Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2419-2433.doi: 10.3864/j.issn.0578-1752.2021.11.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors

HUI YuanYuan(),PENG HaiShuai,WANG BiNi(),ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong   

  1. School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119
  • Received:2020-09-16 Accepted:2020-12-21 Online:2021-06-01 Published:2021-06-09
  • Contact: BiNi WANG E-mail:570421161@qq.com;biniwang@snnu.edu.cn

Abstract:

Food safety has become a heated topic attracting widespread attention from the society due to the diversity of food and complexity of food production system. Food-borne diseases caused by microorganisms have the highest rates in food safety problem. The detection of food-borne pathogenic bacteria is the key link for the food-borne disease prevention and control. The plate counting method is rated as the gold standard for microbial detection, but the signal amplification was achieved by the growth of individual bacterial cells into visible colony during the detection of pathogenic bacteria, so the detection time is longer (3-7 days). Although polymerase chain reaction (PCR) and enzyme-linked immunoabsorbent assay (ELISA) are now applied in the detection of food-borne pathogenic bacteria, they are not suitable for timely and rapid on-site detection due to time-consuming pretreatment, complex operations and false positive results. Aptamers (Apt) are oligonucleotides that are isolated from combinatorial DNA library via systemic evolution of ligands by exponential enrichment (SELEX) technology, which present great potential in the field of detection of toxin, heavy metal, antibiotics, food pathogens and other small molecules due to their small size, easy synthesis and modification. Currently, many researchers of domestic and overseas have developed various detection methods by using aptamer as bio-recognition elements. This paper reviewed common food-borne pathogenic bacteria, traditional detection methods of food-borne pathogenic bacteria, and the electrochemical and optical aptasensors for detection of food-borne pathogenic bacteria in recent years. The descriptions covered the detection strategy of each method and provided details such as the detection time, range and limit. Finally, the paper pointed out the flaw of aptasensor in food safety detection, and the research development tendency was prospected, which provided bases for the further related work.

Key words: food-born pathogen bacteria, aptamer, rapid detection, food safety

Table 1

Principle, advantages and limitations of traditional methods for food-borne pathogen detection"

传统方法 Method 优势 Advantage 缺陷 Limitation
培养法 Culture method 检测限低、可靠性强 Low detection limit and high credibility 耗时、耗力 Time-consuming and laborious
基于免疫的方法 Immunology-based method 准确度高 High accuracy 灵敏度低 Low sensitivity
基于PCR的方法 PCR-based method 灵敏度高 High sensitivity 假阴性 False negative

Table 2

Aptamers of food-borne pathogens"

食源性致病菌
Pathogen
菌型
Bacterial type
筛选方法
Screening method
靶标
Target
适配体序列
Sequence (5′-3′)
参考文献
Reference
大肠杆菌
Escherichia coli

O157:H7
Non-SELEX 脂多糖
LPS
TATGGCGTGGCAAGCTTGGCCCGCTTCTCAAGCATGGTTATCTAC [42]
SELEX 全菌
Whole bacteria
ACCAGTAGACTTTCAACTTTACTGCCATCGTGTGCCCTAA [43]
Non-SELEX 脂多糖
LPS
CCGGACGCTTATGCCTTGCCATCTACAGAGCAGGTGTGACGG
[44]
EPEC SELEX 全菌
Whole bacteria
ACAGTGCTCGGGATATATCAATATGTCACCTCGGCTAATG [45]
O55:B5 Non-SELEX 脂多糖
LPS
TAGCCGGATCGCGCTGGCCAGATGATATAAAGGGTCAGCCCCCCA [46]
沙门氏菌
Salmonella
鼠伤寒
Typhimurium
Whole-cell-SELEX 全菌
Whole bacteria
ACGGGCGTGGGGGCAATGCCTGCTTGTAGGCTTCCCCTGTGCGCG [47]
SELEX 全菌
Whole bacteria
TATGGCGGCGTCACCCGACGGGGACTTGACATTATGACAG [48]
SELEX IVB型菌毛
IVB pili
GGGAACAGUCCGAGCCUCACUGUUAUCCGAUAGCAGCGCGGGAUGAGGGUCAAUGCGUCAUAGGAUCCCGC [49]
O8 Whole-cell-SELEX 全菌
Whole bacteria
GATCCGGGCCTCATGTCGAACACCCCCCAACTAAAACAACAAAACACCACCGCCATTGAGCGTTTATTCTGAGCTCCCA [50]
SELEX 全菌
Whole bacteria
TGATCCGGGCCTCATGTCGAACCCACACCCCACAACCACCCAGCCCCAGCCCGCTATTGAGCGTTTATTCTGAGCTCCCA [51]
金黄色葡萄球菌
Staphylococcus aureus
SELEX 磷壁酸
Teichoic acid
GGGAGUUUUGAUACGGCUUCAUGCAGUAAUGUUUUUAU [52]
SELEX 肠毒素C1
Enterotoxin C1
AGCAGCACAGAGGTCAGATGTATACTTCTAAAATTTGTTTGTATCTACGATGTTCTTCGTCCTATGCGTGCTACCGTGAA [53]
SELEX 肠毒素B
Enterotoxin B
AGCAGCACAGAGGTCAGATGTATACTTCTAAAATTTGTTTGTATCTACGATGTTCTTCGTCCTATGCGTGCTACCGTGAA [54]
SELEX 肠毒素B
Enterotoxin B
TGCAGGATCCGGTATCCGTGGACGGTGTGCAGGATCCGGTATCCGTGGGCACGAGAATTCCTCCGTTGCG [55]
SELEX 肠毒素A
Enterotoxin A
TACTTATGCATTTCCTCCCACGATCTTATTTGAGAGTGAC [56]
单核增生李斯特菌
Listeria monocytogenes
Whole-cell-SELEX 全菌
Whole bacteria
TGGGAGCTCAGAATAAACGCTCAACTTTGTTCTTCTTTGCTTTTTTTTTCTTTTTTTGTTCGACATGAGGCCCGGATCA [57]
阪崎肠杆菌
Cronobacter sakazakii
Whole-cell-SELEX 全菌
Whole bacteria
ATAGGAGTCACGACGACCAGGCCGCCCGGGGACGGGGGCGGCGGGGAGGAGGGCGGCGGGTATGTGCGTCTACCTCTTGA [58]
蜡样芽孢杆菌
Bacillus cereus
SELEX 芽孢
Spore
CATCCGTCACACCTGCTCGGTGCAGACCCATAGGGGGGGCGTGCGGATGTAGGAGTAGGGTGTTGGCTCCCGTATC [59]
铜绿假单胞菌
Pseudomonas aeruginosa
Whole-cell-SELEX 全菌
Whole bacteria
CCCCCGTTGCTTTCGCTTTTCCTTTCGCTTTTGTTCGTTTCGTCCCTGC
TTCCTTTCTTG
[60]
副溶血性弧菌
Vibrio parahemolyticus
Whole-cell-SELEX 全菌
Whole bacteria
ATAGGAGTCACGACGACCAGAATCTAAAAATGGGCAAAGAAACAGTGACTCGTTGAGATACTTATGTGCGTCTACCTCTTGACTAAT [61]

Table 3

Comparison of analytical properties of the aptasensors for food-borne pathogen detection"

传感器类型
Sensor type
方法
Method
策略
Strategy
检测范围
Detection range (cfu·mL-1)
检测限
LOD (cfu·mL-1)
参考文献
Reference
电化学
Electrochemical
将适配体固定在电极表面,靶标与适配体的结合导致电极表面阻抗增大,通过检测电化学信号的变化检测靶标
The aptamer is modified on the surface of the electrode, and the combination of the target and the aptamer leads to an increase in the surface impedance of the electrode. The target is detected by detecting the change of electrochemical signal
rGO-TiO2复合纳米材料信号放大
RGO -TiO2 composite nanomaterial signal amplification
101—108 10 [62]
rGO-CNT复合纳米材料信号放大
rGO-CNT composite nanomaterial signal amplification
101—108 10 [63]
聚[吡咯-co-3-羧基吡咯]共聚物信号放大
poly[pyrrole-co-3-carboxyl-pyrrole]copolymer signal amplification
102—108 3 [64]
三明治法
Sandwich assay

适配体-靶标-MB@MI纳米材料
Apt-target-MB@MI
102—108 32 [65]
抗体/磁性纳米颗粒-靶标-适配/脲酶复合物
Antibody/magnetic nanoparticles - target - aptamer/urease complex
101—104 10 [66]
三明治法 Sandwich assay 滚环扩增 Rolling cycle amplification 2.2—2.2×108 2 [67]
比色
Colorimetric

NaCl-AuNPs
高浓度的盐会引起AuNPs聚集,颜色从酒红色变为蓝色
high-salt induce AuNPs aggregation from red to blue
_ 105 [68]
102—107 56 [69]
105—108 7.2×105 [70]
过氧化氢氧化法
H2O2 oxidation



7-四链体-heminDNA酶可催化四甲基联苯胺(TMB)-过氧化氢(H2O2)体系发生反应,颜色从无色变为蓝色
G4/Hemin DNAzyme can catalyze TMB-H2O2 reaction system, and colour of the substrates changing from colourless to blue
102—107 10 [71]
纳米模拟酶可催化TMB-H2O2 体系发生反应,颜色从无色变为蓝色
Nanozymes can catalyze TMB-H2O2 reaction system, and colour of the substrates changing from colourless to blue
11—1.1×105 11 [72]
102—106 10 [73]
荧光
Fluorescent

荧光的产生
Fluorescence generation
TPE-OH 能在牛血清白蛋白(BSA)微球中聚集,产生明亮的荧光信号
TPE-OH aggregates in bovine serum albumin (BSA) microspheres producing bright fluorescent signal
101—106 10 [74]
荧光的猝灭
Fluorescence quenching
MoS2纳米材料对于荧光素(FAM)的猝灭
Quenching of MoS2 nanomaterials to fluorescein (FAM)
102—105 10 [75]
CIP@MWCNT纳米材料对于荧光素(FAM)的猝灭
Quenching of CIP@MWCNT nanomaterials to fluorescein (FAM)
7.15—103 3.15×102 [76]
荧光染料AccuBlue?
Fluorescent dye AccuBlue?
靶标与适配体的结合会改变荧光染料的荧光信号
The binding of target and aptamer changed the fluorescence signal of fluorescent dye
50—106 25 [77]
荧光染料罗丹明B
Fluorescent dye Rhodamine B
1530—96938 464 [78]
化学发光
Chemiluminescence
化学发光共振能量转移
Chemiluminescence resonance energy
transfer
Co2+增强/ABEI功能化花状纳米金和滚环扩增技术
Co2+ enhanced /ABEI functionalized flower-like nanogold and roll ring amplification techniques
32—3.2 ×106 10 [79]
50—1.5×105 15 [80]
表面增强拉曼散射
SERS
将适配体修饰在SERS基地上,当靶标与适配体结合后会产生拉曼信号变化,通过对拉曼变化信号的检测进而检测靶标菌
The aptamer is modified on the SERS base. When the target and the aptamer are combined, the Raman signal will change, and the target bacteria can be detected by detecting the Raman change signal
适配体和罗丹明 B 同时修饰的金纳米棒作为拉曼信号探针
The gold nanorods modified by aptamer and rhodamine B was used as Raman signal probe
101—104 3 [81]
适配体和拉曼分子修饰的金纳米颗粒作为拉曼信号探针
The nanoparticles modified by aptamer and raman molecules was used as Raman signal probe
102—107 35/15 [82]
适配体和罗丹明修饰的Au@Ag 核壳纳米材料作为拉曼信号探针
The Au@Ag core-shell nanomaterials modified by ROX and aptamer was used as Raman signal probe
15—1.5×105 15 [83]
表面等离子体共振
Surface plasmon resonance

将适配体修饰在等离子共振装置表面上。当靶标菌存在时共振装置折射率、反射光等会发生变化,通过对光变化信号的检测可以检测靶标
The aptamer is modified on the surface of the plasmon resonance device. When the target bacteria are present, the refractive index and reflected light of the resonance device will change, and the target can be detected by detecting the light change signal
使用Ω形光纤探针
Using a novel Ω-shaped ?ber-optic probe
5.0×102
1.0×108
5 [84]
[1] SCALLAN E, HOEKSTRA R M, WIDDOWSON M A, HALL A J, GRIFFIN P M. Food-born illness acquired in the United States response. Emerging Infectious Diseases, 2011,17(7):1339-1340.
doi: 10.3201/eid1707.110572
[2] RAHMAN S M E, PARK J H, WANG J, OH D H. Stability of low concentration electrolyzed water and its sanitization potential against food-borne pathogens. Journal of Food Engineering, 2012,113(4):548-553.
doi: 10.1016/j.jfoodeng.2012.07.011
[3] SCHARFF R L. Economic burden from health losses due to food-borne illness in the United States. Journal of Food Protection, 2012,75(1):123-131.
doi: 10.4315/0362-028X.JFP-11-058
[4] YEH H Y, HIETT K L, LINE J E. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins. Archives of Microbiology, 2015,197(2):353-358.
doi: 10.1007/s00203-014-1062-3
[5] YAMAZAKI W, TAGUCHI M, KAWAI T, KAWATSU K, SAKATA J, INOUE K, MISAWA N. Comparison of loop-mediated isothermal amplification assay and conventional culture methods for detection of Campylobacter jejuni and Campylobacter coli in naturally contaminated chicken meat samples. Applied & Environmental Microbiology, 2009,75(6):1597-1603.
[6] HUMPHREY T, O'BRIEN S, MADSEN M. Campylobacters as zoonotic pathogens: A food production perspective. International Journal of Food Microbiology, 2007,117(3):237-257.
doi: 10.1016/j.ijfoodmicro.2007.01.006
[7] GENG Y Y, LIU G H, LIU L B, DENG Q E, ZHAO L W, SUN X X, WANG J F, ZHAO B H, WANG J C. Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of Campylobacter jejuni in food samples. Journal of Microbiological Methods, 2019,157:31-36.
doi: 10.1016/j.mimet.2018.12.017
[8] PIKE B L, PATRICIA G, POLY F, MARTYN K. Global distribution of Campylobacter jejuni penner serotypes: A systematic review. PLoS ONE, 2013,8(6):e67375.
doi: 10.1371/journal.pone.0067375
[9] GALLAY A, BOUSQUET V, SIRET V, PROUZET-MAULEON V, DE VALK H, VAILLANT V. Risk factors for acquiring sporadic Campylobacter infection in France: results from a national case-control study. Journal of Infectious Diseases, 2008,197(10):1477-1484.
doi: 10.1086/589588
[10] Pamphlet (or booklet). National enteric disease surveillance: Salmonella surveillance overview, CDC, 2011.
[11] SILVA S, TEIXEIRA P, OLIVEIRA R, AZEREDO J. Adhesion to and viability of Listeria monocytogenes on food contact surfaces. Journal of Food Protection, 2008,71(7):1379-1385.
doi: 10.4315/0362-028X-71.7.1379
[12] 徐连应, 王毕妮, 张富新. 基于复合纳米材料和酶切信号放大电化学适体传感器检测沙门氏菌. 中国农业科学, 2017,50(21):4186-4195.
XU L Y, WANG B N, ZHANG F X. An electrochemical aptasensor for detection of salmonella based on composite nanomaterial and enzymatic recycling for amplification. Scientia Agricultura Sinica, 2017,50(21):4186-4195. (in Chinese)
[13] 山珊, 赖卫华, 陈明慧, 崔希. 农产品中大肠杆菌O157:H7的来源及分布研究进展. 食品科学, 2014,35(1):289-293.
SHAN S, LAI W H, CHEN M H, CUI X. Research progress in sources and distribution of Escherichia coli O157:H7 in agricultural products. Food Science, 2014,35(1):289-293. (in Chinese)
[14] GALLAY A, BOUSQUET V, SIRET V, PROUZET-MAULEON V, DE VALK H, VAILLANT V, SIMON F, LE STRAT Y, MÉGRAUD F, DESENCLOS J C. Risk factors for acquiring sporadic Campylobacter infection in France: Results from a national case-control study. Journal of Infectious Diseases, 2008,197(10):1477-1484.
doi: 10.1086/589588
[15] JAJERE S M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and adaptation and antimicrobial resistance including multidrug resistance. Veterinary World, 2019,12(4):504-521.
doi: 10.14202/vetworld.
[16] ZHOU C, ZOU H M, LI M, SUN C J, REN D X, LI Y X. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosensors & Bioelectronics, 2018,117:347-353.
doi: 10.1016/j.bios.2018.06.005
[17] ZEINHOM M M A, WANG Y, SONG Y, ZHU M J, LIN Y H, DU D. Portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in yoghurt and egg. Biosensors & Bioelectronics, 2018,99(15):479-485.
doi: 10.1016/j.bios.2017.08.002
[18] ZHENG L Y, CAI G Z, WANG S Y, LIAO M, LI Y B, LIN J H. Microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors & Bioelectronics, 2019,124/125:143-149.
doi: 10.1016/j.bios.2018.10.006
[19] GALLAY A, BOUSQUET V, SIRET V, PROUZET-MAULEON V, DE VALK H, VAILLANT V, SIMIO F, STRAT Y L, MEGRAUD F, DESENCLOS J C. Risk factors for acquiring sporadic Campylobacter infection in France: Results from a national case-control study. Journal of Infectious Diseases, 2008,197(10):1477-1484.
doi: 10.1086/589588
[20] TAO X Q, LIAO Z Y, ZHANG Y Q, FU F, HAO M Q, SONG Y, SONG E. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. Chinese Chemical Letters, 2021,32(2):791-795.
doi: 10.1016/j.cclet.2020.07.020
[21] KLEIN E, SMITH D L, LAXMINARYNY R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerging Infectious Diseases, 2007,13(12):1840-1846.
doi: 10.3201/eid1312.070629
[22] WAKABAYASHI Y, UMEDA K, YONOGI S, NAKAMURA H, YAMAMOTO K, KUMEDA Y, KAWATSU K. Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes. International Journal of Food Microbiology, 2018,265:23-29.
doi: 10.1016/j.ijfoodmicro.2017.10.022
[23] 孙炜佳. 适配体识别—分子马达传感器的构建及在食源性致病菌检测中的应用研究[D]. 无锡: 江南大学, 2017.
SUN W J. The study on the detection for food-borne pathogens based on aptamer molecular motor sensor[D]. Wuxi: Jiangnan University, 2017. (in Chinese)
[24] SILVA N F D, NEVES M M P S, MAGALHES J M C S, FREIRE C, DELERUE-MATOS C. Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends in Food Science & Technology, 2020,99:621-633.
[25] RADHAKRISHNAN R, POLTRONIERI P. Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors, 2017,7(4):63-69.
doi: 10.3390/bios7040063
[26] CHENG C N, PENG Y, BAI J L, ZHANG X Y, LIU Y Y, FAN X J, FAN J X, NING B A, GAO Z X. Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sensors and Actuators B: Chemical, 2014,190:900-906.
doi: 10.1016/j.snb.2013.09.041
[27] TAYLOR B J, QUINN A R, KATAOKA A. Listeria monocytogenes in low-moisture foods and ingredients. Food Control, 2019,103:153-160.
doi: 10.1016/j.foodcont.2019.04.011
[28] KIM J K, HARRISON M A. Transfer of Escherichia coli O157:H7 to romaine lettuce due to contact water from melting ice. International Journal of Food Microbiology, 2008,71(2):252-256.
[29] ABADIAS M, USALL J, ANGUERA M, SOLSON C, VINAS I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 2008,123(1/2):121-129.
doi: 10.1016/j.ijfoodmicro.2007.12.013
[30] WILLIAMSON D A, COOMBS G W, NIMMO G R. Staphylococcus aureus ‘Down Under’: Contemporary epidemiology of S. aureus in Australia, New Zealand, and the South West Pacific. Clinical Microbiology & Infection, 2014,20(7):597-604.
[31] JIESTEBAN J I, OPORTO B, ADURIZ G, JUSTE RA, HURTADO A. A survey of food-borne pathogens in free-range poultry farms. International Journal of Food Microbiology, 2008,123(1/2):177-182.
doi: 10.1016/j.ijfoodmicro.2007.12.012
[32] ARAVANIS A M, DEBUSSCHERE B D, CHRUSCINSKI A J, GILCHRIST K H, KOBILKA B K, KOVACS G T A. A genetically engineered cell-based biosensor for functional classification of agents. Biosensors & Bioelectronics, 2001,16(7/8):571-577.
doi: 10.1016/S0956-5663(01)00171-3
[33] DE BOER E, BEUMER R R. Methodology for detection and typing of food-borne microorganisms. International Journal of Food Microbiology, 1999,50(1/2):119-130.
doi: 10.1016/S0168-1605(99)00081-1
[34] VELUSAMY V, ARSHAK K, KOROSTYNSKA O, OLIWA K, ADLEY C. An overview of food-borne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 2010,28(2):232-254.
doi: 10.1016/j.biotechadv.2009.12.004
[35] PORTER J, EDWARDS C, PICKUP R W. Rapid assessment of physiological status in Escherichia coli using fluorescent probes. Journal of Applied Psychology, 1995,79(4):399-408.
[36] TOZE S. RCR and the detection of microbial pathogens in water and wastewater. Water Research, 1999,33(17):3545-3556.
doi: 10.1016/S0043-1354(99)00071-8
[37] HE L, YANG H W, XIAO P F, SINGH R, HE N Y, LIU B, LI Z Y. Highly selective, sensitive and rapid detection of Escherichia coli O157:H7 using duplex PCR and magnetic nanoparticle-based chemiluminescence assay. Journal of Biomedical Nanotechnology, 2017,13(10):1243-1252.
doi: 10.1166/jbn.2017.2422
[38] DAVYDOVA A, VOROBJEVA M, PYSHNYI D, ALTMAN S, VLASSOV V, VENYAMINOVA A. Aptamers against pathogenic microorganisms. Critical Reviews in Microbiology, 2016,42(6):847-865.
doi: 10.3109/1040841X.2015.1070115
[39] 李玉珍, 林亲录, 肖怀秋. 酶联免疫吸附技术及其在食品安全检测中的应用研究进展. 中国食品添加剂, 2006(3):108-112.
LI Y Z, LIN Q L, XIAO H Q. Enzyme-linked immunosorbent assay and study advance of ELISA in food safety detections. China Food Additve, 2006(3):108-112. (in Chinese)
[40] BENNETT R W. Staphylococcal enterotoxin and its rapid identification in foods by enzyme linked immunosorbent assay-based methodology. Journal of Food Protection, 2005,68(6):1264-1270.
doi: 10.4315/0362-028X-68.6.1264
[41] SHARMA S K, JOSEPH J L, EBLEN B S, WHITING R C. Detection of type A, B, E, and F clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Applied and Environmental Microbiology, 2006,72(2):1231-1238.
doi: 10.1128/AEM.72.2.1231-1238.2006
[42] KIM H R, SONG M Y, KIM B C. Rapid isolation of bacteria-specific aptamers with a non-SELEX-based method. Analytical Biochemistry, 2020,591:113542.
doi: 10.1016/j.ab.2019.113542
[43] AMRAEE M, OLOOMI M, YAVARI A, BOUZARI S. DNA aptamer identification and characterization for E-coli O157:H7 detection using cell based SELEX method. Analytical Biochemistry, 2017,536:36-44.
doi: 10.1016/j.ab.2017.08.005
[44] WU W H, ZHANG J, ZHENG M Q, ZHONG Y H, YANG J, ZHAO Y H, WU W P, YE W, WEN J, WANG Q, LU J X. An aptamer-based biosensor for colorimetric detection of Escherichi coli O157:H7. PLoS ONE, 2012,7(11):e48999.
doi: 10.1371/journal.pone.0048999
[45] 段诺, 张田力, 吴世嘉, 王周平. 肠致病性大肠杆菌适配体筛选研究. 食品安全质量检测学报, 2015,6(12):4803-4809.
DUAN N, ZHANG T L, WU S J, WANG Z P. Selection of an aptamer targeted to enteropathogenic Escherichia coli. Journal of Food Safety & Quality, 2015,6(12):4803-4809. (in chinese)
[46] KIM S E, SU W Q, CHO M S, LEE Y, CHOE W S, LEE Y, CHOE W S. Harnessing aptamers for electrochemical detection of endotoxin. Analytical Biochemistry, 2012,424(1):12-20.
doi: 10.1016/j.ab.2012.02.016
[47] MOON J, KIM G, LEE S, PARK S. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. Journal of Microbiological Methods, 2013,95(2):162-166.
doi: 10.1016/j.mimet.2013.08.005
[48] JOSHI R, JANAGAMA H, DWIVEDI H P, SENTHIL KUMAR T M, JAYKUS L A, SCHEFERS J, SREEVATSAN S. Selection, characterization and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and Cellular Probes, 2009,23(1):20-28.
doi: 10.1016/j.mcp.2008.10.006
[49] PAN Q, ZHANG X L, WU H Y, HE P W, ZHANG M S, HU J M, XIA B, WU J Q. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrobial Agents and Chemotherapy, 2005,49(10):4052-4060.
doi: 10.1128/AAC.49.10.4052-4060.2005
[50] LIU G Q, YU X F, XUE F, CHEN W, YE Y K, YANG X J, LIAN Y Q, YAN Y, ZONG K. Screening and preliminary application of a DNA aptamer for rapid detection of Salmonella O8. Microchimica Acta, 2012,178(1/2):237-244.
doi: 10.1007/s00604-012-0825-2
[51] DUAN N, WU S J, CHEN X J, HUANG Y K, XIA Y, MA X Y, WANG Z P. Selection and characterization of aptamers against Salmonella typhimuri using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). Journal of Agricultural & Food Chemistry, 2013,61(13):3229-3234.
[52] HAN S R, LEE S W. In vitro selection of RNA aptamer specific to Staphylococcus aureus. Annals of Microbiology, 2014,64(2):883-885.
doi: 10.1007/s13213-013-0720-z
[53] HUANG Y K, CHEN X J, DUAN N, WU S J, WANG Z P, WEI X L, WANG Y F. Selection and characterization of DNA aptamers against staphylococcus aureus enterotoxin C1. Food Chemistry, 2015,166:623-629.
doi: 10.1016/j.foodchem.2014.06.039
[54] DEGRASSE J A. A Single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS ONE, 2012,7(3):e33410.
doi: 10.1371/journal.pone.0033410
[55] HEDAYATI C M, AMANI J, SEDIGHIAN H, AMIN M, SALIMIAN J, HALABIAN R, IMANI FOOLADI A A. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography. Journal of Molecular Recognition, 2016,29(9):436-445.
doi: 10.1002/jmr.2542
[56] WANG K Y, WU D, CHEN Z, ZHANG X H, YANG X Y, YANG C Y J, LAN X P. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon, 2016,119:21-27.
doi: 10.1016/j.toxicon.2016.05.006
[57] SUH S H, DWIVEDI H P, CHOI S J, JAYKUS L A. Selection and characterization of DNA aptamers specific for Listeria species. Analytical Biochemistry, 2014,459:39-45.
doi: 10.1016/j.ab.2014.05.006
[58] 韩晓晓. 阪崎肠杆菌适配体制备及其应用[D]. 无锡: 江南大学, 2013.
HAN X X. Selection of aptamers for Cronbacter and application[D]. Wuxi: Jiangnan University, 2013. (in Chinese)
[59] FISCHER C, HUENNIGER T, JARCK J H, FROHNMEYER E, KALLINICH C, HAASE I, HAHN U, FISCHER M. Food sensing: Aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk. Journal of Agricultural and Food Chemistry, 2015,63(36):8050-8057.
doi: 10.1021/acs.jafc.5b03738
[60] SOUNDY J, DAY D. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS ONE, 2017,12(9):e0185385.
doi: 10.1371/journal.pone.0185385
[61] SONG S X, WANG X Y, XU K, LI Q, NING L F, YANG X B. Selection of highly specific aptamers to Vibrio parahaemolyticus using cell-SELEX powered by functionalized graphene oxide and rolling circle amplification. Analytica Chimica Acta, 2019,1052:153-162.
doi: 10.1016/j.aca.2018.11.047
[62] MUNIANDY S, TEH S J, APPATURI J N, THONG K L, LAI C W, IBRAHIM F, LEO B F. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry, 2019,127:136-144.
doi: 10.1016/j.bioelechem.2019.02.005
[63] APPATURI J N, PULINGAM T, THONG K L, MUNIANDY S, LEO B F. Rapid and sensitive detection of Salmonella with reduced graphene oxide-carbon nanotube based electrochemical aptasensor. Analytical Biochemistry, 2019,589:113489.
doi: 10.1016/j.ab.2019.113489
[64] BU S J, WANG K Y, LI Z Y, WANG C Y, HAO Z, LIU W S, WAN J Y. An electrochemical biosensor based on methylene blue-loaded nanocomposites as signal-amplifying tags to detect pathogenic bacteria. Analyst, 2020,145(12):4328-4334.
doi: 10.1039/D0AN00470G
[65] SHEIKHZADEH E, CHAMSAZ M, TURNER A P F, JAGER E W H, BENI V. Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosensors & Bioelectronics, 2016,80:194-200.
doi: 10.1016/j.bios.2016.01.057
[66] WANG L, HUANG F C, CAI G Z, YAO L, ZHANG H L, LIN J H. An electrochemical aptasensor using coaxial capillary with magnetic nanoparticle, urease catalysis and PCB electrode for rapid and sensitive detection of Escherichia coli O157:H7. Nanotheranostics, 2017,1(4):403-414.
doi: 10.7150/ntno.22079
[67] TENG J, YE Y W, YAO L, YAN C, CHENG K W, XUE F, PAN D D, LI B G, CHEN W. Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Microchimica Acta, 2017,184(9):3477-3485.
doi: 10.1007/s00604-017-2383-0
[68] WU W H, LI M, WANG Y, OUYANG H X, WANG L, LI C X, CAO Y C, MENG Q H, LU J X. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Research Letters, 2012,7(1):658.
doi: 10.1186/1556-276X-7-658
[69] MA X Y, SONG L J, ZHOU N X, XIA Y, WANG Z P. A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. International Journal of Food Microbiology, 2017,245:1-5.
doi: 10.1016/j.ijfoodmicro.2016.12.024
[70] KIM Y J, KIM H S, CHON J W, KIM D H, HYEON J Y, SEO K H. New colorimetric aptasensor for rapid on-site detection of Campylobacter jejuni and Campylobacter coli in chicken carcass samples. Analytica Chimica Acta, 2018,1029:78-85.
doi: 10.1016/j.aca.2018.04.059
[71] SUN Y H, DUAN N, MA P F, LIANG Y, ZHU X Y, WANG Z P. Colorimetric aptasensor based on truncated aptamer and trivalent dnazyme for Vibrio parahemolyticus determination. Journal of Agricultural and Food Chemistry, 2019,67(8):2313-2320.
doi: 10.1021/acs.jafc.8b06893
[72] WU S J, DUAN N, QIU Y T, LI J H, WANG Z P. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. International Journal of Food Microbiology, 2017,261:42-48.
doi: 10.1016/j.ijfoodmicro.2017.09.002
[73] DEHGHANI Z, HOSSEINI M, MOHAMMADNEJAD J, BAKHSHI B, REZAYAN A H. Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Microchimica Acta, 2018,185(10):448.
doi: 10.1007/s00604-018-2976-2
[74] GUO Y Y, ZHAO C, LIU Y S, NIE H, GUO X X, SONG X L, XU K, LI J, WANG J. A novel fluorescence method for the rapid and effective detection of Listeria monocytogenes using aptamer- conjugated magnetic nanoparticles and aggregation-induced emission dots. Analyst, 2020,145(11):3857-3863.
doi: 10.1039/D0AN00397B
[75] SINGH P, GUPTA R, SINHA M, KUMAR R, BHALLA V. MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchimica Acta, 2016,183(4):1501-1506.
doi: 10.1007/s00604-016-1762-2
[76] YANG T, YANG X Y, GUO X J, FU S Q, ZHENG J P, CHEN S H, QIN X, WANG Z H, ZHANG D Y, MAN C X, JIANG Y J. A novel fluorometric aptasensor based on carbon nanocomposite for sensitive detection of Escherichia coli O157:H7 in milk. Journal of Dairy Science, 2020,103:7879-7889.
doi: 10.3168/jds.2020-18344
[77] DUAN N, WU S J, MA X Y, XIA Y, WANG Z P. A universal fluorescent aptasensor based on accublue dye for the detection of pathogenic bacteria. Analytical Biochemistry, 2014,454(1):1-6.
doi: 10.1016/j.ab.2014.03.005
[78] SRINIVASAN S, RANGANATHAN V, DEROSA M C, MURARI B M. Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. Analytical Biochemistry, 2018,559:17-23.
doi: 10.1016/j.ab.2018.08.002
[79] HAO L L, GU H J, DUAN N, Wu S J, Ma X Y, XIA Y, WANG H T, WANG Z P. A chemiluminescent aptasensor based on rolling circle amplification and Co2+/n-(aminobut3r1)-n-(ethylisolumino1) functional flowerlike gold nanoparticles for Salmonella typhimurium detection . Talanta, 2017,164:275-282.
doi: 10.1016/j.talanta.2016.11.053
[80] HAO L L, GU H J, DUAN N, WU S J, MA X H, XIA Y, TAO Z, WANG Z P. An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. Analytica Chimica Acta, 2017,959:83-90.
doi: 10.1016/j.aca.2016.12.045
[81] ZHOU S S, LU C, LI Y Z, XUE L, ZHAO C Y, TIAN G F, BAO Y M, TANG L H, LIN J H, ZHENG J K. Gold Nanobones Enhanced utrasensitive Surface-Enhanced Raman scattering aptasensor for detecting Escherichia coli O157:H7. ACS Sensors, 2020,5(2):588-596.
doi: 10.1021/acssensors.9b02600
[82] ZHANG H, MA X Y, LIU Y, DUAN N, WU S J, WNAG Z P, XU B C. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Biosensors & Bioelectronics, 2015,74:872-877.
doi: 10.1016/j.bios.2015.07.033
[83] DUAN N, CHANG B Y, ZHANG H, WANG Z P, WU S J. Salmonella typhimurium detection using a surface-enhanced raman scattering- based aptasensor. International Journal of Food Microbiology, 2016,218:38-43.
doi: 10.1016/j.ijfoodmicro.2015.11.006
[84] XU Y, LUO Z W, CHEN J M, HUANG Z J, WANG X, AN H F, DUAN Y X. Ω-shaped fiber-optic probe-based localized surface plasmon resonance biosensor for real-time detection of Salmonella typhimurium. Analytical Chemistry, 2018,90(22):13640-13646.
doi: 10.1021/acs.analchem.8b03905
[85] GE C, YUAN R, YI L, YANG J L, ZHANG H W, LI L X, NIAN W Q, YI G. Target-induced aptamer displacement on gold nanoparticles and rolling circle amplification for ultrasensitive live Salmonella typhimurium electrochemical biosensing. Journal of Electroanalytical Chemistry, 2018,826:174-180.
doi: 10.1016/j.jelechem.2018.07.002
[86] KHANG J, KIM D, CHUNG K W, LEE J H. Chemiluminescent aptasensor capable of rapidly quantifying Escherichia coli O157:H7. Talanta, 2016,147:177-183.
doi: 10.1016/j.talanta.2015.09.055
[87] DUAN N, SHEN M F, SHUO Q, WANG W Y, WU S J, WANG Z P. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020,230:118130.
[1] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[2] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[3] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
[4] JIA ShiRong. Risk Assessment and Regulation of Genetically Engineered Crops: History and Reformation [J]. Scientia Agricultura Sinica, 2018, 51(4): 601-612.
[5] NIE Wen-ying, LUO Xiao-qin, LI Jin-chao, LI Hang, WU Guang, WANG Lin-chen. Establishment of a Detection Method for the Immune Colloidal Gold of Phenylethanolamine A in Animal Urine [J]. Scientia Agricultura Sinica, 2015, 48(19): 3931-3940.
[6] WANG Nian-Wu-1, 2 , WANG Ting-1, SHEN Jian-Guo-2, HU Fang-Ping-1. Rapid Detection for Clavibacter michiganensis subsp. michiganensis Using Real-Time PCR Based on Padlock Probe [J]. Scientia Agricultura Sinica, 2014, 47(5): 903-911.
[7] ZHU Zhi-wei, CHEN Ming-xue, MOU Ren-xiang, CAO Zhao-yun, ZHANG Wei-xing, LIN Xiao-yan. Advances in Research of Cadmium Metabolism and Control in Rice Plants [J]. Scientia Agricultura Sinica, 2014, 47(18): 3633-3640.
[8] YU Ming-fen;ZENG Hong-mei; ZHONG Run-tao; ZHAO Xiao-ming; QIU De-wen;. Microfluidic Electrophoresis Detection of Tomato yellow leaf curl virus (TYLCV) [J]. Scientia Agricultura Sinica, 2014, 47(17): 3405-3413.
[9] LI Pei-Wu, DING Xiao-Xia, BAI Yi-Zhen, ZHOU Hai-Yan, YIN 南Ri. Advance in Research on Risk Assessment of Aflatoxin in Agricultural Products [J]. Scientia Agricultura Sinica, 2013, 46(12): 2534-2542.
[10] WEI Yi-Min, GUO Bo-Li, WEI Shuai, SUN Shu-Min, ZHAO Hai-Yan. The Principle of Food Geographical Origin Traceability and Authenticity Technique [J]. Scientia Agricultura Sinica, 2012, 45(24): 5073-5081.
[11] LI Min-Hui, YU Xiong-Tao, WANG Hong-Fei, ZHOU Jia-Nuan, XI Ping-Gen, JIANG Zi-De. Rapid Detection and Identification of Fusarium oxysporum f. sp. cubense Race 1 and Race 4 [J]. Scientia Agricultura Sinica, 2012, 45(19): 3971-3979.
[12] XU Yi-Gang, LI Dan-Dan, TIAN Chang-Yong, LIU Zhong-Mei, LI Su-Long, ZHANG Guo-Cai. Rapid Detection of Campylobacter jejuni Using Loop-Mediated Isothermal Amplification Assay [J]. Scientia Agricultura Sinica, 2012, 45(13): 2751-2757.
[13] LI Jian-Ke, WANG Feng, XIA Kai. An Indirect and Accurate ELISA for Detection of Alicyclobacillus acidoterrestris in Apple Juice Concentrate [J]. Scientia Agricultura Sinica, 2011, 44(22): 4669-4677.
[14] XU Yi-gang,LI Su-long,LI Dan-dan,JIANG Yan-chun,XIE Xiao-feng
. Establishment of Rapid Method for Detecting Staphylococcus aureus in Food by Loop-Mediated Isothermal Amplification #br# [J]. Scientia Agricultura Sinica, 2010, 43(8): 1655-1663 .
[15] HUANG Chen-yang,CHEN Qiang,ZHAO Yong-chang,ZHANG Jin-xia
. Investigation on Heavy Metals of Main Wild Edible Mushrooms in Yunnan Province#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1198-1203 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!