Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2988-3001.doi: 10.3864/j.issn.0578-1752.2022.15.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties

WAN LianJie(),HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai()   

  1. Citrus Research Institute, Southwest University/National Citrus Engineering Research Center/Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2021-05-10 Accepted:2021-11-24 Online:2022-08-01 Published:2022-08-02
  • Contact: ShiLai YI E-mail:401168419@qq.com;yishilai@swu.edu.cn

Abstract:

【Objective】Through systematical research focused on the effects of different organic fertilizer substitutions on growth, yield and quality, physicochemical properties of soil and orchard environment of ponkan under equal nutrient, it could be provided the suitable amount of organic fertilizer substitution for the scientific application of organic fertilizer and theoretical basis for enlarging high quality of citrus.【Method】The 15-year-old Taiwan ponkan grafted on Poncirus trifoliata (L.) was used as experimental materials. Six different treatments were performed, including no fertilization (CK), single chemical fertilizer (FP), substitution 10% of nitrogen (N), 25% of phosphorus (P), 18% of potassium (K) (T1), substitution 15% of N, 38% of P, 27% of K (T2), substitution 20% of N, 51% of P, 36% of K (T3), substitution 30% of N, 76% of P, 54% of K (T4). The nitrogen, phosphorus and potassium nutrient content of treatment except CK was consistent with research into the effects of different organic fertilizer substitution on the accumulation of citrus branches, leaves and fruits of dry matter in that year, fruit yield and quality, physicochemical properties of soil, carbon emissions and nitrogen leaching in 2019 and 2020.【Result】(1) The two-year’s research showed similar trends in growth indicators, such as spring and autumn leaf, fruit and flower of dry matter, with the growth of organic fertilizer substitution showing a trend of first rise and then decrease. On the whole, T1 and T2 treatment were beneficial to accumulate ponkan dry matters of leaf, fruit and flower. In 2019 and 2020, the yield of each organic fertilizer substitution treatment increased by 7.2% to 26.4% and 2.0% to 36.9%, respectively. (2) The soluble solids treated by organic fertilizer substitution treatment increased significantly by 7.4% to 9.8% compared with FP in 2020. Among other quality, T2 and T3 were better on the whole. (3) Each organic fertilizer substitution treatment of soil physicochemical properties promoted compared under FP in 2019 and 2020. The soil pH and organic matter treated by organic fertilizer will be significantly increased by 4.6% to 12.6% and 16.4% to 25.1%, respectively. (4) Compared with FP, each organic fertilizer substitution treatment of soil carbon flux was higher by 20.1%, while which of nitrous nitrogen was lower by 13.9%. With the increase of organic substitution ratio, the migration of nitrous nitrogen to deep soil was lower. (5) Through the analysis of the principal component and the comprehensive score of research index on ponkan’s growth, yield and quality, physicochemical properties of soil and environment, the score was sorted as T3>T2>T4>T1>FP>CK.【Conclusion】T3 (organic fertilizer replacement 20% of N, 51% of P, 36% of K) was the best under this research, and this treatment was not only beneficial to the growth and development of citrus trees, but also conducive to the formation of good physical, chemical characteristics of the soil and fruit high-quality yield, to a certain extent, to reduce the risk of greenhouse gas emission and soil nitrogen leaching.

Key words: ponkan, organic fertilizer replacement, fruit yield, fruit quality, carbon emission, NO3--N leaching

Table 1

Test design of fertilization"

处理
Treatment
有机肥配施量
Amount of organic fertilizer (kg/plant)
有机肥替代化肥比例
Organic fertilizer substitution ratio (%)
有机肥纯养分
Organic fertilizer pure nutrients(kg/plant)
化肥纯养分
Chemical fertilizer pure nutrients(kg/plant)
N P K N P2O5 K2O N P2O5 K2O
CK 0.0 - - - 0.000 0.000 0.000 0.000 0.000 0.000
FP 0.0 0 0 0 0.000 0.000 0.000 0.705 0.480 0.520
T1 5.0 10 25 18 0.071 0.122 0.094 0.634 0.358 0.426
T2 7.5 15 38 27 0.106 0.183 0.141 0.599 0.297 0.379
T3 10.0 20 51 36 0.141 0.244 0.188 0.564 0.236 0.332
T4 15.0 30 76 54 0.212 0.367 0.282 0.493 0.113 0.238

Fig. 1

Effects of different treatments on dry matter accumulation of spring shoot leaves (A) and autumn shoot leaves (B) dry matter of ponkan Different lowercase letters on the column indicated significant difference between treatments in the same year (P<0.05). The same as Fig. below"

Fig. 2

Effects of different treatments on dry matter accumulation of fruit (A) and flower (B) of ponkan"

Fig. 3

Effects of different treatments on yield (A) and average weigh (B) of ponkan"

Table 2

Effects of different treatments on appearance quality of ponkan"

年份
Year
处理
Treatment
L a b a/b 果型指数
Shape index
果皮厚度
Pericarp thickness (mm)
2019 CK -25.09±0.26a 19.65±1.08c 40.40±1.49b 0.49±0.02b 0.88±0.06a 4.18±0.06a
FP -25.05±0.29a 21.72±1.11b 42.60±0.57a 0.51±0.03ab 0.86±0.04a 4.13±0.06a
T1 -24.79±0.81a 22.31±0.84ab 42.96±1.81a 0.52±0.01ab 0.91±0.07a 4.13±0.23a
T2 -24.35±0.43a 22.71±0.72ab 43.68±0.23a 0.52±0.02ab 0.91±0.07a 4.07±0.11a
T3 -24.68±0.45a 23.74±1.01a 43.10±0.49a 0.55±0.02a 0.89±0.09a 3.99±0.10a
T4 -24.63±0.91a 21.43±1.14b 42.13±0.80ab 0.51±0.04ab 0.90±0.04a 4.09±0.14a
2020 CK -25.98±1.15b 23.63±0.53c 34.13±1.92b 0.69±0.05ab 0.88±0.06a 4.18±0.06a
FP -24.63±0.95ab 24.48±3.34bc 36.53±2.38ab 0.67±0.06b 0.83±0.05a 4.17±0.02a
T1 -24.63±0.68ab 27.58±1.35ab 37.10±1.25ab 0.74±0.03ab 0.83±0.06a 4.14±0.06a
T2 -23.00±0.45a 28.13±1.12a 38.65±1.47a 0.73±0.03ab 0.84±0.06a 4.11±0.06a
T3 -23.80±0.65a 29.10±0.78a 37.58±0.73a 0.77±0.02a 0.86±0.03a 4.09±0.08a
T4 -24.03±1.19a 27.50±2.64ab 36.68±1.76ab 0.75±0.09ab 0.89±0.08a 4.16±0.06a

Table 3

Effects of different treatments on fruit intrinsic quality of ponkan"

年份
Year
处理
Treatment
可溶性固形物
TSS (%)
可滴定酸
TA (%)
固酸比
TSS/TA
维生素C
Vc (mg·L-1)
2019 CK 9.50±0.19b 0.52±0.01a 18.21±0.35a 315.36±11.12a
FP 10.08±0.47a 0.47±0.02ab 21.42±2.09ab 321.36±30.76a
T1 10.20±0.35a 0.44±0.05b 23.38±2.94b 328.69±12.06a
T2 10.23±0.47a 0.41±0.04b 24.92±2.96b 333.87±6.62a
T3 10.38±0.24a 0.43±0.01b 23.95±1.01b 338.70±11.13a
T4 10.36±0.26a 0.44±0.01b 23.84±1.31b 330.96±15.45a
2020 CK 9.48±0.24b 0.50±0.02a 19.05±0.92d 302.50±11.46c
FP 9.73±0.15b 0.45±0.04ab 21.68±1.84cd 324.00±7.45b
T1 10.45±0.17a 0.43±0.02bc 24.31±1.51bc 318.30±6.81b
T2 10.58±0.13a 0.38±0.02c 28.02±1.96a 329.75±6.02b
T3 10.68±0.19a 0.39±0.04c 27.70±2.70a 350.00±9.35a
T4 10.63±0.15a 0.41±0.02bc 26.21±1.39ab 330.00±7.91b

Table 4

Effects of different treatments on the physiochemical properties of soil"

年份
Year
处理
Treatment
pH
总孔隙度
Total porosity
(%)
有机质
Organic matter (g·kg-1)
碱解氮
Available N (mg·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
2019 CK 5.01±0.06a 44.24±0.56b 20.08±0.46c 88.80±5.71c 49.45±3.31c 188.50±1.62d
FP 4.90±0.18a 44.60±0.68b 21.13±1.60bc 115.43±7.06b 51.84±0.81c 197.96±1.83c
T1 4.98±0.15a 45.76±2.16ab 22.29±0.96ab 127.41±5.49a 59.42±5.84b 206.24±4.91b
T2 5.05±0.17a 48.03±1.10a 23.87±1.01a 131.67±8.92a 67.81±1.97a 212.70±2.51a
T3 5.11±0.13a 47.82±1.56a 24.20±1.19a 128.40±5.16a 69.12±1.28a 218.33±5.03a
T4 5.18±0.18a 47.60±1.07a 24.35±1.15a 120.88±1.03ab 70.97±1.28a 214.46±2.92a
2020 CK 5.02±0.03bc 44.37±1.56b 19.52±0.90b 87.18±2.76c 47.65±3.91c 177.76±5.26c
FP 4.85±0.14c 44.20±1.78b 20.80±0.79b 122.93±9.26b 54.15±5.07c 197.51±6.48b
T1 5.07±0.14b 48.71±0.91a 24.22±1.24a 134.85±6.17ab 64.66±3.88b 206.38±5.33b
T2 5.19±0.15b 50.21±1.86a 24.69±1.10a 142.23±8.50a 70.09±1.12ab 221.35±5.60a
T3 5.22±0.11b 50.96±1.50a 25.36±0.91a 136.20±3.86a 77.33±4.76a 228.46±8.08a
T4 5.46±0.08a 49.67±1.70a 26.01±0.84a 130.05±7.26ab 75.14±6.06a 225.40±7.27a

Fig. 4

Effects of different treatments on soil carbon emission (A) and the NO3--N content (B) of the soil layer"

Table 5

Score coefficient and contribution rate of principal component under different indexes"

性状
Character
主成分1
Component 1
主成分2
Component 2
主成分3
Component 3
主成分4
Component 4
X1春梢叶片干重 Dry matter of spring leaves (g/plant) 0.245 -0.270 -0.012 0.049
X2秋梢叶片干重Dry matter of autumn leaves (g/plant) 0.225 -0.323 0.069 0.048
X3果实干重Dry matter of fruits (g/plant) 0.270 -0.089 0.013 0.103
X4花朵干重Dry matter of flower (g/plant) 0.210 -0.237 -0.002 0.133
X5单果重 Single fruit weight (g) 0.259 0.031 -0.032 0.071
X6产量Yield (kg/plant) 0.244 -0.193 -0.001 0.118
X7果型指数 Shape index of fruit 0.033 0.220 0.490 0.721
X8着色度 a/b of fruit 0.160 0.172 0.498 -0.145
X9果皮厚度Pericarp thickness (mm) -0.129 -0.096 -0.353 0.525
X10固酸比 TSS/TA 0.260 0.030 -0.151 0.051
X11可溶性固形物 TSS (%) 0.250 0.064 -0.230 -0.079
X12 VC (mg·L-1) 0.208 0.079 0.395 -0.239
X13 pH 0.143 0.444 -0.214 0.157
X14土壤总孔隙度Total porosity of soil (%) 0.238 0.170 -0.254 -0.134
X15有机质Organic matter (g·kg-1) 0.259 0.171 -0.125 0.107
X16 碱解氮Available N (mg·kg-1) 0.264 -0.184 0.095 -0.043
X17有效磷 Available P (mg·kg-1) 0.258 0.223 -0.022 -0.006
X18速效钾Available K (mg·kg-1) 0.265 0.094 -0.103 0.006
X19 7月份碳排放Soil carbon emission in July (μmol·m-2·s-1) 0.210 0.298 -0.040 -0.085
X20 20-40 cm土层硝态氮含量
NO3--N content in 20-40 cm soil layer (mg·kg-1)
0.186 -0.431 0.035 0.042
特征值Eigenvalue 12.516 2.533 1.145 1.028
贡献率Contribution ratio (%) 62.580 12.667 5.726 5.140
累积贡献率Cumulative contribution ratio (%) 62.58 75.25 80.97 86.11

Fig. 5

Comprehensive scores of different treatments"

[1] FAOSTAT. Food and Agriculture Organization of the United Nations. roduction Module. 2021. Available online: http://www.fao.org/ faostat/zh/#data/QCL.
[2] 梁珊珊. 我国柑橘主产区氮磷钾肥施用现状及减施潜力研究[D]. 武汉: 华中农业大学, 2017.
LIANG S S. Studies on NPK fertilization status and the potential of reducing application rate in major Citrus planting regions of China[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[3] 中国人民共和国国家统计局. 国际统计年鉴. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of the People’s Republic of China. International Statistical Yearbook. Beijing: China Statistics Press, 2020. (in Chinese)
[4] IBRD. International Bank for Reconstruction and Development. Indicator. 2021. Available online: https://data.worldbank.org/indicator/AG.CON.FERT.ZS?view=chart.
[5] YANG Y R, HE Y C, LI Z L. Social capital and the use of organic fertilizer: an empirical analysis of Hubei Province in China. Environmental Science and Pollution Research International, 2020, 27(13): 15211-15222. doi: 10.1007/s11356-020-07973-4.
doi: 10.1007/s11356-020-07973-4
[6] CHEN Y T, HU S Y, GUO Z G, CUI T H, ZHANG L P, LU C R, YU Y Q, LUO Z B, FU H, JIN Y. Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing, China. Science of the Total Environment, 2021, 754: 142069. doi: 10.1016/j.scitotenv.2020.142069.
doi: 10.1016/j.scitotenv.2020.142069
[7] LV F L, SONG J S, GILTRAP D, FENG Y T, YANG X Y, ZHANG S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Science of the Total Environment, 2020, 732: 139321. doi: 10.1016/j.scitotenv.2020.139321.
doi: 10.1016/j.scitotenv.2020.139321
[8] YANG G Z, TANG H Y, NIE Y C, ZHANG X L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. European Journal of Agronomy, 2011, 35(3): 164-170. doi: 10.1016/j.eja.2011.06.001.
doi: 10.1016/j.eja.2011.06.001
[9] QIU F Y, LIU W H, CHEN L, WANG Y, MA Y Y, LYU Q, YI S L, XIE R J, ZHENG Y Q. Bacillus subtilis biofertilizer application reduces chemical fertilization and improves fruit quality in fertigated Tarocco blood orange groves. Scientia Horticulturae, 2021, 281: 110004. doi: 10.1016/j.scienta.2021.110004.
doi: 10.1016/j.scienta.2021.110004
[10] CHANG K H, WU R Y, CHUANG K C, HSIEH T F, CHUNG R S. Effects of chemical and organic fertilizers on the growth, flower quality and nutrient uptake of Anthurium andreanum, cultivated for cut flower production. Scientia Horticulturae, 2010, 125(3): 434-441. doi: 10.1016/j.scienta.2010.04.011.
doi: 10.1016/j.scienta.2010.04.011
[11] 裴宇. 饼肥替代不同比例尿素对柑橘产量品质、树体营养及橘园土壤养分的影响[D]. 武汉: 华中农业大学, 2020.
PEI Y. The impacts of cake fertilizer replacing different proportions of urea on Citrus yield quality, tree nutrients and soil fertility in Citrus orchard[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[12] SINGH R V, KUMAR R. Effect of organic and inorganic fertilizers on growth yield and quality and nutrients uptake of wheat under late sown condition. Progressive Agriculture, 2010, 10(2): 341-344.
[13] YANG Z C, ZHAO N, HUANG F, LÜ Y Z. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil and Tillage Research, 2015, 146: 47-52. doi: 10.1016/j.still.2014.06.011.
doi: 10.1016/j.still.2014.06.011
[14] 牛新胜, 巨晓棠. 我国有机肥料资源及利用. 植物营养与肥料学报, 2017, 23(6): 1462-1479. doi: 10.11674/zwyf.17430.
doi: 10.11674/zwyf.17430
NIU X S, JU X T. Organic fertilizer resources and utilization in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1462-1479. doi: 10.11674/zwyf.17430. (in Chinese)
doi: 10.11674/zwyf.17430
[15] XIAO L L, SUN Q B, YUAN H T, LIAN B. A practical soil management to improve soil quality by applying mineral organic fertilizer. Acta Geochimica, 2017, 36(2): 198-204. doi: 10.1007/s11631-017-0139-5.
doi: 10.1007/s11631-017-0139-5
[16] 褚长彬, 吴淑杭, 张学英, 周德平, 范洁群, 姜震方. 有机肥与微生物肥配施对柑橘土壤肥力及叶片养分的影响. 中国农学通报, 2012, 28(22): 201-205. doi: 10.3969/j.issn.1000-6850.2012.22.035.
doi: 10.3969/j.issn.1000-6850.2012.22.035
CHU C B, WU S H, ZHANG X Y, ZHOU D P, FAN J Q, JANG Z F Effects of application of manure and microbial fertilizer on soil fertility and leaf nutrient. Chinese Agricultural Science Bulletin, 2012, 28(22): 201-205. doi: 10.3969/j.issn.1000-6850.2012.22.035. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2012.22.035
[17] 叶荣生, 石孝均, 周鑫斌. 有机肥对柑橘苗期生物学特性的影响. 西南大学学报(自然科学版), 2014, 36(10): 12-18. doi: 10.13718/j.cnki.xdzk.2014.10.003.
doi: 10.13718/j.cnki.xdzk.2014.10.003
YE R S, SHI X J, ZHOU X B. Effects of organic materials on the biological characteristics of Citrus seedlings. Journal of Southwest University (Natural Science Edition), 2014, 36(10): 12-18. doi: 10.13718/j.cnki.xdzk.2014.10.003. (in Chinese)
doi: 10.13718/j.cnki.xdzk.2014.10.003
[18] 余倩倩, 李文涛, 邓烈, 何绍兰, 郑永强, 谢让金, 吕强, 杨文杰, 易时来, 高芳进, 刘巨龙. 柑橘皮渣有机肥对特洛维塔甜橙树体营养、果实品质和经济效益的影响. 西南大学学报(自然科学版), 2017, 39(10): 20-26. doi: 10.13718/j.cnki.xdzk.2017.10.003.
doi: 10.13718/j.cnki.xdzk.2017.10.003
YU Q Q, LI W T, DENG L, HE S L, ZHENG Y Q, XIE R J, LÜ Q, YANG W J, YI S L, GAO F J, LIU J L. Effect of Citrus peel residue-based organic fertilizer(COF) on leaf nutrition, fruit quality and economic benefit of terovita orange. Journal of Southwest University (Natural Science Edition), 2017, 39(10): 20-26. doi: 10.13718/j.cnki.xdzk.2017.10.003. (in Chinese)
doi: 10.13718/j.cnki.xdzk.2017.10.003
[19] 侯海军, 韩健, 黄继桃, 罗新安, 万勇军, 秦红灵. 配施有机肥和稻草对湘西北椪柑产量及品质的影响. 湖南农业科学, 2020(6): 38-41. doi: 10.16498/j.cnki.hnnykx.2020.006.010.
doi: 10.16498/j.cnki.hnnykx.2020.006.010
HOU H J, HAN J, HUANG J T, LUO X A, WAN Y J, QIN H L. Effect of organic fertilizer and straw substitute for part of chemical fertilizer on yield and quality of ponkan in northwestern Hunan. Hunan Agricultural Sciences, 2020(6): 38-41. doi: 10.16498/j.cnki.hnnykx.2020.006.010. (in Chinese)
doi: 10.16498/j.cnki.hnnykx.2020.006.010
[20] 赖多, 匡石滋, 肖维强, 刘传和, 贺涵, 邵雪花. 有机无机配施减量化肥对蕉柑产量、品质及土壤养分的影响. 广东农业科学, 2021, 48(6): 23-29. doi: 10.16768/j.issn.1004-874X.2021.06.004.
doi: 10.16768/j.issn.1004-874X.2021.06.004
LAI D, KUANG S Z, XIAO W Q, LIU C H, HE H, SHAO X H. Effects of organic-inorganic mixed fertilizers substituting chemical fertilizer on Citrus reticulata tankan fruit yield, quality and soil nutrients. Guangdong Agricultural Sciences, 2021, 48(6): 23-29. doi: 10.16768/j.issn.1004-874X.2021.06.004. (in Chinese)
doi: 10.16768/j.issn.1004-874X.2021.06.004
[21] 肖辉, 程文娟, 王立艳, 潘洁, 高贤彪. 不同有机肥对日光温室土壤剖面硝态氮含量动态变化的影响. 植物营养与肥料学报, 2012, 18(1): 106-114.
XIAO H, CHENG W J, WANG L Y, PAN J, GAO X B. Effects of organic manures on dynamic changes of nitrate contents of soil profile in greenhouse. Plant Nutrition and Fertilizer Science, 2012, 18(1): 106-114. (in Chinese)
[22] LIAO H K, LI Y Y, YAO H Y. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments, 2018, 18(3): 1076-1086. doi: 10.1007/s11368-017-1836-8.
doi: 10.1007/s11368-017-1836-8
[23] 张绩, 李俊杰, 万连杰, 杨江波, 郑永强, 吕强, 谢让金, 马岩岩, 邓烈, 易时来. 施钾水平对纽荷尔脐橙养分、产量和品质的影响. 中国农业科学, 2020, 53(20): 4271-4286.
ZHANG J, LI J J, WAN L J, YANG J B, ZHENG Y Q, LÜ Q, XIE R J, MA Y Y, DENG L, YI S L. Effects of potassium application levels on nutrient, yield and quality of newhall navel orange. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286. (in Chinese)
[24] FENG X M, HAO Y B, LATIFMANESH H, LAL R, CAO T H, GUO J R, DENG A X, SONG Z W, ZHANG W J. Effects of subsoiling tillage on soil properties, maize root distribution, and grain yield on mollisols of northeastern China. Agronomy Journal, 2018, 110(4): 1607-1615. doi: 10.2134/agronj2018.01.0027.
doi: 10.2134/agronj2018.01.0027
[25] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 25-199.
BAO S D. Soil Soil and Agricultural Chemistry Analysis. Beijing: Chinese Agriculture Press, 2000: 25-199. (in Chinese)
[26] 邓秀新, 彭抒昂. 柑橘学. 北京: 中国农业出版社, 2013.
DENG X X, PENG S A. Citrus. Beijing: Chinese Agriculture Press, 2013. (in Chinese)
[27] 方林发. 豆科绿肥替代化肥对柑橘氮素营养及生长发育的影响[D]. 重庆: 西南大学, 2020.
FANG L F. Effects of chemical fertilizer replaced by legume green manure on nitrogen and growth of Citrus[D]. Chongqing: Southwest University, 2020. (in Chinese)
[28] 张黛静, 陈倩青, 宗洁静, 杨雪倩, 胡晓, 马建辉. 增施有机肥对冬小麦同化物积累与分配的影响. 应用生态学报, 2019, 30(6): 1869-1876. doi: 10.13287/j.1001-9332.201906.014.
doi: 10.13287/j.1001-9332.201906.014
ZHANG D J, CHEN Q Q, ZONG J J, YANG X Q, HU X, MA J H. Effects of organic fertilizer application on accumulation and distribution of assimilates in winter wheat. Chinese Journal of Applied Ecology, 2019, 30(6): 1869-1876. doi: 10.13287/j.1001-9332.201906.014. (in Chinese)
doi: 10.13287/j.1001-9332.201906.014
[29] 张迎春, 颉建明, 李静, 牛天航, 夏国栋, 毛振宇, 王庆玲, 陈艺易. 生物有机肥部分替代化肥对莴笋及土壤理化性质和微生物的影响. 水土保持学报, 2019, 33(4): 196-205. doi: 10.13870/j.cnki.stbcxb.2019.04.028.
doi: 10.13870/j.cnki.stbcxb.2019.04.028
ZHANG Y C, XIE J M, LI J, NIU T H, XIA G D, MAO Z Y, WANG Q L, CHEN Y Y. Effects of partial substitution of chemical fertilizer by bio-organic fertilizer on Asparagus lettuce and soil physical- chemical properties and microorganisms. Journal of Soil and Water Conservation, 2019, 33(4): 196-205. doi: 10.13870/j.cnki.stbcxb.2019.04.028. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2019.04.028
[30] 黄兴成, 李渝, 杨胜玲, 张艳, 张雅蓉, 刘彦伶, 蒋太明. 有机肥替代化肥对猕猴桃产量和品质的影响. 贵州农业科学, 2020, 48(11): 27-29. doi: 10.3969/j.issn.1001-3601.2020.11.007.
doi: 10.3969/j.issn.1001-3601.2020.11.007
HUANG X C, LI Y, YANG S L, ZHANG Y, ZHANG Y R, LIU Y L, JIANG T M. Effects of organic manure replacing chemical fertilizer on yield and quality of kiwifruit. Guizhou Agricultural Sciences, 2020, 48(11): 27-29. doi: 10.3969/j.issn.1001-3601.2020.11.007. (in Chinese)
doi: 10.3969/j.issn.1001-3601.2020.11.007
[31] 司若彤, 刘维, 林电. 有机肥部分替代化肥对台农芒果产量和品质的影响. 中国土壤与肥料, 2020(4): 107-114. doi: 10.11838/sfsc.1673-6257.19442.
doi: 10.11838/sfsc.1673-6257.19442
SI R T, LIU W, LIN D. Effect of partial replacement of chemical fertilizer by organic fertilizer on yield and quality of Tainong mango. Soils and Fertilizers Sciences in China, 2020(4): 107-114. doi: 10.11838/sfsc.1673-6257.19442. (in Chinese)
doi: 10.11838/sfsc.1673-6257.19442
[32] 刘中良, 高俊杰, 谷端银, 闫伟强. 有机肥替代化肥对土壤环境和番茄品质的影响. 南方农业学报, 2020, 51(2): 357-363. doi: 10.3969/j.issn.2095-1191.2020.02.015.
doi: 10.3969/j.issn.2095-1191.2020.02.015
LIU Z L, GAO J J, GU D Y, YAN W Q. Effects of organic fertilizer substituting chemical fertilizer on soil environment and tomato quality. Journal of Southern Agriculture, 2020, 51(2): 357-363. doi: 10.3969/j.issn.2095-1191.2020.02.015. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2020.02.015
[33] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20): 3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008.
doi: 10.3864/j.issn.0578-1752.2016.20.008
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.20.008
[34] 张俊峰, 颉建明, 张玉鑫, 王晓巍, 刘生明. 生物有机肥部分替代化肥对日光温室黄瓜产量、品质及肥料利用率的影响. 中国蔬菜, 2020(6): 58-63.
ZHANG J F, XIE J M, ZHANG Y X, WANG X W, LIU S M. Effects of partial substitution of chemical fertilizer by bio-organic fertilizer on cucumber yield, quality and fertilizer utilization rate in solar greenhouse. China Vegetables, 2020(6): 58-63. (in Chinese)
[35] 李杰, 贾豪语, 颉建明, 郁继华, 杨萍. 生物肥部分替代化肥对花椰菜产量、品质、光合特性及肥料利用率的影响. 草业学报, 2015, 24(1): 47-55. doi: 10.11686/cyxb20150107.
doi: 10.11686/cyxb20150107
LI J, JIA H Y, XIE J M, YU J H, YANG P. Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield, quality, photosynthesis and fertilizer utilization rate in broccoli. Acta Prataculturae Sinica, 2015, 24(1): 47-55. doi: 10.11686/cyxb20150107. (in Chinese)
doi: 10.11686/cyxb20150107
[36] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51(11): 2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011.
doi: 10.3864/j.issn.0578-1752.2018.11.011
WEN Y C, ZHANG Y D, YUAN L, LI W, LI Y Q, LIN Z A, ZHAO B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.11.011
[37] YOUSEFZADEH S, MODARRES SANAVY S A M, GOVAHI M, KHATAMIAN OSKOOIE O S. Effect of organic and chemical fertilizer on soil characteristics and essential oil yield in dragonhead. Journal of Plant Nutrition, 2015, 38(12): 1862-1876. doi: 10.1080/01904167.2015.1061548.
doi: 10.1080/01904167.2015.1061548
[38] 何浩, 张宇彤, 危常州, 李俊华. 等养分条件下不同有机肥替代率对玉米生长及土壤肥力的影响. 核农学报, 2021, 35(2): 454-461. doi: 10.11869/j.issn.100-8551.2021.02.0454.
doi: 10.11869/j.issn.100-8551.2021.02.0454
HE H, ZHANG Y T, WEI C Z, LI J H. Effects of different organic fertilizer replacement rates on maize growth and soil fertility under equal nutrient conditions. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 454-461. doi: 10.11869/j.issn.100-8551.2021.02.0454. (in Chinese)
doi: 10.11869/j.issn.100-8551.2021.02.0454
[39] 陈瑞州. 有机肥替代化肥对贵妃芒叶片养分、产量、品质以及果园土壤肥力的影响[D]. 海口: 海南大学, 2018.
CHEN R Z. Effects of organic manure replacing fertilizer on leaf nutrient, yield, quality and soil fertility of the Guifei mango[D]. Haikou: Hainan University, 2018. (in Chinese)
[40] 汤桂容, 周旋, 田昌, 彭辉辉, 张玉平, 荣湘民. 有机无机氮肥配施对菜地土壤二氧化碳和甲烷排放的影响. 中国土壤与肥料, 2019(3): 29-35. doi: 10.11838/sfsc.1673-6257.18262.
doi: 10.11838/sfsc.1673-6257.18262
TANG G R, ZHOU X, TIAN C, PENG H H, ZHANG Y P, RONG X M. Effects of organic and inorganic nitrogen fertilizer on soil carbon dioxide and methane emissions of lettuce (Lactuca ativa L.). Soils and Fertilizer Sciences in China, 2019(3): 29-35. doi: 10.11838/sfsc.1673-6257.18262. (in Chinese)
doi: 10.11838/sfsc.1673-6257.18262
[41] LEE C, FEYEREISEN G W, HRISTOV A N, DELL C J, KAYE J, BEEGLE D. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters. Journal of Environmental Quality, 2014, 43(1): 398-408. doi: 10.2134/jeq2013.03.0083.
doi: 10.2134/jeq2013.03.0083
[42] WANG Y, LI K Z, TANAKA T S T, YANG D, INAMURA T. Soil nitrate accumulation and leaching to groundwater during the entire vegetable phase following conversion from paddy rice. Nutrient Cycling in Agroecosystems, 2016, 106(3): 325-334. doi: 10.1007/s10705-016-9807-9.
doi: 10.1007/s10705-016-9807-9
[43] 徐大兵, 赵书军, 袁家富, 彭成林, 周剑雄, 夏贤格, 佀国涵. 有机肥替代氮化肥对叶菜产量品质和土壤氮淋失的影响. 农业工程学报, 2018, 34(S1): 13-18.
XU D B, ZHAO S J, YUAN J F, PENG C L, ZHOU J X, XIA X G, SI G H. Chemical N fertilizer replaced with organic fertilizer affecting yield and quality of leaf vegetable and N leaching in soils. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 13-18. (in Chinese)
[44] 闫佳会, 侯璐, 姚强, 侯生英, 郭青云. 有机肥替代化肥对大葱产量、品质和土壤氮淋失的影响. 西北农业学报, 2020, 29(8): 1243-1249. doi: 10.7606/j.issn.1004-1389.2020.08.014.
doi: 10.7606/j.issn.1004-1389.2020.08.014
YAN J H, HOU L, YAO Q, HOU S Y, GUO Q Y. Effect of chermical fertilizer substitution with organic fertilizer on Allium fistulosum L. yield, quality and soil nitrogen leaching. Acta Agriculturae Boreali- Occidentalis Sinica, 2020, 29(8): 1243-1249. doi: 10.7606/j.issn.1004-1389.2020.08.014. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2020.08.014
[45] 张敏, 姚元林, 曾科, 李冰洋, 田玉华, 尹斌. 配施有机肥减少太湖地区稻田土壤硝态氮淋失的机理研究. 土壤, 2020, 52(4): 766-772. doi: 10.13758/j.cnki.tr.2020.04.016.
doi: 10.13758/j.cnki.tr.2020.04.016
ZHANG M, YAO Y L, ZENG K, LI B Y, TIAN Y H, YIN B. Study on mechanism of reducing nitrate leaching with organic addition from paddy field in Taihu lake region. Soils, 2020, 52(4): 766-772. doi: 10.13758/j.cnki.tr.2020.04.016. (in Chinese)
doi: 10.13758/j.cnki.tr.2020.04.016
[1] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[2] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[3] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[4] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[5] ZHANG Ji,LI JunJie,WAN LianJie,YANG JiangBo,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange [J]. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286.
[6] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[7] WANG XiaoYue,ZHANG GuoJun,SUN Lei,ZHAO Yin,YAN AiLing,WANG HuiLing,REN JianCheng,XU HaiYing. Effects of Two Trellis Systems on Viticultural Characteristics and Fruit Quality of Three Table Grape Cultivars [J]. Scientia Agricultura Sinica, 2019, 52(7): 1150-1163.
[8] JI XiaoHao,LIU FengZhi,SHI XiangBin,WANG BaoLiang,LIU PeiPei,WANG HaiBo. The Effects of Different Training Systems and Shoot Spacing on the Fruit Quality of ‘Kyoho’ Grape [J]. Scientia Agricultura Sinica, 2019, 52(7): 1164-1172.
[9] YANG JiangBo,ZHANG Ji,LI JunJie,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,HE ShaoLan,YI ShiLai. Effects of Nitrogen Application Levels on Nutrient, Yield and Quality of Tarocco Blood Orange and Soil Physicochemical Properties in the Three Gorges Area of Chongqing [J]. Scientia Agricultura Sinica, 2019, 52(5): 893-908.
[10] JiaHao WANG,YaQian DUAN,LanChun NIE,LiYan SONG,WenSheng ZHAO,SiYu FANG,JiaTeng ZHAO. Factor Analysis and Comprehensive Evaluation of the Fruit Quality of ‘Yangjiaocui’ Melons [J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591.
[11] LI Bo,DU JianGuo,LIU XueQi. Spatial-Temporal Characteristics and Economic Relevance of Agricultural Carbon Emissions in Hubei Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4309-4319.
[12] YAN YiChao, WAN ChunYan, GU XianBin, GUO ChengBao, CHEN YueHong, GAO ZhiHong. Effect of RdreB1BI Gene Overexpression on Fruit Quality and Related Gene Expression in Strawberry [J]. Scientia Agricultura Sinica, 2018, 51(7): 1353-1367.
[13] YU AiZhong, CHAI Qiang, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai. Responses of Soil Carbon Emission and Carbon Balance of Maize Field to Plastic Film Mulching Pattern and Row Space [J]. Scientia Agricultura Sinica, 2018, 51(19): 3726-3735.
[14] BAI YongChao, WEI XuFang, CHEN Lu, WAN RuMeng, HOU ZhiXia. Multivariate Analysis of Fruit Leaf Mineral Elements, Soil Fertility Factors and Fruit Quality of Vaccinium uliginosum L. [J]. Scientia Agricultura Sinica, 2018, 51(1): 170-181.
[15] HU DeYu, LIU XueFeng, HE ShaoLan, XIE RangJin, QIAN Chun, Lü Qiang, YI ShiLai, ZHENG YongQiang, DENG Lie. Effect of Plant Canopy Transformation on Chlorophyll Fluorescence Characteristics and Fruit Yield and Quality in Closed Citrus Orchard [J]. Scientia Agricultura Sinica, 2017, 50(9): 1734-1746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!