Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 755-768.doi: 10.3864/j.issn.0578-1752.2022.04.011

• HORTICULTURE • Previous Articles     Next Articles

Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry

CHEN XueSen1(),YIN HuaLin2,WANG Nan1,ZHANG Min3,JIANG ShengHui4,XU Juan2,MAO ZhiQuan1,ZHANG ZongYing1,WANG ZhiGang5,JIANG ZhaoTao6,XU YueHua7,LI JianMing8   

  1. 1College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huanghuaihai Region, Ministry of Agriculture and Rural Affairs, Tai’an 271018
    2Key Laboratory of the Ministry of Horticultural Plant Biology, Huazhong Agricultural University/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Central China, Ministry of Agriculture/Citrus Research Institute,Wuhan 430070
    3College of Forestry and Biotechnology, Zhejiang A & F University/State Key Laboratory of Subtropical Silviculture, Hangzhou 311300
    4College of Horticulture, Qingdao Agricultural University /Qingdao Key Laboratory of Horticultural Plant Genetic Improvement and Breeding, Qingdao 266109, Shandong
    5Shandong Fruit-Tea Technology Promotion Station, Jinan 250013
    6Yantai Fruit-Tea Technology Promotion Station, Yantai 264001, Shandong
    7Fruit Tree Work Station of Penglai, Penglai 265600, Shandong
    8Fruit Tree Research Institute of Jingning, Gansu, Jingning 743400, Gansu
  • Received:2021-05-06 Accepted:2021-08-27 Online:2022-02-16 Published:2022-02-23
  • Contact: XueSen CHEN


This review summarized the research progress of plant epigenetics and fruit tree bud sports selection, and analyzed the classic cases of bud sports selection promoting the high-quality and efficient development of the word’s apple and citrus industries. The main results were summarized as follows: (1) Epigenetics caused by DNA methylation and histone modification, etc., was widely involved in various plant growth and development processes and adversity stress responses; (2) The selection of fruit tree bud sports was the best among the best. It had six characteristics, such as high efficiency, reproducibility, stability, diversity and pleiotropy, epigenetic characteristics, and practical effects. At present, more than 600 varieties of fruit tree bud sports have been selected, such as apples and citrus; (3) In response to the problems of the four varieties of Fuji, Delicious, Navel Oranges and Satsuma Mandarin, a series of new varieties have been bred using continuous multi-generation bud sports selection technology, forming a huge variety group and promoting the high-quality and efficient development of the industry. Therefore, two aspects should be further studied in the future: one is to further strengthen the mechanism of fruit tree bud sports and to promote the innovation of breeding technology; The second is to further enhance the awareness of the innovation of fruit tree bud sports selection and to further strengthen the understanding of the importance of the fruit tree industry, and the technical route of combining Mendelian inheritance and epigenetic inheritance should be adopt, combining conventional and molecular technology as well as hybrid breeding and bud sports selection, so as to increase the research efforts of fruit tree bud sports selection and new varieties breeding, and provide varieties support for the high-quality development of the fruit tree industry.

Key words: Mendelian inheritance, epigenetics, selection of fruit tree buds, Fuji and Delicious apples, navel orange and Satsuma mandarin

Table 1

The diversity of fruit buds change and the varieties of buds bred by bud change selection"

Variant trait
Fruit tree species
Number of sports varieties
Mechanism of sports
Fruit maturity
Early ripening
Apple[55], citrus[22], pear[56,57], grape[58], peach[59]
18+11+15+1+3=48 不详
Late ripening
Apple[55], citrus[1,22], pear[56,57]
64+9+20=93 不详
Fruit shape
Polyploid variation
Grape[28], pear[29,30]
1+2=3 染色体加倍
Chromosome doubling
Large fruit
Apple[60], citrus[1,14], pear[56,57]
88+1+5=94 不详
High pile
60 不详
Peel color
Apple[55,60,61], pear[37-38,56]
122+64=186 DNA甲基化
DNA methylation
1 反转录转座子的插入
Retrotransposon insertion
1 不详
Flesh color
Citrus[1,24], kiwifruit[63]
11+5=16 基因结构的突变
Gene structure mutations
1 不详
Fruit texture
1 不详
Fruit flavor
High sugar
Pear[57], longan[66]
1+2=3 不详
Strong flavor
2 不详
Tree type
Short branch
87 表观遗传
1 反转录转座子的插入
Retrotransposon insertion
Cold resistance
Apple[55], pear[57], grape[58]
20+15+2=37 不详
Disease resistance
Citrus[1,14], pear[57], banana[67]
1+36+1=38 不详

Fig. 1

The continues multi-generational bud selection of U.S. Delicious apple variety and Delicious system variety group"

Table 2

Survey of the cultivation area and proportion of apple varieties in Shandong Province in 1984, 1987 and 1990"

Variety name
1984 1987 1990
Area (Ten thousand hm2)
Area (Ten thousand hm2)
Area (Ten thousand hm2)
国光Ralls 6.7 34.4 11.8 25.9 8.8 18.1
金帅Golden Delicious 4.2 21.5 8.2 18.1 7.1 14.6
元帅系Delicious 3.2 16.4 11.2 24.7 14.5 29.8
红富士Red Fuji 0.0 0.0 7.8 17.1 10.8 22.2
青香蕉White Winter Pearmain 1.9 9.9 1.9 4.2 2.6 5.4
秋花皮BenDavis 1.2 6.1 0.8 1.7 0.0 0.0
红玉Jonathan 0.8 4.0 0.5 1.2 0.7 1.5
祝光American Summer pearmain 0.5 2.7 0.0 0.0 0.0 0.0
白粉皮Baifenpi 0.2 1.0 0.0 0.0 0.0 0.0
伏花皮Fuhuapi 0.2 0.9 0.0 0.0 0.0 0.0
印度Indian Green 0.1 0.7 0.2 0.5 0.7 1.4
乔纳金Jonagold 0.0 0.0 0.1 0.2 0.2 0.5
北斗Hokuto 0.0 0.0 0.0 0.0 0.4 0.9
其他Others 0.5 2.4 2.9 6.4 2.7 5.6
合计Total 19.5 100 45.4 100 48.7 100

Fig. 2

Continuous multi-generational bud selection of Nagafu 2 apple and “Fuji” variety group in China[4]"

Fig. 3

The pictures of Nagafu 2 (2nd generation) and Yanfu 3 (3rd generation) and their new red bud varieties Longfu (5th generation) and Yuanfuhong (4th generation) apples"

Fig. 4

The continuous multi-generation bud variation selection of Satsuma mandarin in the world and the variety group of Satsuma mandarin"

Table 3

Comparison of Chinese “Fuji” and U.S. “Delicious” apple and world Navel orange and Satsuma mandarin bud variants"

Fruit tree species
Types of fruit
Main trait of sports varieties
Technical channels of annual supply
Respiratory Climacteric
Red, short branch type
Medium ripening, poor storage tolerance
Variety structure dominated by high-quality, non storable and medium ripening “Delicious” variety groupd + eveloped cold chain storage and preservation technology and equipment
Changfu 2
Respiratory Climacteric
Red, short branch type
Late ripening, good storage tolerance
Variety structure dominated by high-quality, storable and late ripening “Fuji” + appropriate storage and preservation technology and equipment
Japan, US, Australia and China
Navel orange and Satsuma mandarin
Non- Respiratory Climacteric
Early ripening, late ripening
Fresh eating quality
Supporting varieties at maturity + ecological layout + tree preservation and other cultivation measures
[1] 郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年—柑橘. 果树学报, 2019, 36(10):1264-1272.
GUO W W, YE J L, DENG X X. Fruit scientific research in New China in the past 70 years: Citrus. Journal of Fruit Science, 2019, 36(10):1264-1272. (in Chinese)
[2] 陈学森, 郭文武, 徐娟, 丛佩华, 王力荣, 刘崇怀, 李秀根, 吴树敬, 姚玉新. 主要果树果实品质遗传改良与提升实践. 中国农业科学, 2015, 48(17):3524-3540. doi: 10.3864/j.issn.0578-1752.2015.17.018.
doi: 10.3864/j.issn.0578-1752.2015.17.018
CHEN X S, GUO W W, XU J, CONG P H, WANG L R, LIU C H, LI X G, WU S J, YAO Y X. Genetic improvement and promotion of fruit quality of main fruit trees. Scientia Agricultura Sinica, 2015, 48(17):3524-3540. doi: 10.3864/j.issn.0578-1752.2015.17.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.018
[3] 陈学森, 毛志泉, 王志刚, 王楠, 张宗营, 姜生辉, 姜召涛, 徐月华, 东明学, 李建明, 隋秀奇. 持续多代芽变选种及其芽变机理揭开‘红富士’在我国苹果产业独占鳌头的谜底. 中国果树, 2020(3):1-5. doi: 10.16626/j.cnki.issn1000-8047.2020.03.001.
doi: 10.16626/j.cnki.issn1000-8047.2020.03.001
CHEN X S, MAO Z Q, WANG Z G, WANG N, ZHANG Z Y, JIANG S H, JIANG Z T, XU Y H, DONG M X, LI J M, SUI X Q. Continuous multigenerational sports selection and its mechanism reveals the mystery of ‘Red Fuji’ in China's apple industry. China Fruits, 2020(3):1-5. doi: 10.16626/j.cnki.issn1000-8047.2020.03.001. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2020.03.001
[4] 陈学森, 李秀根, 毛志泉, 王楠, 张宗营, 马锋旺, 丛佩华, 玉刚, 郭黄萍, 王志刚, 姜召涛, 徐月华. 新种质创造支撑果品产业升级—红肉苹果和‘库尔勒香梨’种质资源利用以及‘红富士’芽变选种案例分析. 果树学报, 2021, 38(1):128-141.
CHEN X S, LI X G, MAO Z Q, WANG N, ZHANG Z Y, MA F W, CONG P H, ZHANG Y G, GUO H P, WANG Z G, JIANG Z T, XU Y H. Fruit industry upgrading supported by new germplasm creation: Case study on the utilization of germplasm resources of red-fleshed apple and ‘Kuerlexiangli’ pear and the sports selection of ‘Red Fuji’. Journal of Fruit Science, 2021, 38(1):128-141. (in Chinese)
[5] WADDINGTON C H. The epigenotype. International Journal of Epidemiology, 2011, 41(1):10-13. doi: 10.1093/ije/dyr184.
doi: 10.1093/ije/dyr184
[6] HOLLIDAY R. The inheritance of epigenetic defects. Science, 1987, 238(4824):163-170. doi: 10.1126/science.3310230.
doi: 10.1126/science.3310230
[7] HOLLIDAY R. Epigenetics: An overview. Developmental genetics, 1994, 15(6):453-457.
doi: 10.1002/(ISSN)1520-6408
[8] CAVALLI G, HEARD E. Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571(7766):489-499. doi: 10.1038/s41586-019-1411-0.
doi: 10.1038/s41586-019-1411-0
[9] CAI H Y, ZHANG M, CHAI M N, HE Q, HUANG X Y, ZHAO L H, QIN Y. Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3. The New Phytologist, 2019, 221(1):295-308. doi: 10.1111/nph.15306.
doi: 10.1111/nph.15306
[10] GENG S F, KONG X C, SONG G Y, JIA M L, GUAN J T, WANG F, QIN Z R, WU L, LAN X J, LI A L, MAO L. DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. The New Phytologist, 2019, 221(2):1023-1035. doi: 10.1111/nph.15432.
doi: 10.1111/nph.15432
[11] LI Z W, JIANG G X, LIU X C, DING X C, ZHANG D D, WANG X W, ZHOU Y J, YAN H L, LI T T, WU K Q, JIANG Y M, DUAN X W. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. The New Phytologist, 2020, 227(4):1138-1156. doi: 10.1111/nph.16590.
doi: 10.1111/nph.16590
[12] HE K X, CAO X F, DENG X. Histone methylation in epigenetic regulation and temperature responses. Current Opinion in Plant Biology, 2021, 61:102001. doi: 10.1016/j.pbi.2021.102001.
doi: 10.1016/j.pbi.2021.102001
[13] 伊凯, 闰忠业, 刘志, 王冬梅, 杨峰, 张景娥. 苹果芽变选种鉴定及应用研究. 果树学报, 2006, 23(5):745-749.
YI K, RUN Z Y, LIU Z, WANG D M, YANG F, ZHANG J E. Review on identification and utilization of apple sport selection. Journal of Fruit Science, 2006, 23(5):745-749. (in Chinese)
[14] 张敏, 邓秀新. 柑橘芽变选种以及芽变性状形成机理研究进展. 果树学报, 2006, 23(6):871-876. doi: 10.3969/j.issn.1009-9980.2006.06.019.
doi: 10.3969/j.issn.1009-9980.2006.06.019
ZHANG M, DENG X X. Advances in research of citrus cultivars selected by bud mutation and the mechanism of formation of mutated characteristics. Journal of Fruit Science, 2006, 23(6):871-876. doi: 10.3969/j.issn.1009-9980.2006.06.019. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2006.06.019
[15] KIM S, JONES R, YOO K S, PIKE L M. Gold color in Onions (Allium cepa): A natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Molecular Genetics and Genomics, 2004, 272(4):411-419. doi: 10.1007/s00438-004-1076-7.
doi: 10.1007/s00438-004-1076-7
[16] TAKOS A, UBI B, ROBINSON S, WALKER A. Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Science, 2006, 170(3):487-499.
doi: 10.1016/j.plantsci.2005.10.001
[17] YAO J L, DONG Y H, MORRIS B A M. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(3):1306-1311. doi: 10.1073/pnas.031502498.
doi: 10.1073/pnas.031502498
[18] KOBAYASHI S, GOTO-YAMAMOTO N, HIROCHIKA H. Retrotransposon-induced mutations in grape skin color. Science, 2004, 304(5673):982. doi: 10.1126/science.1095011.
doi: 10.1126/science.1095011
[19] ESPLEY R V, HELLENS R P, PUTTERILL J, STEVENSON D E, KUTTY-AMMA S, ALLAN A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 2007, 49(3):414-427. doi: 10.1111/j.1365-313x.2006.02964.x.
doi: 10.1111/j.1365-313x.2006.02964.x
[20] 尹永胜. 玫瑰香葡萄芽变─大玫瑰香. 山东果树, 1981(4):1-5.
YIN Y S. A bud sport of Meiguixiang grape Dameiguixiang. Shandong Fruits, 1981(4):1-5. (in Chinese)
[21] 王强生, 石荫坪, 贾元淑, 孙荫槐. 大鸭梨的组织学和细胞学研究. 中国农业科学, 1984, 17(4):33-39.
WANG Q S, SHI Y P, JIA Y J, SUN Y H. Histological and cytological study of Dayali. Scientia Agricultura Sinica, 1984, 17(4):33-39. (in Chinese)
[22] 刘凤君, 张凯斌, 张志宏. 梨新品种‘花盖王’. 园艺学报, 2003, 30(3):370. doi: 10.3321/j.issn:0513-353X.2003.03.037.
doi: 10.3321/j.issn:0513-353X.2003.03.037
LIU F J, ZHANG K B, ZHANG Z H. A new pear cultivar-‘Huagai king’. Acta Horticulturae Sinica, 2003, 30(3):370. doi: 10.3321/j.issn:0513-353X.2003.03.037. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2003.03.037
[23] CHAPARRO J X, WERNER D J, WHETTEN R W, O'MALLEY D M. Inheritance, genetic interaction, and biochemical characterization of anthocyanin phenotypes in peach. Journal of Heredity, 1995, 86(1):32-38. doi: 10.1093/oxfordjournals.jhered.a111522.
doi: 10.1093/oxfordjournals.jhered.a111522
[24] 徐娟. 几个柑桔产区果实色泽评价及红肉脐橙(Citrus sinensis L. cv. Cara cara)果肉呈色机理初探[D]. 武汉: 华中农业大学, 2002.
XU J. Fruit color evaluation among citrus product areas and preliminary study on mechanism of pigment accumulation in the flesh of Red flesh navel oranges (Citrus sinensis L. cv. Cara cara)[D]. Wuhan: Huazhong Agricultural University, 2002. (in Chinese)
[25] RICO-CABANAS L, MARTÍNEZ-IZQUIERDO J A. CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Molecular Genetics and Genomics, 2007, 277(4):365-377. doi: 10.1007/s00438-006-0200-2.
doi: 10.1007/s00438-006-0200-2
[26] RICHARDS E J. DNA methylation and plant development. Trends in Genetics, 1997, 13(8):319-323. doi: 10.1016/s0168-9525(97)01199-2.
doi: 10.1016/s0168-9525(97)01199-2
[27] 朱玉贤, 李毅, 郑晓峰. 现代分子生物学. 3版. 北京: 高等教育出版社, 2007.
ZHU Y X, LI Y, ZHENG X F. Modern Molecular Biology.3rd edition. Beijing: Higher Education Press, 2007. (in Chinese)
[28] PARK Y D, PAPP I, MOSCONE E A, IGLESIAS V A, VAUCHERET H, MATZKE A J, MATZKE M A. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. The Plant Journal, 1996, 9(2):183-194. doi: 10.1046/j.1365-313x.1996.09020183.x.
doi: 10.1046/j.1365-313x.1996.09020183.x
[29] ATTWOOD J T, YUNG R L, RICHARDSON B C. DNA methylation and the regulation of gene transcription. Cellular and Molecular Life Sciences CMLS, 2002, 59(2):241-257. doi: 10.1007/s00018-002-8420-z.
doi: 10.1007/s00018-002-8420-z
[30] CAI Q, GUY C L, MOORE G A. Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus. Genome, 1996, 39(2):235-242. doi: 10.1139/g96-032.
doi: 10.1139/g96-032
[31] LI X Q, XU M L, KORBAN S S. DNA methylation profiles differ between field-andin vitro-grown leaves of apple. Journal of Plant Physiology, 2002, 159(11):1229-1234.
doi: 10.1078/0176-1617-00899
[32] ASÍNS M J, MONFORTE A J, MESTRE P F, CARBONELL E A. Citrus and prunuscopia-like retrotransposons. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 1999, 99(3/4):503-510. doi: 10.1007/s001220051263.
doi: 10.1007/s001220051263
[33] 洪柳, 邓秀新. 应用MSAP技术对脐橙品种进行DNA甲基化分析. 中国农业科学, 2005, 38(11):2301-2307.
HONG L, DENG X X. Analysis of DNA methylation in navel oranges based on MSAP marker. Scientia Agricultura Sinica, 2005, 38(11):2301-2307. (in Chinese)
[34] TELIAS A, LIN-WANG K, STEVENSON D E, COONEY J M, HELLENS R P, ALLAN A C, HOOVER E E, BRADEEN J M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11:93. doi: 10.1186/1471-2229-11-93.
doi: 10.1186/1471-2229-11-93
[35] 刘晓静, 冯宝春, 冯守千, 王海波, 石俊, 王娜, 陈为一, 陈学森. ‘国光'苹果及其红色芽变花青苷合成与相关酶活性的研究. 园艺学报, 2009, 36(9):1249-1254. doi: 10.3321/j.issn:0513-353X.2009.09.001.
doi: 10.3321/j.issn:0513-353X.2009.09.001
LIU X J, FENG B C, FENG S Q, WANG H B, SHI J, WANG N, CHEN W Y, CHEN X S. Studies on anthocyanin biosynthesis and activities of related enzymes of ‘rails’ and its bud mutation. Acta Horticulturae Sinica, 2009, 36(9):1249-1254. doi: 10.3321/j.issn:0513-353X.2009.09.001. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2009.09.001
[36] EL-SHARKAWY I, LIANG D, XU K N. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. Journal of Experimental Botany, 2015, 66(22):7359-7376. doi: 10.1093/jxb/erv433.
doi: 10.1093/jxb/erv433
[37] WANG Z G, MENG D, WANG A D, LI T L, JIANG S L, CONG P H, LI T Z. The methylation of the PcMYB10 promoter is associated with green-skinned sport in max red Bartlett pear. Plant Physiology, 2013, 162(2):885-896. doi: 10.1104/pp.113.214700.
doi: 10.1104/pp.113.214700
[38] QIAN M, SUN Y, ALLAN A C, TENG Y, ZHANG D. The red sport of ‘Zaosu’ pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry, 2014, 107:16-23. doi: 10.1016/j.phytochem.2014.08.001.
doi: 10.1016/j.phytochem.2014.08.001
[39] JIANG S H, SUN Q G, CHEN M, WANG N, XU H F, FANG H C, WANG Y C, ZHANG Z Y, CHEN X S. Methylome and transcriptome analyses of apple fruit somatic mutations reveal the difference of red phenotype. BMC Genomics, 2019, 20(1):117. doi: 10.1186/s12864-019-5499-2.
doi: 10.1186/s12864-019-5499-2
[40] JIANG S H, WANG N, CHEN M, ZHANG R, SUN Q, XU H F, ZHANG Z Y, WANG Y C, SUI X, WANG S, FANG H C, ZUO W, SU M Y, ZHANG J, ZHANG J, CHEN X S. Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. Plant Biotechnology Journal, 2020, 18(8):1736-1748. doi: 10.1111/pbi.13337.
doi: 10.1111/pbi.13337
[41] JIANG S H, CHEN M, HE N B, CHEN X L, WANG N, SUN Q G, ZHANG T L, XU H F, FANG H C, WANG Y C, ZHANG ZY, WU S J, CHEN X S. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research, 2019, 6:40. doi: 10.1038/s41438-019-0118-6.
doi: 10.1038/s41438-019-0118-6
[42] SHEPHERD N S, SCHWARZ-SOMMER Z, BLUMBERG VEL SPALVE J, GUPTA M, WIENAND U, SAEDLER H. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements. Experimental Cell Research, 1984, 307(5947):185-187. doi: 10.1038/307185a0.
doi: 10.1038/307185a0
[43] PRICE Z, DUMORTIER F, MACDONALD D, MAYES S. Characterisation of copia-like retrotransposons in oil palm (Elaeis guineensis Jacq.). Theoretical and Applied Genetics, 2002, 104(5):860-867.
doi: 10.1007/s00122-001-0818-8
[44] HERNÁNDEZ P, DE LA ROSA R, RALLO L, MARTÍN A, DORADO G. First evidence of a retrotransposon-like element in olive (Olea europaea): Implications in plant variety identification by SCAR-marker development. Theoretical and Applied Genetics, 2001, 102(6/7):1082-1087. doi: 10.1007/s001220000515.
doi: 10.1007/s001220000515
[45] LINARES C, LOARCE Y, SERNA A, FOMINAYA A. Isolation and characterization of two novel retrotransposons of the Ty1-copia group in oat genomes. Chromosoma, 2001, 110(2):115-123. doi: 10.1007/s004120100138.
doi: 10.1007/s004120100138
[46] VERRIÈS C, BÈS C, THIS P, TESNIÈRE C. Cloning and characterization of vine-1, a ltr-retrotransposon-like element in vitis vinifera l. and other vitis species. Genome, 2000, 43(2):366-376.
doi: 10.1139/g99-139
[47] 王惠聪, 黄旭明, 黄辉白. 妃子笑荔枝果实着色不良原因的研究. 园艺学报, 2002, 29(5):408-412.
WANG H C, HUANG X M, HUANG H B. A study on the causative factors retarding pigmentation in the fruit of ‘Feizixiao’ litchi. Acta Horticulturae Sinica, 2002, 29(5):408-412. (in Chinese)
[48] YAN X G, WANG Z Y, CHANG R F, LIU G J, CHEN H, XU J T, LI Y H, HAN J C. Sequence analysis and molecular markers of a copialike retrotransposon linked to the color around the stone (Cs) locus of the peach. Agricultural Science and Technology, 2018, 19(5):12-23.
[49] SHI Y Z, YAMAMOTO T, HAYASHI T. Characterization of copia-like retrotransposons in pear. Journal of the Japanese Society for Horticultural Science, 2002, 71(6):723-729.
[50] TAO N G, XU J, CHENG Y J, HONG L, GUO W W, YI H L, DENG X X. Isolation and characterization of copia-like retrotransposons from12 sweet orange (Citrus sinensis Osbeck) cultivars. Journal of Integrative Plant Biology, 2005, 47(12):1507-1515.
doi: 10.1111/jipb.2005.47.issue-12
[51] HARADA T, SUNAKO T, WAKASA Y, SOEJIMA J, SATOH T, NIIZEKI M. An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theoretical and Applied Genetics, 2000, 101(5/6):742-746. doi: 10.1007/s001220051539.
doi: 10.1007/s001220051539
[52] BUTELLI E, LICCIARDELLO C, ZHANG Y, LIU J, MACKAY S, BAILEY P, REFORGIATO-RECUPERO G, MARTIN C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell, 2012, 24(3):1242-1255.
doi: 10.1105/tpc.111.095232
[53] ZHANG L Y, HU J, HAN X L, LI J J, GAO Y, RICHARDS C M, ZHANG C X, TIAN Y, LIU G M, GUL H, WANG D J, TIAN Y, YANG C X, MENG M H, YUAN G P, KANG G D, WU Y L, WANG K, ZHANG H T, WANG D P, CONG P H. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 2019, 10(1):1494. doi: 10.1038/s41467-019-09518-x.
doi: 10.1038/s41467-019-09518-x
[54] KELSEY D, BROWN S. ‘McIntosh Wijcik’: A columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research. Journal of The American Pomological Society, 1992, 46(2):83-87.
[55] 董志丹, 宋尚伟, 宋春晖, 郑先波, 焦健, 王苗苗, 阎振立, 张瑞萍, 白团辉. 我国育成苹果品种的系谱分析及其育种启示. 中国农业科学, 2020, 53(21):4485-4496. doi: 10.3864/j.issn.0578-1752.2020.21.016.
doi: 10.3864/j.issn.0578-1752.2020.21.016
DONG Z D, SONG S W, SONG C H, ZHENG X B, JIAO J, WANG M M, YAN Z L, ZHANG R P, BAI T H. Pedigree analysis and breeding inspiration of apple cultivars in China. Scientia Agricultura Sinica, 2020, 53(21):4485-4496. doi: 10.3864/j.issn.0578-1752.2020.21.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.21.016
[56] 张绍铃, 钱铭, 殷豪, 李秀根, 吴俊, 齐开杰, 吴潇. 中国育成的梨品种(系)系谱分析. 园艺学报, 2018, 45(12):2291-2307. doi: 10.16420/j.issn.0513-353x.2018-0401.
doi: 10.16420/j.issn.0513-353x.2018-0401
ZHANG S L, QIAN M, YIN H, LI X G, WU J, QI K J, WU X. Pedigree analysis of pear varieties (lines) bred in China. Acta Horticulturae Sinica, 2018, 45(12):2291-2307. doi: 10.16420/j.issn.0513-353x.2018-0401. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2018-0401
[57] 王苏珂, 李秀根, 杨健, 王龙, 薛华柏, 苏艳丽, 王磊. 我国梨品种选育研究近20年来的回顾与展望. 果树学报, 2016, 33(S1):10-23.
WANG S K, LI X G, YANG J, WANG L, XUE H B, SU Y L, WANG L. Current situation and perspective of pear breeding for last two decades in China mainland. Journal of Fruit Science, 2016, 33(S1):10-23. (in Chinese)
[58] 孟聚星, 姜建福, 张国海, 孙海生, 樊秀彩, 张颖, 吴久赟, 刘崇怀. 我国育成的葡萄新品种系谱分析. 果树学报, 2017, 34(4):393-409. doi: 10.13925/j.cnki.gsxb.20160317.
doi: 10.13925/j.cnki.gsxb.20160317
MENG J X, JIANG J F, ZHANG G H, SUN H S, FAN X C, ZHANG Y, WU J Y, LIU C H. Pedigree analysis of grape cultivars released in China. Journal of Fruit Science, 2017, 34(4):393-409. doi: 10.13925/j.cnki.gsxb.20160317. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160317
[59] 俞明亮, 王力荣, 王志强, 彭福田, 张帆, 叶正文. 新中国果树科学研究70年: 桃. 果树学报, 2019, 36(10):1283-1291. doi: 10.13925/j.cnki.gsxb.Z04.
doi: 10.13925/j.cnki.gsxb.Z04
YU M L, WANG L R, WANG Z Q, PENG F T, ZHANG F, YE Z W. Fruit scientific research in New China in the past 70 years: Peach. Journal of Fruit Science, 2019, 36(10):1283-1291. doi: 10.13925/j.cnki.gsxb.Z04. (in Chinese)
doi: 10.13925/j.cnki.gsxb.Z04
[60] 陈学森, 毛志泉, 姜远茂, 王楠, 张宗营, 王志刚, 于国合, 邹养军, 姜召涛, 王恩琪, 东明学, 徐月华, 马均, 李建明, 隋秀奇. 我国苹果产业节本增效关键技术Ⅱ: 现代宽行高干省力高效栽培模式创建技术. 中国果树, 2017(2):1-4. doi: 10.16626/j.cnki.issn1000-8047.2017.02.001.
doi: 10.16626/j.cnki.issn1000-8047.2017.02.001
CHEN X S, MAO Z Q, JIANG Y M, WANG N, ZHANG Z Y, WANG Z G, YU G H, ZOU Y J, JIANG Z T, WANG E Q, DONG M X, XU Y H, MA J, LI J M, SUI X Q. Key technology of cost saving and efficiency increasing for Apple industry in China Ⅱ,the high efficient cultivation technology of wide row and high trunk. China Fruits, 2017(2):1-4. doi: 10.16626/j.cnki.issn1000-8047.2017.02.001. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2017.02.001
[61] 陈学森, 辛培刚, 杜欣阁, 杨传友, 温吉华. 元帅和金帅在苹果新品种选育中的作用. 山东农业大学学报, 1994, 25(2):236-248.
CHEN X S, XIN P G, DU X G, YANG C Y, WEN J H. Effect of delicious and golden delicious on the breeding and selection of new apple varieties. Journal of Shandong Agricultural University, 1994, 25(2):236-248. (in Chinese)
[62] HENG W, HUANG H N, LI F, HOU Z Q, ZHU L W. Comparative analysis of the structure, suberin and wax composition and key gene expression in the epidermis of ‘Dangshansuli’ pear and its russet mutant. Acta Physiologiae Plantarum, 2017, 39(7):1-13. doi: 10.1007/s11738-017-2443-4.
doi: 10.1007/s11738-017-2443-4
[63] 姜志强, 贾东峰, 廖光联, 钟敏, 黄春辉, 陶俊杰, 徐小彪. 中国育成的猕猴桃品种(系)及其系谱分析. 中国南方果树, 2019, 48(6):142-148.
JIANG Z Q, JIA D F, LIAO G L, ZHONG M, HUANG C H, TAO J J, XU X B. Pedigree analysis of kiwifruit varieties(lines)bred in China. South China Fruits, 2019, 48(6):142-148. (in Chinese)
[64] 朱运钦, 曾文芳, 鲁振华, 牛良, 崔国朝, 王志强. ‘中油桃9号’及其黄肉芽变的类胡萝卜素代谢和基因表达分析. 园艺学报, 2015, 42(4):623-632. doi: 10.16420/j.issn.0513-353x.2014-1050.
doi: 10.16420/j.issn.0513-353x.2014-1050
ZHU Y Q, ZENG W F, LU Z H, NIU L, CUI G C, WANG Z Q. Carotenoid metabolism and gene expression analysis of ‘CN9’ nectarine and its yellow flesh mutant ‘CN9Y’. Acta Horticulturae Sinica, 2015, 42(4):623-632. doi: 10.16420/j.issn.0513-353x.2014-1050. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014-1050
[65] 陈学森, 宋君, 高利平, 冀晓昊, 张宗营, 毛志泉, 张艳敏, 刘大亮, 张芮, 李敏. ‘乔纳金’苹果及其脆肉芽变果实质地发育机理. 中国农业科学, 2014, 47(4):727-735. doi: 10.3864/j.issn.0578-1752.2014.04.013.
doi: 10.3864/j.issn.0578-1752.2014.04.013
CHEN X S, SONG J, GAO L P, JI X H, ZHANG Z Y, MAO Z Q, ZHANG Y M, LIU D L, ZHANG R, LI M. Developing mechanism of fruits texture in ‘jonagold’ apple and its crisp flesh sport. Scientia Agricultura Sinica, 2014, 47(4):727-735. doi: 10.3864/j.issn.0578-1752.2014.04.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.04.013
[66] 郑少泉, 曾黎辉, 张积森, 林河通, 邓朝军, 庄伊美. 新中国果树科学研究70年—龙眼. 果树学报, 2019, 36(10):1414-1420.
ZHENG S Q, ZENG L H, ZHANG J S, LIN H T, DENG C J, ZHUANG Y M. Fruit scientific research in New China in the past 70 years: Longan. Journal of Fruit Science, 2019, 36(10):1414-1420. (in Chinese)
[67] 陈石, 郑加协, 周红玲, 颜元培, 方志坚. 香蕉品种选育研究进展. 中国热带农业, 2010(1):55-58. doi: 10.3969/j.issn.1673-0658.2010.01.024.
doi: 10.3969/j.issn.1673-0658.2010.01.024
CHEN S, ZHENG J X, ZHOU H L, YAN Y P, FANG Z J. Advances in breeding of banana varieties. China Tropical Agriculture, 2010(1):55-58. doi: 10.3969/j.issn.1673-0658.2010.01.024. (in Chinese)
doi: 10.3969/j.issn.1673-0658.2010.01.024
[68] DUAN N B, BAI Y, SUN H H, WANG N, MA Y M, LI M J, WANG X, JIAO C, LEGALL N, MAO L Y, WAN S B, WANG K, HE T M, FENG S Q, ZHANG Z Z, MAO Z Q, SHEN X, CHEN X L, JIANG Y M, WU S J, et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 2017, 8:249.
doi: 10.1038/s41467-017-00336-7
[69] 河北省农林科学院昌黎果树研究所. 河北省苹果志. 北京: 农业出版社, 1986.
Changli Fruit Research Institute, Hebei Academy of Agriculture and Forestry Sciences. The third volume of Hebei Fruit Trees: Hebei Apples. Beijing: Agriculture press, 1986. (in Chinese)
[70] 王楠, 张静, 于蕾, 邹琦, 郭章文, 毛作霖, 王意程, 姜生辉, 房鸿成, 许海峰, 苏梦雨, 张宗营, 冯守千, 陈晓流, 王志刚, 姜召涛, 东明学, 徐月华, 李建明, 毛志泉, 陈学森. 仁果类果树资源育种研究进展Ⅱ:苹果种质资源、品质发育及遗传育种研究进展. 植物遗传资源学报, 2019, 20(4):801-812.
WANG N, ZHANG J, YU L, ZOU Q, GUO Z W, MAO Z L, WANG Y C, JIANG S G, FANG H C, XU H F, SU M Y, ZHANG Z Y, FENG S Q, CHEN X L, WANG Z G, JIANG Z T, DONG M X, XU Y H, LI J M, MAO Z Q, CHEN X S. Progress on the resource breeding of kernel fruits: progress on the germplasm resources, quality development and genetic breeding of apple in China. Journal of Plant Genetic Resources, 2019, 20(4):801-812. (in Chinese)
[71] HU D G, SUN C H, MA Q J, YOU C X, CHENG L L, HAO Y J. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 2015, 170(3):1315-1330. doi: 10.1104/pp.15.01333.
doi: 10.1104/pp.15.01333
[72] ZHANG Z Y, WANG N, JIANG S H, XU H F, WANG Y C, WANG C Z, LI M, LIU J X, QU C Z, LIU W, WU S J, CHEN X L, CHEN X S. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. Journal of Agricultural and Food Chemistry, 2017, 65(2):429-434. doi: 10.1021/acs.jafc.6b04536.
doi: 10.1021/acs.jafc.6b04536
[73] XU Y T, FENG S Q, JIAO Q Q, LIU C C, ZHANG W W, CHEN W Y, CHEN X S. Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar ‘Ralls’ and its blushed sport. Euphytica, 2012, 185(2):157-170. doi: 10.1007/s10681-011-0494-y.
doi: 10.1007/s10681-011-0494-y
[74] 宋杨, 张艳敏, 刘金, 王传增, 刘美艳, 冯守千, 陈学森. GA含量与其合成酶基因在‘长富2号’苹果及其短枝型芽变品种之间的比较分析. 中国农业科学, 2012, 45(13):2668-2675.
SONG Y, ZHANG Y M, LIU J, WANG C Z, LIU M Y, FENG S Q, CHEN X S. Comparison of gibberellin acid content and the genes relatived to GA biosynthesis between ‘Changfu 2’ apple (Malus domestica Borkh.) and its spur sport. Scientia Agricultura Sinica, 2012, 45(13):2668-2675. (in Chinese)
[75] 宋杨, 张艳敏, 王传增, 刘美艳, 刘金, 王延玲, 陈学森. 苹果光敏色素作用因子基因PIF的克隆和分析. 园艺学报, 2012, 39(4):743-748.
SONG Y, ZHANG Y M, WANG C Z, LIU M Y, LIU J, WANG Y L, CHEN X S. Clone and expression analyzing of phytochrome- interacting factor gene PIF of spur type apple. Acta Horticulturae Sinica, 2012, 39(4):743-748. (in Chinese)
[76] 宋杨, 张艳敏, 刘美艳, 王传增, 刘金, 冯守千, 王延玲, 陈学森. 短枝型苹果MdRGL基因的克隆及原核表达分析. 中国农业科学, 2012, 45(7):1347-1354.
SONG Y, ZHANG Y M, LIU M Y, WANG C Z, LIU J, FENG S Q, WANG Y L, CHEN X S. Cloning and prokaryotic expression of MdRGL gene from spur-type apple (Malus domestica Borkh.). Scientia Agricultura Sinica, 2012, 45(7):1347-1354. (in Chinese)
[77] 宋杨, 吴树敬, 张艳敏, 陈学森. 短枝型苹果SSH文库构建及相关基因表达分析. 中国农业科学, 2013, 46(20):4301-4309.
SONG Y, WU S J, ZHANG Y M, CHEN X S. Construction of the suppression subtractive hybridization library and analysis of related genes of spur-type apple (Malus domestica Borkh.). Scientia Agricultura Sinica, 2013, 46(20):4301-4309. (in Chinese)
[78] 宋杨, 张艳敏, 吴树敬, 冯守千, 王传增, 陈学森. 短枝型苹果MdGID1a基因的克隆、表达及启动子序列分析. 园艺学报, 2013, 40(11):2237-2244.
SONG Y, ZHANG Y M, WU S J, FENG S Q, WANG C Z, CHEN X S. Cloning, expression analysis of MdGID1a gene and promoter from spur-type apple. Acta Horticulturae Sinica, 2013, 40(11):2237-2244. (in Chinese)
[79] 陈学森, 王楠, 张宗营, 毛志泉, 王志刚, 姜召涛, 单玉佐. 我国果树产业新旧动能转换之我见Ⅱ: 以优质、晚熟、耐贮品种为主的品种结构助力我国苹果和梨产业高效发展. 中国果树, 2019(3):1-4.
CHEN X S, WANG N, ZHANG Z Y, MAO Z Q, WANG Z G, JIANG Z T, SHAN Y Z. Variety structure with high-quality, late-maturing and storage-tolerant varieties as the main driving force for the efficient development of apple and pear industry in China. China Fruit, 2019(3):1-4. (in Chinese)
[80] 沈德绪, 王元裕, 陈力耕. 柑橘遗传育种学. 北京: 科学出版社, 1998.
SHEN D X, WANG Y Y, CHEN L G. Citrus Genetics and Breeding. Beijing: Science Press, 1998. (in Chinese)
[81] 邓秀新. 世界柑橘品种改良的进展. 园艺学报, 2005, 32(6):1140-1146.
DENG X X. Advances in world wide citrus breeding. Acta Horticulturae Sinica, 2005, 32(6):1140-1146. (in Chinese)
[82] 钟八莲, 赖晓桦, 杨斌华, 米兰芳, 谢上海, 黄彩英, 杨文侠, 张湟. 纽荷尔脐橙芽变早熟品种—赣南早脐橙. 中国南方果树, 2013, 42(2):48-51.
ZHONG B L, LAI X H, YANG B H, MI L F, XIE S H, HUANG C Y, YANG W X, ZHANG H. Newhall navel orange bud becomes early maturity variety-Gannan early navel orange. South China Fruits, 2013, 42(2):48-51. (in Chinese)
[83] 宋文化, 谭勇, 廖胜才, 宋发安, 马监生, 范拥军. 红肉型早熟脐橙品种‘早红’选育初报. 中国南方果树, 2009, 38(4):11-12.
SONG W H, TAN Y, LIAO S C, SONG F A, MA J S, FAN Y J. Preliminary report on the breeding of red early navel orange ‘Zaohong’. South China Fruits, 2009, 38(4):11-12. (in Chinese)
[84] 陈善春, 雷天刚, 何永睿, 彭爱红, 许兰珍, 邹修平. 早熟脐橙新品种‘青秋’. 园艺学报, 2019, 46(12):2457-2458.
CHEN S C, LEI T G, HE Y R, PENG A H, XU L Z, ZOU X P. A new early-maturing navel orange variety ‘Qingqiu’. Acta Horticulturae Sinica, 2019, 46(12):2457-2458. (in Chinese)
[85] 付莉莉, 吴巨勋, 伊华林. 脐橙晚熟突变体及其野生型果实柠檬酸代谢基因表达分析. 园艺学报, 2016, 43(1):38-46. doi: 10.16420/j.issn.0513-353x.2015-0582.
doi: 10.16420/j.issn.0513-353x.2015-0582
FU L L, WU J X, YI H L. Expression analysis of citrate metabolic related genes in late-ripening mutant of navel orange and its wild type. Acta Horticulturae Sinica, 2016, 43(1):38-46. doi: 10.16420/j.issn.0513-353x.2015-0582. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0582
[86] 伊华林, 邓秀新, 夏仁学, 李国怀, 付先松, 谭勇. 脐橙新品种脐橙新品种‘红肉脐橙’‘红肉脐橙’. 园艺学报, 2003, 30(1):115.
YI H L, DENG X X, XIA R X, LI G H, FU X S, TAN Y. A new navel orange variety ‘Red Flesh Navel Orange’. Acta Horticulturae Sinica, 2003, 30(1):115. (in Chinese)
[87] 谢宗周, 邓秀新, 伊华林, 夏仁学, 谭勇, 宋文化, 廖胜才. 晚熟脐橙新品种—伦晚脐橙的选育. 果树学报, 2011, 28(4):733-734, 548.
XIE Z Z, DENG X X, YI H L, XIA R X, TAN Y, SONG W H, LIAO S C. Breeding of a new late-maturing navel orange variety-Lunwan Navel orange. Journal of Fruit Science, 2011, 28(04):733-734, 548. (in Chinese)
[88] 邓秀新. 柑橘产业发展趋势与桂林柑橘品种结构调整. 南方园艺, 2020, 31(6):1-4. doi: 10.3969/j.issn.1674-5868.2020.06.001.
doi: 10.3969/j.issn.1674-5868.2020.06.001
DENG X X. Development trend of citrus industry and adjustment of Guilin citrus variety structure. Southern Horticulture, 2020, 31(6):1-4. doi: 10.3969/j.issn.1674-5868.2020.06.001. (in Chinese)
doi: 10.3969/j.issn.1674-5868.2020.06.001
No related articles found!
Full text



No Suggested Reading articles found!