Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1895-1907.doi: 10.3864/j.issn.0578-1752.2019.11.005

• PLANT PROTECTION • Previous Articles     Next Articles

Composition of Fusarium Species Causing Maize Ear Rot and Analysis of Toxigenic Chemotype in Guangxi

DU Qing1,TANG ZhaoLei1,LI ShiChu1,SHANGGUAN LingLing2,LI HuaJiao2,DUAN CanXing3()   

  1. 1 Institute of Maize Research, Guangxi Academy of Agricultural Sciences, Nanning 530007
    2 Guangxi Agricultural Vocational and Technical College, Nanning 530007
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2019-02-19 Accepted:2019-03-21 Online:2019-06-01 Published:2019-06-11
  • Contact: CanXing DUAN E-mail:duancanxing@caas.cn

Abstract:

【Objective】 The objective of this study is to clarify the composition and toxigenic chemotype of Fusarium species causing maize ear rot in Guangxi, and to provide important guidance and theoretical basis for comprehensive control of maize ear rot and reasonable distribution of varieties and resistance breeding.【Method】 The diseased ear samples were collected from main maize producing areas in Guangxi between 2016 and 2018, a total of 138 isolates from 21 counties (districts) were obtained by tissue separation and single-spore purification. Fusarium species were identified and determined according to morphological characteristics and molecular methods. The phylogenetic tree was constructed based on TEF-1α gene sequences, and specific primers were used to detect toxigenic chemotype.【Result】 A total of 10 Fusarium species were identified and confirmed among 138 isolates, including F. verticillioides, F. proliferatum, F. kyushuense, F. meridionale, F. sacchari, F. fujikuroi, F. asiaticum, F. concentricum, F. incarnatum and F. graminearum, with the isolation frequencies of 50.72%, 12.32%, 10.87%, 8.70%, 6.52%, 3.62%, 3.62%, 1.45%, 1.45% and 0.72%, respectively. F. graminearum species complex (FGSC) contained three independent species, i.e. F. meridionale, F. asiaticum and F. graminearum. F. verticillioides was the predominant pathogen, FGSC, F. proliferatum and F. kyushuense were the secondary predominant pathogens. F. sacchari and F. concentricum were the first reported to be the pathogen of maize ear rot in China. The key gene FUM1 responsible for the biosynthesis of fumonisins was detected among 67 F. verticillioides, 13 F. proliferatum, 5 F. sacchari and 3 F. fujikuroi strains, respectively, which indicated the potential ability of producing fumonisins. FUM1 was not detected in the F. concentricum strains. Four toxigenic chemotypes including NIV, 15-ADON, NIV+15-ADON and DON+15-ADON were detected among FGSC, F. kyushuense and F. incarnatum strains. Strains containing NIV chemotype included 8 F. kyushuense, 2 F. asiaticum, 2 F. meridionale, and 1 F. incarnatum. Strains containing 15-ADON chemotype included 2 F. meridionale. The NIV+15-ADON chemotype was detected among 8 F. meridionale, 2 F. kyushuense, 1 F. asiaticum and 1 F. incarnatum strains. Only 1 F. graminearum strain carried DON+15-ADON chemotype. The 3-ADON chemotype was not detected among these strains.【Conclusion】 F. verticillioides is the predominant pathogen of maize ear rot in Guangxi. FGSC, F. proliferatum and F. kyushuense are the secondary predominant species. FUM1 was detected among F. verticillioides, F. proliferatum, F. sacchari and F. fujikuroi. The main toxigenic chemtype of FGSC in Guangxi is NIV+15-ADON, while NIV is the main toxigenic chemotype of F. incarnatum and some F. kyushuense. The population composition of Fusarium species causing maize ear rot in Guangxi is different from equivalent study of temperate zone in China, which may be due to the fact that Fusarium species adapt to the high temperature and humidity growth environment in tropical and subtropical Guangxi and thus leads to the differences of toxigenic chemotypes.

Key words: maize, ear rot, Fusarium spp., isolation frequency, toxigenic chemotype

Table 1

Specific primers for Fusarium spp. identification"

检测真菌
Detected fungus
引物
Primer
引物序列
Primer sequence (5′-3′)
扩增片段
Target fragment (bp)
退火温度
Tm (℃)
镰孢菌 ItsF AACTCCCAAACCCCTGTGAACATA 431 58
Fusarium spp. ItsR TTTAACGGCGTGGCCGC
禾谷镰孢复合种 Fg16NF ACAGATGACAAGATTCAGGCACA 280 57
F. graminearum Fg16NR TTCTTTGACATCTGTTCAACCCA
species complex
拟轮枝镰孢 VER1 CTTCCTGCGATGTTTCTCC 578 56
F. verticillioides VER2 AATTGGCCATTGGTATTATATATCTA
层出镰孢 PRO1 CTTTCCGCCAAGTTTCTTC 585 56
F. proliferatum PRO2 TGTCAGTAACTCGACGTTGTTG

Table 2

Primers used for identification of toxigenic chemotype"

引物
Primer
引物序列
Primer sequence (5′-3′)
毒素化学型
Toxigenic chemotype
扩增片段
Product size (bp)
退火温度
Tm (℃)
Tri13F TACGTGAAACATTGTTGGC DON, NIV 234, 415 57
Tri13R GGTGTCCCAGGATCTGCG
Tri303F GATGGCCGCAAGTGGA 3-DON 586 56
Tri303R GCCGGACTGCCCTATTG
Tri315F CTCGCTGAAGTTGGACGTAA 15-ADON 864 58
Tri315R GTCTATGCTCTCAACGGACAAC

Table 3

Occurrence of Fusarium spp. in 21 counties (districts) in Guangxi"

镰孢菌
Fusarium spp.
拟轮枝镰孢
F. v
层出镰孢
F. p
甘蔗镰孢
F. s
藤仓镰孢
F. f
轮纹镰孢
F. c
亚洲镰孢
F. a
禾谷镰孢
F. g
南方镰孢
F. m
九州镰孢
F. k
变红镰孢
F. i
总计
Total
巴马 Bama 2 4 - - - 1 - - 3 - 10
大化 Dahua 2 - 1 1 - - - - - - 4
东兰 Donglan 9 - - - - - - - - - 9
都安 Duan 4 - 1 - - 1 - 2 3 - 11
凤山Fengshan 5 - - - - - - 3 - - 8
金城江Jinchengjiang - - 2 - - - - - - - 2
乐业 Leye 3 - - - - 2 - - - - 5
凌云 Lingyun 9 - - 2 - - - - - - 11
平果 Pingguo 1 1 - - - - 1 1 3 1 8
靖西 Jingxi - 6 - - 2 - - - - - 8
田东Tiandong 6 - - - - - - 1 - - 7
田林 Tianlin 2 - - - - - - - - - 2
田阳 Tianyang 2 - - - - - - - - - 2
德保 Debao 1 2 - 1 - - - 2 2 - 8
西林 Xilin - 1 - - - - - - - - 1
隆安 Longan - - - - - - - - - 1 1
江南 Jiangnan 7 - - - - - - - - - 7
马山 Mashan 7 - - - - - - - - - 7
武宣 Wuxuan - 2 2 1 - - - - 2 - 7
大新 Daxin 3 - 1 - - 1 - - 1 - 6
天等 Tiandeng 7 1 2 - - - - 3 1 - 14
总计 Total 70 17 9 5 2 5 1 12 15 2 138

Fig. 1

Morphological characteristic and maize symptom after inoculation of F. sacchari and F. concentricum"

Fig. 2

Construction of phylogenetic tree of some Fusarium spp. strains based on TEF-1α gene sequence"

Fig. 3

PCR amplification of toxigenic gene and chemotypes"

Table 4

Toxigenic chemotype detection of Fusarium spp. strains"

菌株编号
Strain number
镰孢菌
Fusarium spp.
毒素化学型 Toxigenic chemotype
NIV DON 3-ADON 15-ADON
Bama7 F. asiaticum - - - -
Daxin1 F. asiaticum + - - -
Duan1 F. asiaticum - - - -
Leye2 F. asiaticum + - - -
Leye4 F. asiaticum + - - +
Pingguo4 F. graminearum - + - +
Longan1 F. incarnatum + - - -
Pingguo8 F. incarnatum + - - +
Bama2 F. kyushuense + - - +
Bama3 F. kyushuense + - - +
Bama9 F. kyushuense - - - -
Daxin5 F. kyushuense - - - -
Debao3 F. kyushuense + - - -
Debao5 F. kyushuense - - - -
Duan3 F. kyushuense + - - -
Duan4 F. kyushuense + - - -
Duan5 F. kyushuense + - - -
Pingguo3 F. kyushuense + - - -
Pingguo5 F. kyushuense - - - -
Pingguo6 F. kyushuense + - - -
Tiandeng12 F. kyushuense + - - -
Wuxuan6 F. kyushuense + - - -
Wuxuan7 F. kyushuense - - - -
Debao6 F. meridionale + - - +
Debao7 F. meridionale + - - -
Duan2 F. meridionale - - - +
Duan8 F. meridionale + - - +
FengShan2 F. meridionale - - - +
FengShan3 F. meridionale + - - +
FengShan7 F. meridionale + - - +
Pingguo2 F. meridionale + - - +
Tiandeng1 F. meridionale + - - +
Tiandeng2 F. meridionale + - - +
Tiandeng8 F. meridionale + - - +
Tiandong4 F. meridionale + - - -
[1] MESTERHÁZY A, LEMMENS M, REID L M . Breeding for resistance to ear rots caused by Fusarium spp. in maize—a review. Plant Breeding, 2012,131(1):1-19.
[2] 孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡 . 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 植物病理学报, 2018,48(1):8-15.
SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P . Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex. Acta Phytopathologica Sinica, 2018,48(1):8-15. (in Chinese)
[3] 孙华, 张海剑, 郭宁, 石洁, 陈丹, 马红霞 . 黄淮海夏玉米主产区穗腐病病原菌的分离鉴定. 植物保护学报, 2017,44(5):796-802.
SUN H, ZHANG H J, GUO N, SHI J, CHEN D, MA H X . Isolation and identification of pathogens causing maize ear rot in Huang- Huai-Hai summer corn region. Journal of Plant Protection, 2017,44(5):796-802. (in Chinese)
[4] 周丹妮, 王晓鸣, 李丹丹, 杨洋, 陈国康, 段灿星 . 重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定. 植物保护学报, 2016,43(5):782-788.
ZHOU D N, WANG X M, LI D D, YANG Y, CHEN G K, DUAN C X . Isolation and identification of Fusarium species causing maize ear rot in Chongqing and its vicinity. Journal of Plant Protection, 2016,43(5):782-788. (in Chinese)
[5] DUAN C X, QIN Z H, YANG Z H, LI W X, SUN S L, ZHU Z D, WANG X M . Identification of pathogenicFusarium spp。causing maize ear rot and potential mycotoxin production in China. Toxins, 2016,8(6):186.
doi: 10.3390/toxins8060186
[6] KRISTENSEN R, TROP M, KOSIAK B, HOLST-JENSEN A . Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycological Research, 2005,109(2):173-186.
doi: 10.1017/S0953756204002114
[7] 孙华, 丁梦军, 张家齐, 石洁, 郭宁, 李坡 . 河北省玉米穗腐病病原菌鉴定及潜在产伏马毒素镰孢菌系统发育分析. 植物病理学报, 2019,49(2):151-159.
SUN H, DING M J, ZHANG J Q, SHI J, GUO N, LI P . Identification of pathogens causing maize ear rot and the phylogenetic analysis of fumonisins-producingFusarium species in Hebei province. Acta Phytopathologica Sinica, 2019,49(2):151-159. (in Chinese)
[8] 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东 . 玉米抗穗腐病研究进展. 中国农业科学, 2015,48(11):2152-2164.
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D . Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015,48(11):2152-2164. (in Chinese)
[9] TSEHAYE H, BRURBERG M B, SUNDHEIM L, ASSEFA D, TRONSMO A, TRONSMO A M . Natural occurrence ofFusarium species and fumonisin on maize grains in Ethiopia. European Journal of Plant Pathology, 2017,147:141-155.
doi: 10.1007/s10658-016-0987-6
[10] 尚艳娥, 杨卫民 . CAC、欧盟、美国与中国粮食中真菌毒素限量标准的差异分析. 食品科学技术学报, 2019,37(1):10-15.
SHANG Y E, YANG W M . Variation analysis of cereals mycotox limit standards of CAC, EU, USA, and China. Journal of Food Science and Technology, 2019,37(1):10-15. (in Chinese)
[11] 郭聪聪, 朱维芳, 付萌, 庞民好, 刘颖超, 董金皋 . 甘肃省玉米籽粒中镰孢菌分离频率及伏马毒素含量监测. 植物保护学报, 2015,42(6):942-948.
GUO C C, ZHU W F, FU M, PANG M H, LIU Y C, DONG J G . Occurrence of Fusarium species and fumonisins associated with maize kernels from Gansu Province. Journal of Plant Protection, 2015,42(6):942-948. (in Chinese)
[12] 董汉松 . 植病研究法. 北京: 中国农业出版社, 2012.
DONG H S. Plant Disease Research Method. Beijing: China Agriculture Press, 2012. (in Chinese)
[13] LESLIE J F, SUMMERELL B A. The Fusarium Laboratory Manual. Blackwell Publishing, 2006.
[14] 王拱辰, 郑重, 叶琪明, 章初龙 . 常见镰刀菌鉴定指南. 北京: 中国农业科技出版社, 1996.
WANG G C, ZHENG Z, YE Q M, ZHANG C L. Common Guidebook for Identification of Fusarium. Beijing: China Agricultural Science and Technology Press, 1996. (in Chinese)
[15] 马红霞, 孙华, 郭宁, 张海剑, 石洁, 常佳迎 . 禾谷镰孢复合种毒素化学型及遗传多样性分析. 中国农业科学, 2018,51(1):82-95.
MA H X, SUN H, GUO N, ZHANG H J, SHI J, CHANG J Y . Analysis of toxigenic chemotype and genetic diversity of the Fusarium graminearum species complex. Scientia Agricultura Sinica, 2018,51(1):82-95. (in Chinese)
[16] 秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣 . 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014,41(5):589-596.
QIN Z H, REN X, JIANG K, WU X F, YANG Z H, WANG X M . Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. Journal of Plant Protection, 2014,41(5):589-596. (in Chinese)
[17] HSUAN H M, SALLEH B, ZAKARIA L . Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International Journal of Molecular Sciences, 2011,12:6722-6732.
doi: 10.3390/ijms12106722
[18] LESLIE J F, SUMMERELL B A, BULLOCK S, DOE F J . Description of Gibberella sacchari and neotypification of its anamorph Fusarium sacchari. Mycologia, 2005,97(3):718-724.
doi: 10.1080/15572536.2006.11832801
[19] ZENG L S, ZHAO Z H, LÜ S, XI Z J, LI M H, XI P G, JIANG Z D . The Fusarium species isolated from banana and their phylogenetic relationships. Mycosystema, 2015,32(4):617-632.
[20] SUNDHEIM L, TSEHAYE H . Fumonisin in Zambia and neighboring countries in a changing climate//DANIELS J A. Advances in Environmental Research. Nova Science Publishers, 2015,39:69-84.
[21] NCUBE E, FLETT B C, WAALWIJK C, VILJOEN A. . Fusariumspp and levels of fumonisins in maize produced by subsistence farmers in South Africa. South African Journal of Science, 2011, 107(1/2): Article 367.
[22] REYES-VELÁZQUEZ W P, FIGUEROA-GÓMEZ R M, BARBERIS M, REYNOSO M M, ROJO F G, CHULZE S N, TORRES A M . Fusarium species (section Liseola) occurrence and natural incidence of beauvericin, fusaproliferin and fumonisins in maize hybrids harvested in Mexico. Mycotoxin Research, 2011,27:187-194.
doi: 10.1007/s12550-011-0095-6
[23] ABBAS H K, CARTWRIGHT R D, XIE W P, SHIER T . Aflatoxin and fumonisin contamination of corn (maize,Zea mays) hybrids in Arkansas. Crop Protection, 2006,25:1-9.
doi: 10.1016/j.cropro.2005.02.009
[24] COVARELLI L, STIFANO S, BECCARI G, RAGGI L, LATTANZIO V M T, AABERTINI E . Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiology, 2012,31(1):17-24.
doi: 10.1016/j.fm.2012.02.002
[25] GLENN A E, ZITOMER N C, ZIMERI A M, WILLIAMS L D, RILEY R T, PROCTOR R H . Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Molecular Plant-Microbe Interactions, 2008,21(1):87-97.
doi: 10.1094/MPMI-21-1-0087
[26] RAJMOHAN N, GIANFAGNA T J, MECA G, MORETTI A, ZHANG N . Molecular identification and mycotoxin production of Lilium longiflorum-associated fusaria isolated from two geographic locations in the United States. European Journal of Plant Pathology, 2011,131:631-642.
doi: 10.1007/s10658-011-9838-7
[27] AOKI T O’DONNELL K , Fusarium kyushuense sp.nov. from Japan. Mycoscience, 1998,39(1):1-6.
doi: 10.1007/BF02461571
[28] YANG L, VAN DER LEE T, YANG X, YU D, WAALWIJK C . Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology, 2008,98(6):719-727.
doi: 10.1094/PHYTO-98-6-0719
[29] SUGA H, KARUGIA G W, WARD T, TOMIMURA G K, NAKAJIMA T, MIYASAKA A, KOIZUMI S, KAGEYAMA K, HYAKUMACHI M . Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology, 2008,98(2):159-166.
doi: 10.1094/PHYTO-98-2-0159
[30] ZHOU D N, WANG X M, CHEN G K, SUN S L, YANG Y, ZHU Z D, DUAN C X . The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018,10(2):90.
doi: 10.3390/toxins10020090
[31] SAMPIETRO D A, MARIN P, IGLESIAS J, PRESELLO D A, VATTUONE M A, CATALAN C A, GONZALEZ JAEN M T . A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biology, 2010,114(1):74-81.
doi: 10.1016/j.mycres.2009.10.008
[32] THRANE U, ADLER A, CLASEN P E, GALVANO F, LANGSETH W, LEW H, LOGRIECO A, NIELSEN K F, RITIENI A . Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 2004,95(3):257-266.
doi: 10.1016/j.ijfoodmicro.2003.12.005
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!