Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 98-110.doi: 10.3864/j.issn.0578-1752.2019.01.010

• HORTICULTURE • Previous Articles     Next Articles

The Changes in the Contents of Ascorbic Acid and the Activities of Related Enzymes in Black Currant Fruits During the Process of Its Growth and Development

SUN XiaoJuan(),LIU QingShuai,YUN AngRan,ZHANG Yan,HUO JunWei(),QIN Dong(),JIANG Ting   

  1. School of Horticulture and Landscape Architecture, Northeast Agricultural University/Small Fruit Development and Utilization of National Local Joint Engineering Research Center in Cold Region, Harbin 150030
  • Received:2018-05-29 Accepted:2018-09-19 Online:2019-01-01 Published:2019-01-12
  • Contact: JunWei HUO,Dong QIN E-mail:1837770189@qq.com;junweihuo@aliyun.com;dongq9876@126.com

Abstract:

【Objective】 The changes in the ascorbic acid (AsA) contents and the enzymatic activities during the anabolic process of different cultivars and growth stages of black currant fruits were studied to determine the relationship between AsA contents and anabolic enzymes during the growth and development of fruits, so as to provide a theoretical basis for comprehensively revealing the accumulation rule of AsA in black currant fruits. 【Method】 Three different cultivars of black currant fruits (Adelinia, Brodtrop and Heifeng) were studied and determined the contents of reduced AsA, oxidized ascorbic acid (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) and anabolic enzymatic activities of young, expansion, half-veraison, veraison and maturity stages. 【Result】 There were significant diversities in fruit sizes, AsA contents and AsA metabolites of different cultivars of black currant fruits. The Adelinia had the largest weight of single fruit (1.97 g). During the growth and development process of fruits, the changes in the total ascorbic acid (T-AsA) and AsA contents of fruits were consistent among the three cultivars, and the young fruits had the highest contents. The AsA content of young Adelinia fruit was the highest (83.17 μmol?g -1 FW) and then sharply decreased rapidly to the maturity stage with the growth of the fruit, which decreased to 21.28 μmol?g -1 FW at maturity stage. The contents of GSH and T-GSH in the three cultivars increased with the development of fruits, but the different cultivars increased in different stages and degrees. The content of GSSG was quite different among different cultivars. For the mature fruits, the GSSG content of Heifeng was the lowest, which was 0.008 μmol?g -1 FW and only accounted for 10.2% of Adelinia. In AsA-GSH recycling regeneration metabolism, the activities of dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) showed the highest level at expansion period, and finally decreased to the lowest level at maturity stage. The DHAR and MDHAR activities of Brodtrop fruits showed slightly higher than those of Adelinia and Heifeng fruits. The activity of glutathione reductase (GR) was the highest level at young stage. The GR activity of Adelinia young fruits was the highest (0.06 μmol?min -1?g -1 FW), and then decreased with the growth of fruits. The changes in the activities of ascorbate peroxidase (APX) were similar to the changes in the activities of GR. The changes in the activities of L-galactose-1,4-lactone dehydrogenase (GalLDH), a key enzyme of L-galactose pathway, were consistent with the changes in AsA contents. The GalLDH activity of Adelinia young and mature fruits showed higher than that of Heifeng and Brodtrop young and mature fruits, respectively. According to the correlation analysis, the GalLDH activity showed a highly significant positive correlationship with T-AsA, AsA, DHA, DHAR and MDHAR. The correlation coefficient was above 0.91. The higher GalLDH activity was found in the fruits, the higher AsA contents of fruits also was found. There was a highly significant positive correlationship between DHAR and MDHAR, T-AsA and AsA. The APX had a high correlation with T-GSH and GSH. 【Conclusion】 The AsA content of black currant young fruits was the highest and there were significant differences among the three cultivars. The GalLDH, MDHAR and DHAR might be the key enzymes for AsA anabolism in black currant fruits. The accumulation of AsA content of black currant fruits resulted from the activity of GalLDH, which indicated that the anabolic pathway played a more important role and were found to be a dominant position. The related enzymes of AsA-GSH recycling regeneration pathway also contributed to the AsA anabolism. The accumulation of high AsA content in black currant fruits resulted from the combined effects of anabolic and recycling pathways.

Key words: Ribes nigrum L., fruit, ascorbic acid, anabolism, L-galactose-1, 4-lactone dehydrogenase

Fig. 1

Fruit development stage of black currant"

Fig. 2

Changes of single fruit weight, horizontal diameter and vertical diameter of black currant The different letters in the same cultivar showed significant difference (P<0.05). The same as below"

Fig. 3

Changes of T-AsA, AsA, and DHA levels during growth and development of black currant"

Fig. 4

Changes of T-GSH, GSH, and GSSG contents during growth and development of black currant"

Fig. 5

Changes of AsA/DHA and GSH/GSSH ratios during growth and development of black currant"

Fig. 6

Changes of AsA-GSH cycle enzyme activity during growth and development of black currant"

Fig. 7

Changes of GalLDH activity during growth and development of black currant"

Table 1

Correlation coefficients of AsA anabolic and related enzymes during the growth and development of Adelinia fruit"

指标 Index T-AsA AsA DHA AsA/DHA T-GSH GSH GSSG GSH/GSSG MDHAR DHAR GR APX GalLDH
T-AsA 1 0.986** 0.942** 0.113 0.238 0.216 0.763* -0.172 0.925** 0.921** -0.395 -0.315 0.958**
AsA 1 0.957** 0.309 0.403 0.357 0.754* -0.089 0.917** 0.929** -0.562 -0.455 0.982**
DHA 1 0.263 0.307 0.423 0.712* 0.124 0.916** 0.925** -0.573 -0.221 0.972**
AsA/DHA 1 -0.458 0.932** -0.749* 0.918** 0.589 0.017 -0.918** -0.937** -0.562
T-GSH 1 0.961** 0.881** 0.873** 0.624* 0.009 -0.877** -0.942** 0.934**
GSH 1 -0.291 0.925** 0.635* 0.078 -0.963** -0.967** 0.748*
GSSG 1 -0.938** 0.872* 0.328 -0.778* -0.872** 0.596*
GSH/GSSG 1 -0.815* -0.152 -0.821* -0.857** 0.834*
MDHAR 1 0.782** -0.726** -0.684* 0.935**
DHAR 1 -0.313 -0.176 0.942**
GR 1 0.929** 0.376
APX 1 0.818*
GalLDH 1
[1] 秦栋, 张椿浩, 刘庆帅, 薛晓晓, 霍俊伟, 员盎然 . ABA和GA3对黑穗醋栗二次萌发芽超微结构的影响. 果树学报, 2017,34(10):1301-1308.
doi: 10.13925/j.cnki.gsxb.20160449
QIN D, ZHANG C H, LIU Q S, XUE X X, HUO J W, YUN A R . Effect of GA3 and ABA on cell ultra-structure of the secondary- bursting buds in blackcurrant ( Ribes nigrum). Journal of Fruit Science, 2017,34(10):1301-1308. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160449
[2] 李贺, 李歆昕, 陆璐, 柯筱纯, 阮成江 . 5种黑穗醋栗果实中糖酸组成与含量分析. 食品工业科技, 2016,37(5):137-147.
doi: 10.13386/j.issn1002-0306.2016.05.018
LI H, LI X X, LU L, KE X C, RUAN C J . Analysis of contents and constituents of sugar and organic acid in 5 black currant cultivars. Analysis of Science and Technology in Food Industry, 2016,37(5):137-147. (in Chinese)
doi: 10.13386/j.issn1002-0306.2016.05.018
[3] 张亚楼 . 黑加仑营养成分及保健功能研究进展. 环境卫生学杂志, 2004,31(2):108-111.
ZHANG Y L . Research progress of nutrients and health function of black currant. Journal of Environmental Hygiene, 2004,31(2):108-111.
4 (in Chinese)
[4] 宋杨, 张春雨, 张志东, 温景辉, 李亚东, 吴林, 刘海广 . 黑穗醋栗品种亲缘关系的ISSR分析. 园艺学报, 2011,38(9):1747-1752.
SONG Y, ZHANG C Y, ZHANG Z D, WEN J H, LI Y D, WU L, LIU H G . Genetic relationship of blackcurrant cultivars revealed by ISSR markers. Acta Horticulturae Sinica, 2011,38(9):1747-1752. (in Chinese)
[5] 霍俊伟, 李著花, 秦栋 . 黑穗醋栗营养成分和保健功能及产业发展前景. 东北农业大学学报, 2011,42(2):139-144.
doi: 10.3969/j.issn.1005-9369.2011.02.027
HUO J W, LI Z H, QIN D . Review of nutritional ingredients and health protectal function of black currant fruit and its prospect in industrial development. Journal of Northeast Agricultural University, 2011,42(2):139-144. (in Chinese)
doi: 10.3969/j.issn.1005-9369.2011.02.027
[6] 安华明, 陈力耕, 樊卫国, 胡西琴 . 高等植物中维生素C的功能、合成及代谢研究进展. 植物学通报, 2004,21(5):608-617.
doi: 10.3969/j.issn.1674-3466.2004.05.012
AN H M, CHEN L G, FAN W G, HU X Q . Advances in research on function, biosynthesis and metabolism of ascorbic acid in higher plants. Chinese Bulletin of Botany, 2004,21(5):608-617. (in Chinese)
doi: 10.3969/j.issn.1674-3466.2004.05.012
[7] CRUZRUS E, AMAYA I , SÁNCHEZ-SEVILLA J F, BOTELLA M A, VALPUESTA V. Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany, 2011,62(12):4191-4201.
doi: 10.1093/jxb/err122 pmid: 3153677
[8] SMIRNOFF N, WHEELER G L . Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Biochemistry and Molecular Biology, 2000,35(35):291-314.
doi: 10.1080/07352680091139231 pmid: 11005203
[9] DELRIO R, MOYA E A, ITURRIAGA R . Carotid body and cardiorespiratory alterations in intermittent hypoxia: The oxidative link. European Respiratory Journal, 2010,36(1):143-150.
doi: 10.1183/09031936.00158109 pmid: 19996187
[10] MISSO N L A, BROOKS-WILDHABER J, RAY S, VALLY H, THOMPSON P J . Plasma concentrations of dietary and nondietary antioxidants are low in severe asthma. European Respiratory Journal, 2005,26(2):257-264.
doi: 10.1183/09031936.05.00006705 pmid: 16055873
[11] FRITZ H, FLOWER G, WEEKS L, COOLEY K, CALLACHAN M, MCGOWAN J, SKIDMORE B, KIRCHNER L, SEELY D . Intravenous vitamin C and cancer: A systematic review. Integrative Cancer Therapies, 2014,13(4):280-300.
doi: 10.1177/1534735414534463
[12] SARKAR N, SRIVASTAVA P K, DUBEY V K . Understanding the language of vitamin C. Current Nutrition & Food Science, 2009,5(1):53-55.
doi: 10.2174/157340109787314767
[13] OLMOS E, KIDDLE G, PELLNY TK, KUMAR S, FOYER C H . Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. Journal of Experimental Botany, 2006,57(8):1645-1655.
doi: 10.1093/jxb/erl010 pmid: 16720601
[14] HUANG M, XU Q, DENG X X . L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose ( Rosa roxburghii Tratt). Journal of Plant Physiology, 2014,171(14):1205-1216.
doi: 10.1016/j.jplph.2014.03.010 pmid: 25019249
[15] BULLEY S M, RASSAM M, HOSER D, OTTO W, SCHUNEMANN N, WRIGHT M, MACRAE E, GLEAVE A, LAING W . Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009,60(3):765-778.
doi: 10.1093/jxb/ern327 pmid: 2652059
[16] LI M J, MA F W, ZHANG M, PU F . Distribution and metabolism of ascorbic acid in apple fruits (Malus domestica Borkh cv.Gala.). Plant Science, 2008,174(6):606-612.
doi: 10.1016/j.plantsci.2008.03.008
[17] 郑俊鶱, 孙艳, 韩寿坤, 张浩, 王益权 . 土壤紧实胁迫对黄瓜抗坏血酸-谷胱甘肽循环的影响. 中国农业科学, 2013,46(2):433-440.
doi: 10.3864/j.issn.0578-1752.2013.02.023
ZHENG J S, SUN Y, HAN S K, ZHANG H, WANG Y Q . Effect of soil compaction stress on ascorbate-gluthione. Scientia Agricultura Sinica, 2013,46(2):433-440. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.02.023
[18] 原玉林, 同晓蕾, 侯长明, 马锋旺, 李明军 . 不同基因型猕猴桃果实中抗坏血酸合成与代谢的差异. 植物生理学报, 2016,52(12):1877-1883.
doi: 10.13592/j.cnki.ppj.2016.0277
YUAN Y L, TONG X L, HOU C M, MA F W, LI M J . Difference of ascorbic acid synthesis and metabolism in different genotypes of kiwifruit. Plant Physiology Journal, 2016,52(12):1877-1883. (in Chinese)
doi: 10.13592/j.cnki.ppj.2016.0277
[19] 黄艳花, 曾明, 王玲利, 苏芳芳, 李兴发 . 晚熟脐橙果实发育过程中抗坏血酸含量及相关酶活性的变化. 植物生理学报, 2014,50(6):875-879.
HUANG Y H, ZENG M, WANG L L, SU F F, LI X F . Changes in ascorbic acid contents and related enzyme activities during fruit development of late-maturing navel orange. Plant Physiology Journal, 2014,50(6):875-879. (in Chinese)
[20] HANCOCK R D, WALKER P G, PONT S D, MARQUIS N, VIVERA S, GORDON S L, BRENNAN R M, VIOLA R . L-ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. Functional Plant Biology, 2007,34(12):1080-1091.
[21] QIN D, ZHAO L J, GAO Y, LI F X, LI S L, HUO J W, LOU S, LIU P . Effects of thinning on ascorbate-glutathione cycle metabolism in black currants (Ribes nigrum L.). Journal of Forestry Research, 2017,28(5):903-908.
doi: 10.1007/s11676-016-0340-0
[22] 侯长明, 李明军, 马锋旺, 梁东, 杜国荣 . 猕猴桃果实发育过程中AsA代谢产物积累及相关酶活性的变化. 园艺学报, 2009,36(9):1269-1276.
doi: 10.3321/j.issn:0513-353X.2009.09.004
HOU C M, LI M J, MA F W, LIANG D, DU G R . Changes of product accumulation and related enzyme activities in AsA metabolism during kiwi fruit growth and development. Acta Horticulturae Sinica, 2009,36(9):1269-1276. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2009.09.004
[23] 李明军 . 苹果和猕猴桃抗坏血酸形成与积累的生理和分子机理研究[D]. 杨凌: 西北农林科技大学, 2009.
LI M J . Physiological and molecular mechanisms of ascorbic acid formation and accumulation in apple and kiwifruit[D]. Yangling: Northwest A&F University, 2009. ( in Chinese)
[24] 夏惠, 林玲, 高帆, 倪知游, 高丽扬, 吕秀兰, 梁东 . 甜樱桃‘佐藤锦’果实生长发育过程AsA含量及其相关酶活性的变化. 西北植物学报, 2016,36(10):2008-2014.
doi: 10.7606/j.issn.1000-4025.2016.10.2008
XIA H, LIN L, GAO F, NI Z Y, GAO L Y, LV X L, LIANG D . Changes of AsA content and related enzyme activities in sweet cherry ‘Satonishiki’ during fruit development. Acta Botanica Boreali- Occidentalia Sinica, 2016,36(10):2008-2014. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2016.10.2008
[25] 黄明 . 刺梨高含量抗坏血酸积累的分子机理研究[D]. 武汉: 华中农业大学, 2013.
HUANG M . Molecular mechanism for the accumulation of high content of L-ascorbic acid in chestnut rose (Rosa roxburghii Tratt)[D]. Wuhan: Huazhong Agricultural University, 2013. ( in Chinese)
[26] 李芳晓, 秦栋, 李曙雷, 战歌, 霍俊伟, 王欢欢, 赵毅, 韩伟, 步鹏志 . 黑穗醋栗AsA含量及其代谢酶活性差异分析. 南方农业学报, 2014,45(7):1237-1241.
doi: 10.3969/j:issn.2095-1191.2014.7.1237
LI F X, QIN D, LI S L, ZHAN G, HUO J W, WANG H H, ZHAO Y, HAN W, BU P Z . Ascorbic acid content and difference of related enzyme activities in fruit of blackcurrant. Journal of Southern Agriculture, 2014,45(7):1237-1241. (in Chinese)
doi: 10.3969/j:issn.2095-1191.2014.7.1237
[27] 魏永赞, 王一承, 刘丽琴, 舒波, 谢江辉, 李伟才, 石胜友 . 12份引进油梨品种果肉有机酸组分和抗坏血酸含量分析. 果树学报, 2018,35(2):177-184.
WEI Y Z, WANG Y C, LIU L Q, SHU B, XIE J H, LI W C, SHI S Y . Analysis on the composition and content of organic acids and vitamin C in avocado flesh of twelve introduced cultivars. Journal of Fruit Science, 2018,35(2):177-184. (in Chinese)
[28] 王学勇, 张均营 . 树莓和黑莓的研究进展. 安徽农业科学, 2010,38(10):5070-5073.
doi: 10.3969/j.issn.0517-6611.2010.10.038
WANG X Y, ZHANG J Y . Research progress on raspberry and blackberry. Journal of Anhui Agricultural Sciences, 2010,38(10):5070-5073. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2010.10.038
[29] IMAI T, BAN Y, TERAKAMI S, YAMAMOTO T, MORIGUCHI T . L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Journal of Plant Physiology, 2009,136(2):139-149.
doi: 10.1111/j.1399-3054.2009.01213.x pmid: 19453508
[30] BADEJO A A, FUJIKAWA Y . Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola ( Malpighia glabra). Journal of Plant Physiology, 2009,166(6):652-660.
doi: 10.1016/j.jplph.2008.09.004 pmid: 18952318
[31] 李明军, 高静, 马锋旺, 梁东, 侯长明 . 苹果果实GalDH和GalLDH基因的表达与AsA的关系. 中国农业科学, 2010,43(2):351-357.
doi: 10.3864/j.issn.0578-1752.2010.02.016
LI M J, GAO J, MA F W, LIANG D, HOU C M . Relationship between expressions of GalDH and GalLDH and ascorbate content in apple fruits. Scientia Agricultura Sinica, 2010,43(2):351-357. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.02.016
[32] 秦爱国, 于贤昌 . 马铃薯抗坏血酸含量及其代谢相关酶活性关系的研究. 园艺学报, 2009,36(9):1370-1374.
doi: 10.3321/j.issn:0513-353X.2009.09.019
QIN A G, YU X C . Study on ascorbic acid content and its relationship with metabolic enzyme activity in potatoes. Acta Horticulturae Sinica, 2009,36(9):1370-1374. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2009.09.019
[33] LIU W, AN H M, YANG M . Overexpression of Rosa roxburghii L-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiologiae Plantarum, 2013,35(5):1617-1624.
doi: 10.1007/s11738-012-1204-7
[34] 俞乐, 刘拥海, 袁伟超, 周丽萍, 彭长连 . 植物抗坏血酸积累及其分子机制的研究进展. 植物学报, 2016,51(3):396-410.
doi: 10.11983/CBB15093
YU L, LIU Y H, YUAN W C, ZHOU L P, PENG C L . Recent advances in the study of accumulation of ascorbic acid and its molecular mechanism in plants. Chinese Bulletin of Botany, 2016,51(3):396-410. (in Chinese)
doi: 10.11983/CBB15093
[35] MULLER-MOULE P, CONKLIN P L, NIYOGI K K . Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiology, 2002,128(3):970-977.
doi: 10.1104/pp.010924
[36] LIU F H, WANG L, GU L, ZHAO W, SU H Y, CHENG X H . Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chemistry, 2015,188:399-405.
doi: 10.1016/j.foodchem.2015.05.036 pmid: 26041210
[37] LI M, CHEN X, WANG P, MA F . Ascorbic acid accumulation and expression of genes involved in its biosynthesis and recycling in developing apple fruit. Journal of the American Society for Horticultural Science, 2011,136(4):231-238.
[38] STEVENS R, PAGE D, GOUBLE B, GARCHERY C, ZAMIR D, CAUSSE M . Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell & Environment, 2010,31(8):1086-1096.
doi: 10.1111/j.1365-3040.2008.01824.x pmid: 18433441
[39] GIACOMA C, KATJIA K, MARKO S, ANJA H, HELY H, ANNA S, LLARIA M, LAURA J . Ascorbic acid metabolism during bilerry ( Vaccinium myrtillus L.) fruit development. Journal of Plant Physiology, 2012,169(11):1059-1065.
[40] 张丙秀, 李柱刚, 高媛, 刘丹, 高庆玉 . DHAR与草莓AsA积累关系及DHAR RNAi遗传转化研究. 南方农业学报, 2012,43(11):1626-1632.
doi: 10.3969/j:issn.2095-1191.2012.11.1626
ZHANG B X, LI Z G, GAO Y, LIU D, GAO Q Y . Relationship between DHAR and AsA accumulation in strawberry and its DHAR RNAi genetic transformation. Journal of Southern Agriculture, 2012,43(11):1626-1632. (in Chinese)
doi: 10.3969/j:issn.2095-1191.2012.11.1626
[41] 吴寒 . 毛花猕猴桃果实抗坏血酸合成酶相关基因的克隆及定量表达分析[D]. 南昌: 江西农业大学, 2015.
WU H . Cloning and quantitative analysis of genes related ascorbate biosynthesis in Actinidia eriantha [D]. Nanchang: Jiangxi Agricultural University, 2015. ( in Chinese)
[42] YIN L, WANG S W, ELTAYEB A E, UDDIN M I, YAMAMOTO Y, TSUJI W, TAKEUCHI Y, TANAKA K . Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta, 2010,231(3):609-621.
doi: 10.1007/s00425-009-1075-3 pmid: 19960204
[43] QIN A, SHI Q, YU X . Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Molecular Biology Reports, 2011,38(3):1557-1566.
doi: 10.1007/s11033-010-0264-2 pmid: 20857222
[44] LIU Y H, YU L, WANG R Z . Level of ascorbic acid in transgenic rice for L-galactono-1,4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set. Acta Physiologiae Plantarum, 2011,33(4):1353-1363.
doi: 10.1007/s11738-010-0669-5
[1] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[5] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[6] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[9] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[10] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[11] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[12] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[13] MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173.
[14] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[15] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!