- BERTOK D. Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. Journal of Medical Microbiology, 2008, 57(pt 11):1329-1334. doi: 10.1099/jmm.0.2008/002543-0.
doi: 10.1099/jmm.0.2008/002543-0
[15] 姜露, 聂佳佳, 杨样, 周明旭, 朱国强. K88ac^+和K88ad^+产肠毒素大肠杆菌hlyA基因缺失株的构建及相关功能初步分析. 中国预防兽医学报, 2014(7):524-529.
JIANG L, NIE J J, YANG Y, ZHOU M X, ZHU G Q. The construction of hlyA gene deletion mutants from ETEC K88ac^+/ K88ad^+ and related function analysis. Chinese Journal of Preventive Veterinary Medicine, 2014(7):524-529. (in Chinese)
[16] BARDIAU M, SZALO M, MAINIL J G. Initial adherence of EPEC, EHEC and VTEC to host cells. Veterinary Research, 2010, 41(5):57.
doi: 10.1051/vetres/2010029
[17] STEPANOVIC S, CIRKOVIC I, RANIN L, VLAHOVIC M S. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 2004, 38(5):428-432.
doi: 10.1111/lam.2004.38.issue-5
[18] 王晓泉, 王彦红, 吴双, 焦新安, 潘志明, 刘秀梵. 四环素耐药基因在鸡源沙门氏菌中的分布和传播. 中国家禽, 2007, 29(9):10-12, 18. doi: 10.3969/j.issn.1004-6364.2007.09.003
doi: 10.3969/j.issn.1004-6364.2007.09.003
WANG X Q, WANG Y H, WU S, JIAO X N, PAN Z M, LIU X F. Distribution and spread of tetracycline resistance genes among Salmonella enterica isolates from chicken. China Poultry, 2007, 29(9):10-12, 18. doi: 10.3969/j.issn.1004-6364.2007.09.003. (in Chinese)
doi: 10.3969/j.issn.1004-6364.2007.09.003
[19] 坤清芳, 耿毅, 余泽辉, 李亚军, 牟维豪, 谢航. 四川兔源大肠埃希菌的耐药性及耐药基因检测. 湖南农业大学学报(自然科学版), 2018(5):549-552.
KUN Q F, GENG Y, YU Z H, LI Y J, MOU W H, XIE H. Antibiotic resistance and resistance genes detection of Escherichia coli in Sichuan rabbits. Journal of Hunan Agricultural University (Natural Sciences), 2018(5):549-552. (in Chinese)
[20] 罗芳. 武汉地区生殖道支原体对四环素类药物的耐药性分析. 中外医学研究, 2013, 11(6):69-70. doi: 10.3969/j.issn.1674-6805.2013.06.048.
doi: 10.3969/j.issn.1674-6805.2013.06.048
LUO F. Drug resistance Analysis of mycoplasma genitalium to tetracycline drugs in Wuhan. Chinese and Foreign Medical Research, 2013, 11(6):69-70. doi: 10.3969/j.issn.1674-6805.2013.06.048. (in Chinese)
doi: 10.3969/j.issn.1674-6805.2013.06.048
[21] 张珍. 鸡源致病性沙门氏菌毒力基因与致病性的相关性研究[D]. 南宁: 广西大学, 2017.
ZHANG Z. Study on the correlation between virulence genes and pathogenicity of chicken pathogenic salmonella[D]. Nanning: Guangxi University, 2017. (in Chinese)
[22] 李壹, 曲凌云, 朱鹏飞, 田欣欣, 王琛. 山东地区海水养殖区常见抗生素耐药菌及耐药基因分布特征. 海洋环境科学, 2016, 35(1):55-62.
LI Y, QU L Y, ZHU P F, TIAN X X, WANG C. Distribution characteristics of antibiotic resistance bacteria and related resistance genes in mariculture area of Shandong. Marine Environmental Science, 2016, 35(1):55-62. (in Chinese)
[23] CHEN S, ZHAO S, WHITE D G, SCHROEDER C M, LU R, YANG H C, MCDERMOTT P F, AYERS S, MENG J H. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Applied Environmental Microbiology, 2004, 70(1):1-7.
doi: 10.1128/AEM.70.1.1-7.2004
[24] 赖海梅, 刘书亮, 邹立扣, 韩新锋, 周康, 朱冬梅, 彭珍, 李建龙. 肉鸡屠宰场多重耐药沙门氏菌Ⅰ类整合子与磺胺类耐药基因(sul1、sul2和sul3)的检测. 食品科学, 2014, 35(24):178-183. doi: 10.7506/spkx1002-6630-201424034.
doi: 10.7506/spkx1002-6630-201424034
LAI H M, LIU S L, ZOU L K, HAN X F, ZHOU K, ZHU D M, PENG Z, LI J L. Detection of integton-1 and sulphonamide resistant genes of multi-drug resistant Salmonella species isolated from broiler slaughterhouse. Food Science, 2014, 35(24):178-183. doi: 10.7506/spkx1002-6630-201424034. (in Chinese)
doi: 10.7506/spkx1002-6630-201424034
[25] 岳磊, 蒋红霞, 刘健华, 廖晓萍, 李树娟, 陈雪影, 吴彩霞, 张小云, 刘雅红. 鸡源肠杆菌质粒介导喹诺酮类耐药基因检测. 中国农业科学, 2009, 42(8):2966-2971. doi: 10.3864/j.issn.0578-1752.2009.08.040.
doi: 10.3864/j.issn.0578-1752.2009.08.040
YUE L, JIANG H X, LIU J H, LIAO X P, LI S J, CHEN X Y, WU C X, ZHANG X Y, LIU Y H. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae from avian. Scientia Agricultura Sinica, 2009, 42(8):2966-2971. doi: 10.3864/j.issn.0578-1752.2009.08.040. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2009.08.040
[26] 余娴, 袁斌, 雷军. 产“超-超广谱”β-内酰胺酶革兰阴性杆菌的耐药表型及基因分析. 中国抗生素杂志, 2011, 36(1):56-59.
YU X, YUAN B, LEI J. Resistant phenotype and genotype analyses of super-spectrum β-lactamase-producing Gram-negative bacilli. Chinese Journal of Antiblotics, 2011, 36(1):56-59. (in Chinese)
余娴, 袁斌, 雷军. 产“超-超广谱”β-内酰胺酶革兰阴性杆菌的耐药表型及基因分析. 中国抗生素杂志, 2011(1):56-59.
YU X, YUAN B, LEI J. Resistant phenotype and genotype analyses of super-spectrum β-lactamase-producing Gram-negative bacilli. Chinese Journal of Antibiotics, 2011(1):56-59.(in Chinese)
[27] 白丽霞, 杨虹. PCR和HRM两种方法检测细菌耐药基因aac(6')-Ib-cr的比较研究. 国际检验医学杂志, 2017, 38(3):319-320, 323. doi: 10.3969/j.issn.1673-4130.2017.03.011
doi: 10.3969/j.issn.1673-4130.2017.03.011
BAI L X, YANG H. Comparison of PCR and HRM for detecting bacterial drug resistance gene aac (6')-Ib-cr. International Journal of Laboratory Medicine, 2017, 38(3):319-320, 323. doi: 10.3969/j.issn.1673-4130.2017.03.011. (in Chinese)
doi: 10.3969/j.issn.1673-4130.2017.03.011
[28] SANDVANG D, AARESTRUP F M. Characterization of aminoglycoside resistance genes and class 1 integrons in porcine and bovine gentamicin-resistant Escherichia coli. Microbial Drug Resistance (Larchmont,N Y), 2000, 6(1):19-27. doi: 10.1089/mdr.2000.6.19.
doi: 10.1089/mdr.2000.6.19
[29] 王英, 汤承, 于学辉, 王远微, 岳华. 多重PCR方法检测鸭源产志贺氏毒素大肠杆菌. 中国预防兽医学报, 2009, 31(10):780-784.
WANG Y, TANG C, YU X H, WANG Y W, YUE H. A multiplex PCR for detection of Shiga Toxin-producing Escherichia coli isolated from ducks. Chinese Journal of Preventive Veterinary Medicine, 2009, 31(10):780-784. (in Chinese)
[30] CLERMONT O, BINGEN E. Rapid and simple determination of the Escherichia coli phylogenetic group. Applied Environmental Microbiology, 2000, 66(10):4555-4558.
doi: 10.1128/AEM.66.10.4555-4558.2000
[31] JOHNSON J R, VAN DER SCHEE C, KUSKOWSKI M A, GOESSENS W, VAN BELKUM A. Phylogenetic background and virulence profiles of fluoroquinolone-resistant clinical Escherichia coli isolates from the Netherlands. The Journal of Infectious Diseases, 2002, 186(12):1852-1856. doi: 10.1086/345767.
doi: 10.1086/345767
[32] JAVAD M, KUMARSS A. Detection of virulence genes in uropathogenic E. coli (UPEC) strains by multiplex-PCR method. Journal of Fasa University Medical Science, 2017, 7(1):1128-1133.
[33] HU L, GRIM C J, FRANCO A A, JARVIS K G, SATHYAMOORTHY V, KOTHARY M H, MCCARDELL B A, TALL B D. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: prevalence among species and their roles in biofilm formation and cell-cell aggregation. Food Microbiology, 2015, 52:97-105. doi: 10.1016/j.fm.2015.07.007.
doi: 10.1016/j.fm.2015.07.007
[34] JEONG Y W, KIM T E, KIM J H, KWONH J. Pathotyping avian pathogenic E.coli strains in Korea. Journal of Veterinary Science, 2012, 13(2):145-152.
doi: 10.4142/jvs.2012.13.2.145
[35] 彭青, 李荣丽, 汤佩琦, 叶兵兵. 藏猪腹泻物中细菌的分离鉴定及药敏试验. 四川畜牧兽医, 2019(3):33-34, 37.
PENG Q, LI R L, TANG P Q, YE B B. Isolation, identification and drug sensitivity test of bacteria from Tibetan pig diarrhea. Sichuan Animal & Veterinary Sciences, 2019(3):33-34, 37. (in Chinese)
[36] SOUFI L, SÁENZ Y, VINUÉ L, ABBASSI M S, RUIZ E, ZARAZAGA M, BEN HASSEN A, HAMMAMI S, TORRES C. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. International Journal of Food Microbiology, 2011, 144(3):497-502. doi: 10.1016/j.ijfoodmicro.2010.11.008.
doi: 10.1016/j.ijfoodmicro.2010.11.008
[37] 张艳芳, 孟晓俣, 陈可心, 方瑞, 冯涛, 薛原. 东北地区鹿源大肠杆菌的毒力基因检测. 经济动物学报, 2020. doi: 10.13326/j.jea.2018.1337.
doi: 10.13326/j.jea.2018.1337
ZHANG Y F, MENG X Y, CHEN K X, FANG R, FENG T, XUE Y. Detection of virulence genes of E.coli from deer in Northeast China. Journal of Economic Animal, 2020. doi: 10.13326/j.jea.2018.1337. (in Chinese)
doi: 10.13326/j.jea.2018.1337
[38] COURA F M, DINIZ S A, SILIVA M X, ARCEBISMO T L M, MINHARRO S, FEITOSA A C F, LAGE A P, KNOB T, MUSSI J M S, HEINEMANN M B. Phylogenetic group of Escherichia coli isolates from broilers in brazilian poultry slaughterhouse. Scientific World Journal, 2017:1-7. doi: 10.1155/2017/5898701.
doi: 10.1155/2017/5898701
[39] 王刚, 索朗斯珠, 强巴央宗. 西藏藏猪源大肠杆菌毒力基因检测与分型. 甘肃畜牧兽医, 2017(6):75-78.
WANG G, SUO L S Z, QIANG B Y Z. Detection and typing of virulence genes of Escherichia coli isolated from Tibetan pigs in Tibet. Gansu Animal Husbandry and Veterinary, 2017(6):75-78. (in Chinese)
[40] 周陆红, 张鹏飞, 张杰, 吴聪明, 唐晓双, 郝丹, 王新. 屠宰猪中大肠杆菌毒力基因检测及耐药性分析. 食品科学, 2019, 40(2):264-268. doi: 10.7506/spkx1002-6630-20180405-064.
doi: 10.7506/spkx1002-6630-20180405-064
ZHOU L H, ZHANG P F, ZHANG J, WU C M, TANG X S, HAO D, WANG X. Virulence genes and antimicrobial resistance of Escherichia coli isolated from slaughtered pigs. Food Science, 2019, 40(2):264-268. doi: 10.7506/spkx1002-6630-20180405-064. (in Chinese)
doi: 10.7506/spkx1002-6630-20180405-064
[1] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[2] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[3] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[4] YANG Jun,CHU PinPin,SONG Shuai,CAI RuJian,YANG DongXia,BIAN ZhiBiao,GOU HongChao,LI Yan,JIANG ZhiYong,LI ChunLing,YAN He. Construction of lpxM Gene Deletion Strain of Haemophilus parasuis and It's Some Biological Characteristics [J]. Scientia Agricultura Sinica, 2020, 53(16): 3394-3403.
[5] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[6] HUANG SaiNan,JIN ChengYan,BAO JianJun,WANG Yue,CHEN WeiHao,WU TianYi,WANG LiHong,LÜ XiaoYang,GAO Wen,WANG BuZhong,ZHU GuoQiang,DAI GuoJun,SUN Wei. Changes of LncRNA Expression Profile in Spleen of Diarrhea and Non-diarrhea Individuals in F17 of Hu Sheep Lamb [J]. Scientia Agricultura Sinica, 2019, 52(7): 1282-1294.
[7] BAI Hao, HAN Xian-Gan, LIU Lei, DAN Xue-Qin, SONG Jun, LIU Rui, DONG Hong-Liang, LIU Hai-Wen, DING Chan, YU Sheng-Qing. The Regulation of Autoinducer-2 in Avian Pathogenic Escherichia coli [J]. Scientia Agricultura Sinica, 2012, 45(24): 5110-5116.
[8] LI Li,YANG Hong-jun,LIU Dai-cheng,HE Hong-bin,WANG Chang-fa,ZHONG Ji-feng,GAO Yun-dong
. Biofilm Formation and Analysis of Associated Genes Involved in Staphylococcus Isolates from Bovine Mastitis
[J]. Scientia Agricultura Sinica, 2011, 44(1): 160-166 .
[9] WANG Xiu-mei,JIANG Hong-xia,LIAO Xiao-ping,ZHANG Wan-jiang,ZHU Heng-qian,ZHANG Yue,LIU Ya-hong
. Prevalence of Serotypes and Virulence Genes and Antimicrobial Susceptibility of Pathogenic Escherichia coli Isolates from Swine
[J]. Scientia Agricultura Sinica, 2010, 43(19): 4109-4115 .
[10] . Identification of 16SrDNA and Research on Acylated Homoserine Lactones Produced by Pseudomomas Isolated from the Fish [J]. Scientia Agricultura Sinica, 2007, 40(7): 1486-1491 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!