Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2567-2580.doi: 10.3864/j.issn.0578-1752.2019.15.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Characterization of Whole Genome SSR in Tetraploid Wild Peanut (Arachis monticola)

WANG YuLong1,2,HUANG BingYan2,WANG SiYu2,3,DU Pei2,QI FeiYan2,FANG YuanJin2,SUN ZiQi2,ZHENG Zheng2,DONG WenZhao2,ZHANG XinYou1,2()   

  1. 1 College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan
    2 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huanghuaihai Plain/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002
    3 School of Life Sciences, Zhengzhou University, Zhengzhou 450001
  • Received:2019-03-17 Accepted:2019-05-15 Online:2019-08-01 Published:2019-08-06
  • Contact: XinYou ZHANG E-mail:haasxinyou@163.com

Abstract:

【Objective】We aimed to identify simple sequence repeat (SSR) loci throughout the genome of tetraploid wild peanut Arachis monticola (AABB, 2n = 4x = 40), to identify their distribution characteristics, and to develop and validate SSR primers. These markers have potential uses in genetic evolution analyses and in the development of molecular markers for important traits in peanut.【Method】Using the bioinformatics software MISA, we searched for SSR loci in the whole genome sequence of A. monticola, which was downloaded from the GigaScience database of the BGI. One hundred SSR loci were randomly selected and primers were designed and synthesized. The primers were used to amplify products from four different Arachis genomes, and the products were analyzed by polyacrylamide gel electrophoresis (PAGE).【Result】 A total of 676 878 SSRs were found in the genome of tetraploid wild peanut A. monticola in 5 127 scaffolds (average, one SSR per 3.8 kb). The SSRs ranged from single nucleotides to hexanucleotides. Single nucleotide SSRs were significantly more abundant than hexanucleotide SSRs. Single, double, and triple nucleotide SSRs were predominant, accounting for 94.28% of all the SSRs. Single nucleotide SSRs accounted for the largest proportion of total SSRs (46.71%) and showed the highest density. Hexanucleotide SSRs accounted for the smallest proportion and showed the sparsest density. Most SSRs were located in intergenic regions, and most of the SSRs in gene sequences were located in introns. A total of 395 different repeat motifs were identified in the whole genome, of which 342 were in the A-subgenome and 356 were in the B-subgenome. The most abundant repeat motif was A/T. The most abundant repeat motifs for SSRs with 1-6 nucleotides were A/T, AT/AT, AAT/ATT, AAAT/ATTT, AAAAT/ATTTT, and AAAAAT/ATTTTT, respectively. There were less than 50 of each type of SSR repeat motif, but the number of each type of SSR motif varied greatly. The number of each type of SSRs repeat motif decreased with increasing number of nucleotides in the motif. Chromosome B03 had the most SSRs, and chromosome A08 showed the highest density of SSRs. We designed 192 303 pairs of SSR primers, and the detection rate of single-locus SSR markers was 50.35%. The distribution of SSR markers in the genome was dense at both ends and sparse in the middle. Among the 100 synthesized primer pairs, 90 pairs amplified stable and clear bands from A. monticola genomic DNA. The bands amplified from four different peanut genomic DNAs showed different characteristics. 【Conclusion】The A. monticola genome was rich in SSRs ranging from single nucleotides to hexanucleotides. Single nucleotide repeats were the most abundant and densely distributed, and hexanucleotides showed the lowest frequency and the sparsest distribution. There was no strict correlation between the frequency of different repeats and the repeat type. The A-subgenome and B-subgenome had their own specific SSRs. The AT-enriched repeat motifs were the most abundant, while GC-enriched repeat motifs showed much lower frequencies. The number of SSRs with the same type of repeat motif decreased with increasing numbers of nucleotides in the motif. Compared with the genomes of the two diploid wild species, the tetraploid genome of A. monticola had more SSRs, a higher density of SSRs, and a different SSR distribution pattern. Preliminary validation analyses showed that the SSR primers designed in this study shared certain universal properties among four Arachis genomes.

Key words: peanut, Arachis monticola, whole genome sequence, SSR locus, motif

Table 1

Basic information of the experimental materials"

材料名称 Materials 区组 Section 种别 Species 倍性 Ploidy 基因组 Genomes
PI 219823 花生区组Section arachis A.duranesis 二倍体Diploid (2n=2x=20) A
PI 468322 花生区组Section arachis A.ipaensis 二倍体Diploid (2n=2x=20) B
PI 219824 花生区组Section arachis A.moticola 四倍体Tetraploid (2n=2x=40) AB
Tifrunner 花生区组Section arachis A.hypogaea 四倍体Tetraploid (2n=2x=40) AB

Supplementary Table 1

Genome size and assembly level of tested materials"

Supplementary Table 2

Basic information of 100 pairs of SSR primers"

Table 2

Genome-wide SSR loci information of A. monticola, A. duranensis and A. ipaensis"

材料
Materials
统计量
Statistic
单核苷酸Mono-nucleotide 2核苷酸Di-nucleotide 3核苷酸Tri-nucleotide 4核苷酸Tetra-nucleotide 5核苷酸Penta-nucleotide 6核苷酸Hexa-nucleotide 总计
Total
A.duranesis (AA) 数目Amount 29689 47805 42529 4988 7658 2860 135529
类型比例
Type ratio (%)
21.91 35.27 31.38 3.68 5.65 2.11 100.00
平均距离
Average distance (kb)
36.5 22.7 25.5 217.4 141.6 379.1 8.0
A.ipaensis (BB) 数目Amount 57589 75334 45717 6736 11092 3489 199957
类型比例
Type ratio (%)
28.80 37.68 22.86 3.37 5.55 1.74 100
平均距离
Average distance (kb)
23.5 18.0 29.6 201.0 122.1 388.0 6.7
A.moticola (AABB) 数目Amount 316197 208181 113794 12170 19552 6984 676878
类型比例
Type ratio (%)
46.71 30.76 16.81 1.80 2.89 1.03 100.00
平均距离
Average distance (kb)
8.3 12.6 23.0 215.2 133.9 375.0 3.8
A.moticola
(A-subgenome)
数目Amount 114570 81364 46531 4664 7445 2816 257390
类型比例
Type ratio (%)
44.51 31.61 18.08 1.81 2.89 1.09 100.00
平均距离
Average distance (kb)
9.0 12.7 22.2 221.2 138.5 366.3 4.0
A.moticola
(B-subgenome)
数目Amount 174453 118620 62638 7032 11358 3912 378013
类型比例
Type ratio (%)
46.15 31.38 16.57 1.86 3.00 1.03 100.00
平均距离
Average distance (kb)
8.5 12.5 23.7 210.7 130.5 378.8 3.9

Fig. 1

Quantitative distribution of different motif types (1-6 bp) of SSR in A. monticola genome"

Table 3

Quantitative distribution of SSR loci in different regions of A. monticola genome"

总计
Total
基因区
Genetic region
外显子区
Exon region
CDS区
CDS region
5′-UTR区
5′-UTR region
3′-UTR区
3′-UTR region
内含子区
Intron region
基因间区
Intergenic region
538886 58755 14429 7344 4566 2519 44326 480131

Table 4

A and B subgenome specific motif types in A.monticola genome"

重复基元类型
Motif types
A亚基因组特异重复基元
Specific motifs in A-subgenome
B亚基因组特异重复基元
Specific motifs in B-subgenome
四核苷酸
Tetra-nucleotide
AACG/CGTT AGCC/CTGG AGCG/CGCT AAGC/CTTG AGGC/CCTG
五核苷酸
Penta-nucleotide
ACCTG/AGGTC AGCCT/AGGCT ACGGG/CCCGT
AGCCC/CTGGG ACTGG/AGTCC ACGTC/ACGTG
AACGC/CGTTG AACTT/AAGTT AAGGC/CCTTG ACAGT/ACTGT ACATG/ATGTC ACCGT/ACGGT ACTAG/AGTCT AGCGC/CGCTG AGCGG/CCGCT ATGCC/ATGGC
六核苷酸
Hexa-nucleotide
AAACCC/GGGTTT AAAGCT/AGCTTT AACAGG/CCTGTT AACCGT/ACGGTT AACGGT/ACCGTT AACGTC/ACGTTG AACGTT/AACGTT AACTCC/AGTTGG AAGTGT/ACACTT AATACC/ATTGGT AATTCG/AATTCG ACACCG/CGGTGT ACATCG/ATGTCG ACCCAG/CTGGGT ACCCAT/ATGGGT ACCTCG/AGGTCG ACGCCG/CGGCGT ACGGAG/CCGTCT ACTCAT/AGTATG ACTCGG/AGTCCG ACTGCC/AGTGGC AGCATG/ATGCTC AGCCCG/CGGGCT AGCCCT/AGGGCT AGCTAT/AGCTAT AAACGC/CGTTTG AAAGGT/ACCTTT AACGAC/CGTTGT AACGAT/ATCGTT AACTCT/AGAGTT AACTGG/AGTTCC AAGACC/CTTGGT AAGCAT/ATGCTT AAGGCG/CCTTCG AAGGGC/CCCTTG AAGTAC/ACTTGT AATCCG/ATTCGG AATCGC/ATTGCG AATGAC/ATTGTC AATGCG/ATTCGC AATGGT/ACCATT ACAGAT/ATCTGT ACAGGC/CCTGTG ACAGGG/CCCTGT ACATAG/ATGTCT ACATGC/ATGTGC ACCATG/ATGGTC ACCCTG/AGGGTC ACCGAG/CGGTCT ACCTAG/AGGTCT ACGCGG/CCGCGT ACGCTC/AGCGTG ACGTCC/ACGTGG ACTAGG/AGTCCT ACTCTG/AGAGTC ACTGGC/AGTGCC ACTGGG/AGTCCC AGCCAT/ATGGCT AGGCCG/CCTCGG AGGGAT/ATCCCT ATCGGC/ATGCCG

Fig. 2

Twenty SSR motif types with the largest number in A. monticola genome"

Fig. 3

Distribution of repetition times of different motif types"

Fig. 4

SSR number and SSR frequency distribution of chromosomes in A. monticola genome"

Fig. 5

Quantitative distribution of single-locus SSR markers on chromosomes"

Fig. 6

Density distribution of single-locus SSR markers on chromosomes(1M window size)"

Fig. 7

Amplification results of 12 different primers on genomes of four materials M: DL 1000 marker; 1-4 represent A. moticola, A. duranesis, A. ipaensis, Tifrunner; the red arrow indicates the target strip"

[1] BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D CANNON E K S, LIU X, GAO D, CLEVENGER J, DASH S, REN L, MORETZSOHN M C, SHIRASAWA K, HUANG W, VIDIGAL B, ABERNATHY B, CHU Y, NIEDERHUTH C E, UMALE P, ARAÚJO A C G, KOZIK A, KIM K D, BUROW M D, VARSHNEY R K, WANG X, ZHANG X, BARKLEY N, GUIMARÃES P M, ISOBE S, GUO B, LIAO B, STALKER H T, SCHMITZ R J, SCHEFFLER B E, LEAL-BERTIOLI S C M, XUN X, JACKSON S A, MICHELMORE R, OZIAS-AKINS P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016,48(4):438-446.
[2] YIN D, JI C, MA X, LI H, ZHANG W, LI S, LIU F, ZHAO K, LI F, LI K, NING L, HE J, WANG Y, ZHAO F, XIE Y, ZHENG H, ZHANG X, ZHANG Y, ZHANG J . Genome of an allotetraploid wild peanut Arachis monticola: A de novo assembly. GigaScience, 2018,7(6):1-9.
[3] WANG Z, WEBER J L, ZHONG G, TANKSLEY S D . Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, 1994,88(1):1-6.
[4] LEVINSON G, GUTMAN G A . Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 1987,4(3):203-221.
[5] FIELD D, WILLS C . LONG, polymorphic microsatellites in simple organisms. Proceedings of the Royal Society of London Series B: Biological Sciences, 1996,263(1367):209-215.
[6] GUR-ARIE R, COHEN C J, EITAN Y, SHELEF L, HALLERMAN E M, KASHI Y . Simple sequence repeats in Escherichia coli: Abundance, distribution, composition, and polymorphism. Genome Research, 2000,10(1):62-71.
[7] TÓTH G, GÁSPÁRI Z, JURKA J . Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 2000,10(7):967-981.
[8] LI Y C, KOROL A B, FAHIMA T, BEILES A, NEVO E . Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 2002,11(12):2453-2465.
[9] KASHI Y, KING D G . Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 2006,22(5):253-259.
[10] 和小燕, 张建航, 刘婷, 王允, 马兴立, 张幸果, 殷冬梅 . 花生F1代真伪杂种鉴定方法分析. 分子植物育种, 2018,16(2):477-483.
HE X Y, ZHANG J H, LIU T, WANG Y, MA X L, ZHANG X G, YIN D M . Analysis of identification method for hybrid F1 generation of peanut. Molecular Plant Breeding, 2018,16(2):477-483. (in Chinese)
[11] 孙子淇, 张新友, 徐静, 张忠信, 刘华, 严玫, 董文召, 黄冰艳, 韩锁义, 汤丰收, 刘志勇 . 河南省审定花生品种的指纹图谱构建. 作物学报, 2016,42(10):1448-1461.
doi: 10.3724/SP.J.1006.2016.01448
SUN Z Q, ZHANG X Y, XU J, ZHANG Z X, LIU H, YAN M, DONG W Z, HUANG B Y, HAN S Y, TANG F S, LIU Z Y . DNA fingerprinting of peanut (Arachis hypogaea L.) varieties released in Henan province. Acta Agronomica Sinica, 2016,42(10):1448-1461. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01448
[12] 胡晓辉, 毛瑞喜, 苗华荣, 石运庆, 崔凤高, 杨伟强, 陈静 . 山东省46个花生品种SSR指纹图谱构建与遗传多样性分析. 核农学报, 2016,30(10):1925-1933.
HU X H, MAO R X, MIAO H R, SHI Y Q, CUI F G, YANG W Q, CHEN J . Construction of fingerprinting and analysis of genetic diversity with SSR markers for forty-six approved peanut cultivars from Shandong province. Acta Agriculturae Nucleatae Sinica, 2016,30(10):1925-1933. (in Chinese)
[13] 尹亮, 李双铃, 任艳, 石延茂, 袁美 . 42个花生品种的SSR标记指纹图谱构建. 花生学报, 2017,46(1):8-13.
YIN L, LI S L, REN Y, SHI Y M, YUAN M . Construction of molecular fingerprint for 42 peanut varieties using SSR markers. Journal of Peanut Science, 2017,46(1):8-13. (in Chinese)
[14] 韩柱强, 高国庆, 韦鹏霄, 唐荣华, 钟瑞春 . 利用SSR标记分析栽培种花生多态性及亲缘关系. 花生学报, 2003(S1):295-300.
HAN Z Q, GAO G Q, WEI P X, TANG R H, ZHONG R C . Analysis of DNA polymorphism and genetic relationships in cultivated peanut(Arachis hypogaea L.) using microsatellite markers. Journal of Peanut Science, 2003(S1):295-300. (in Chinese)
[15] 任小平, 张晓杰, 廖伯寿, 雷永, 黄家权, 陈玉宁, 姜慧芳 . ICRISAT花生微核心种质资源SSR标记遗传多样性分析. 中国农业科学, 2010,43(14):2848-2858.
REN X P, ZHANG X J, LIAO B S, LEI Y, HUANG J Q, CHEN Y N, JIANG H F . Analysis of genetic diversity in ICRISAT mini core collection of peanut (Arachis hypogaea L.) by SSR markers. Scientia Agricultura Sinica, 2010,43(14):2848-2858. (in Chinese)
[16] 詹世雄, 郑奕雄, 刘冠明, 张平湖, 杨灵, 庄东红 . 基于SSR标记的花生品种遗传多样性分析. 中国油料作物学报, 2014,36(2):269-274.
doi: 10.7505/j.issn.1007-9084.2014.02.020
ZHAN S X, ZHENG Y X, LIU G M, ZHANG P H, YANG L, ZHUANG D H . Genetic diversity in peanut cultivars based on SSR markers. Chinese Journal of Oil Crop Sciences, 2014,36(2):269-274. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2014.02.020
[17] 王燕龙, 单雷, 付春, 徐平丽, 姜言生, 柳展基, 曲志才, 唐桂英 . 不同SSR标记检测技术及其在花生栽培种遗传多样性分析中的应用. 植物遗传资源学报, 2014,15(1):96-105.
WANG Y L, SHAN L, FU C, XU P L, JIANG Y S, LIU Z J, QU Z C, TANG G Y . Different SSR detection techniques and their application in genetic diversity analysis of peanut (Arachis hypogaea L.) cultivars. Journal of Plant Genetic Resources, 2014,15(1):96-105. (in Chinese)
[18] REN X, JIANG H, YAN Z, CHEN Y, ZHOU X, HUANG L, LEI Y, HUANG J, YAN L, QI Y, WEI W, LIAO B . Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS ONE, 2014,9(2):e88091.
[19] VARSHNEY R K, BERTIOLI D J, MORETZSOHN M C, VADEZ V, KRISHNAMURTHY L, ARUNA R, NIGAM S N, MOSS B J, SEETHA K, RAVI K, HE G, KNAPP S J, HOISINGTON D A . The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2009,118(4):729-739.
[20] 刘华 . 栽培花生产量和品质相关性状遗传分析与QTL定位研究[D]. 郑州: 河南农业大学, 2011.
LIU H . Inheritance of main traits related to yield and quality, and their QTL mapping in peanut (Arachis hypogaea L.)[D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese)
[21] SHIRASAWA K, BERTIOLI D J, VARSHNEY R K, MORETZSOHN M C, LEAL-BERTIOLI S C M, THUDI M, PANDEY M K, RAMI J F, FONCEKA D, GOWDA M V C, QIN H , GUO B, HONG Y, LIANG X, HIRAKAWA H, TABATA S, ISOBE S . Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 2013,20(2):173.
[22] PANDEY M K, WANG M L, QIAO L, FENG S, KHERA P, WANG H, TONNIS B, BARKLEY N A, WANG J, HOLBROOK C C, CULBREATH A K, VARSHNEY R K, GUO B . Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics, 2014,15(1):1-14.
[23] LI Y, LI L, ZHANG X, ZHANG K, MA D, LIU J, WANG X, LIU F, WAN Y . QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017,213(2):57.
[24] HOPKINS M S, CASA A M, WANG T, MITCHELL S E, DEAN R E, KOCHERT G D, KRESOVICH S . Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Science, 1999,39(4):1243-1247.
[25] HE G, MENG R, NEWMAN M, GAO G, PITTMAN R N, PRAKASH C S . Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 2003,3(1):3.
[26] FERGUSON M E, BUROW M D, SCHULZE S R, BRAMEL P J, PATERSON A H, KRESOVICH S, MITCHELL S . Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2004,108(6):1064-1070.
[27] MORETZSOHN M D C, HOPKINS M S, MITCHELL S E, KRESOVICH S, VALLS J F M, FERREIRA M E . Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biology, 2004,4(1):11.
[28] MORETZSOHN M C, LEOI L, PROITE K, GUIMARÃES P M, LEAL-BERTIOLI S C M, GIMENES M A, MARTINS W S, VALLS J F M, GRATTAPAGLIA D, BERTIOLI D J . A microsatellite-based, gene-rich linkage map for the AA genome of Arachis(Fabaceae). Theoretical and Applied Genetics, 2005,111(6):1060-1071.
[29] CUC L M, MACE E S, CROUCH J H, QUANG V D, LONG T D, VARSHNEY R K . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biology, 2008,8(1):55.
[30] YUAN M, GONG L, MENG R, LI S, DANG P, GUO B, HE G . Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.). Electronic Journal of Biotechnology, 2010,13(6):5-6.
[31] SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C, NAITO Y, KUBOYAMA T, NAKAYA A, SASAMOTO S, WATANABE A, KATO M, KAWASHIMA K, KISHIDA Y, KOHARA M, KURABAYASHI A, TAKAHASHI C, TSURUOKA H, WADA T, ISOBE S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012,12(1):80.
[32] MACEDO S E, MORETZSOHN M C, M LEAL-BERTIOLI S C, ALVES D M, GOUVEA E G, AZEVEDO V C, BERTIOLI D J . Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Research Notes, 2012,5(1):86.
[33] LUO M, DANG P, GUO B Z, HE G, HOLBROOK C C, BAUSHER M G, LEE R D . Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Science, 2005,45(1):346-353.
[34] PROITE K, LEAL-BERTIOLI S C , BERTIOLI D J, MORETZSOHN M C, SILVA F R D, MARTINS N F, GUIMARÃES P M . ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biology, 2007,7(1):7.
[35] LIANG X, CHEN X, HONG Y, LIU H, ZHOU G, LI S, GUO B . Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biology, 2009,9(1):35.
[36] WANG J, PAN L, YANG Q, YU S . Development and characterization of EST-SSR markers from NCBI and cDNA library in cultivated peanut (Arachis hypogaea L.). Legume Genomics and Genetics, 2010,1(6):30-33.
[37] KOILKONDA P, SATO S, TABATA S, SHIRASAWA K, HIRAKAWA H, SAKAI H, SASAMOTO S, WATANABE A, WADA T, KISHIDA Y, TSURUOKA H, FUJISHIRO T, YAMADA M, KOHARA M, SUZUKI S, HASEGAWA M, KIYOSHIMA H, ISOBE S . Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Molecular Breeding, 2012,30(1):125-138.
[38] GUO Y, KHANAL S, TANG S, BOWERS J E, HEESACKER A F, KHALILIAN N, NAGY E D, ZHANG D, TAYLOR C A, STALKER H T, OZIAS-AKINS P, KNAPP S J . Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A-and B-genome diploid species of peanut. BMC Genomics, 2012,13(1):608.
[39] BOSAMIA T C, MISHRA G P, THANKAPPAN R, DOBARIA J R . Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS ONE, 2015,10(6):e0129127.
[40] HUANG L, WU B, ZHAO J, LI H, CHEN W, ZHENG Y, REN X, CHEN Y, ZHOU X, LEI Y, LIAO B, JIANG H . Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS ONE, 2016,11(5):e0156633.
[41] HE G, WOULLARD F E, MARONG I, GUO B Z . Transferability of soybean SSR markers in peanut (Arachis hypogaea L.). Peanut Science, 2006,33(1):22-28.
[42] WANG H, PENMETSA R V, YUAN M, GONG L, ZHAO Y, GUO B, FARMER A D, ROSEN B D, GAO J, ISOBE S, BERTIOLI D J, VARSHNEY R K, COOK D R, HE G . Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 2012,12(1):10.
[43] ZHANG J, LIANG S, DUAN J, WANG J, CHEN S, CHENG Z, ZHANG Q, LIANG X, LI Y . De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 2012,13(1):90.
[44] PENG Z, GALLO M, TILLMAN BL, ROWLAND D, WANG J . Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Molecular Genetics and Genomics, 2016,291(1):363-381.
[45] ZHAO C, QIU J, AGARWAL G, WANG J, REN X, XIA H, GUO B, MA C, WAN S, BERTIOLI D J, VARSHNEY R K, PANDEY M K, WANG X . Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis, and their application in cultivated peanut(A. hypogaea). Frontiers in Plant Science, 2017,8:1209.
[46] LUO H, XU Z, LI Z, LI X, LV J, REN X, HUANG L, ZHOU X, CHEN Y, YU J, CHEN W, LEI Y, LIAO B, JIANG H . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2017,130(8):1635-1648.
[47] ZHAO Y, PRAKASH C S, HE G . Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Research Notes, 2012,5(1):362.
[48] SHIRASAWA K, ISOBE S, TABATA S, HIRAKAWA H . Kazusa Marker DataBase: A database for genomics, genetics, and molecular breeding in plants. Breeding Science, 2014,64(3):264-271
[49] LAWSON M J, ZHANG L Q . Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 2006,7(2): R14.1-R14.11.
[50] CAVAGNARO P F, SENALIK D A, YANG L, SIMON P W, HARKINS T T, KODIRA C D, HUANG S, WENG Y . Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 2010,11(1):569.
[51] 童治军, 焦芳婵, 肖炳光 . 普通烟草及其祖先种基因组 SSR 位点分析. 中国农业科学, 2015,48(11):2108-2117.
TONG Z J, JIAO F C, XIAO B G . Analysis of SSR loci in Nicotina tabacum genome and its two ancestral species genome. Scientia Agricultura Sinica, 2015,48(11):2108-2117. (in Chinese)
[52] SONAH H, DESHMUKH R K, SHARMA A, SINGH V P, GUPTA D K, GACCHE R N, RANA J C, SINGH N K, SHARMA T R . Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS ONE, 2011,6(6):e2129
[53] 蔡斌, 李成慧, 姚泉洪, 周军, 陶建敏, 章镇 . 葡萄全基因组SSR分析和数据库构建. 南京农业大学学报, 2009,32(4):28-32.
CAI B, LI C H, YAO Q H, ZHOU J, TAO J M, ZHANG Z . Analysis of SSRs in grape genome and development of SSR database. Journal of Nanjing Agricultural University, 32(4):28-32. (in Chinese)
[54] YU J, DOSSA K, WANG L, ZHANG Y, WEI X, LIAO B, ZHANG X . PMDBase: A database for studying microsatellite DNA and marker development in plants. Nucleic Acids Research, 2017,45(Database issue):D1046-D1053.
[55] 原志敏 . 玉米全基因组 SSRs 分子标记开发与特征分析[D]. 雅安: 四川农业大学, 2013.
YUAN Z M . Development and characterization of SSR markers providing genome-wide coverage and high resolution in maize[D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese)
[56] KANTETY R V, ROTA M L, MATTHEWS D E, SORRELLS M E . Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 2002,48:501-510.
[57] SONG Q, JIA G, ZHU Y, GRANT D, NELSON R T, WANG E Y, HYTEN D L, CREGAN P B . Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR1.0) in soybean. Crop Science, 2010,50(5):1950-1960.
[58] 郑燕, 张耿, 吴为人 . 禾本科植物微卫星序列的特征分析和比较. 基因组学与应用生物学, 2011,30:513-520.
ZHENG Y, ZHANG G, WU W R . Characterization and comparison of microsatellites in gramineae. Genomics and Applied Biology, 2011,30:513-520. (in Chinese)
[59] 陈明丽, 王兰芬, 武晶, 张晓艳, 杨广东, 王述民 . 普通菜豆基因组SSR标记开发及在豇豆和小豆中的通用性分析. 作物学报, 2014,40(5):924-933.
doi: 10.3724/SP.J.1006.2014.00924
CHEN M L, WANG L F, WU J, ZHANG X Y, YANG G D, WANG S M . Development of genomic SSR markers in common bean and their transferability in cowpea and adzuki bean. Acta Agronomica Sinica, 2014,40(5):924-933. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00924
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[7] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[8] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[9] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[10] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[11] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[12] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[13] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!