Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4279-4293.doi: 10.3864/j.issn.0578-1752.2022.21.014

• HORTICULTURE • Previous Articles     Next Articles

Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit

HAN DongMei1(),HUANG ShiLian1,OUYANG SiYing2,ZHANG Le2,ZHUO Kan3,WU ZhenXian2,*(),LI JianGuang1,GUO DongLiang1,WANG Jing1   

  1. 1Institute of Fruit Tree Research, Guangdong Academy of Agriculture Science/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratary of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640
    2College of Horticulture, South China Agricultural University, Guangdong Provincial Key Lab for Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou 510642
    3College of Plant Protection, South China Agricultural University, Guangzhou 510640
  • Received:2022-02-13 Accepted:2022-04-24 Online:2022-11-01 Published:2022-11-09
  • Contact: ZhenXian WU E-mail:handongmei@gdaas.cn;zhenxwu@scau.edu.cn

Abstract:

【Objective】In order to obtain an optimized preharvest management mode to improve the longan fruit storability, the effects of disease control and nutrient management during fruit development on the characteristic quality and storability of longan fruit were explored. 【Method】 Using the cultivar Shixia as material, a field-based orthogonal trial (L12 (4×33)) was conducted with 12 combinations (labeled as BR1-BR12), among which BR1 was the control (CK). Disease control (DCP), fertilization type (FT), and hormone regulation (HR) were used as factor A (FacA), factor B (FacB), and factor C (FacC), respectively. The fruit quality and mineral nutrient contents were determined at harvest time, and the storage effects for the fruit of 12 treatments stored at 5℃ were also observed regularly to screen the factors and levels with significant optimization effects.【Result】Descriptive statistical analysis showed that the variation coefficients of 11 fruit quality and 20 mineral nutrition (in pericarp and aril) indexes ranged from 2.19% to 49.50% and from 5.14% to 77.43%, respectively. Except for the organoleptic trait indicators including CDFS (cleanliness degree of fruit surface), RPTC (rust powder in the turtle cracks on the fruit surface) and ACD (aril crispy degree), the other indexes showed significant differences between treatments (P<0.01). With the prolonging of the storage period, the MFR (mouldy fruit rate), EBI (endocarp browning index), ABI (aril breakdown index) of each treatment fruit increased, while the EFR (edible fruit rate) and storability decreased, and the difference between treatments was extremely significant (P<0.01). Moreover, the clustering results showed that BR11 and BR12 had the best storage effect with the lowest EBS (endocarp browning score), ABS (aril breakdown score) and MFRS (score of mildew fruit rate), and the highest EFRS (score of edible fruit rate) and CSES (score of comprehensive storability throughout the entire storage), and their storage life was about 40 days and about 15 days longer than that under the control (BR1). On the contrary, BR1 and BR2 had the worst storability with about 25 days of storage life. Correlation analysis showed that disease control (facA) was closely associated with EBS, ABS, MFRS, EFRS and CSES during the fruit storage (P<0.01), while FSb* (b* value of fruit surface) and ACD, total Zn and Mn contents in pericarp were closely related to fruit storage effects (P<0.01). Besides these, the contents of K, Ca, and Mg mainly affected the SFM (single fruit mass), EPRF (edible portions rate in a fruit), TSS (content of total soluble solid substance) and RPTC of fruit, while the contents of Zn, Mn, and B mainly affected CDFS and RPTC. The estimated marginal means of each level of three trial factors showed that, compared with no disease control (1-DCK) and young fruit stage (2-YS), the disease control during the entire fruit period (4-EP) and expansion stage (3-ES) could significantly improve the FSb*, FSC* (C* value of fruit surface, P<0.05) and CDFS (P<0.01), reduce the EBS, ABS and MFR, and ultimately improve the EFRS and CSES. Among the 4 kinds of disease control methods, the control effect of 4-EP was the best (P<0.01). The full nutrition fertilizer (3-FF) significantly improved the ACD, CDFS, and CSES and reduced the MFRS, otherwise, hormone regulation (HR) had no obvious effect.【Conclusion】The scientific and reasonable disease control and nutrient management before harvest could significantly improve the characteristic quality and storability of longan fruit. It was recommended to optimize the comprehensive management mode during fruit development as “disease control throughout the entire fruit period + full nutrient fertilization”.

Key words: longan fruit, storability, characteristic quality, disease control, fertilization type

Table 1

Design of the orthogonal trial factors and levels"

水平
Level
因素 Factor
A:病害防治
Disease control period (DCP)
B:施肥类型
Fertilization type (FT)
C:激素调控
Hormone regulation (HR)
1 不防治No disease control (1-DCK) 不施肥No fertilization (1-FCK) 不调控No regulation (1-RCK)
2 小果期 Young fruit stage (2-YS) N-P-K复合肥Compound fertilizer (2-CF) 赤霉酸Gibberellic acid(2-GA3
3 膨果期 Expansion stage (3-ES) 全营养施肥Full nutrition fertilizer (3-FF) 芸苔素内酯Brassinolide(3-BRs)
4 全果期 Entire fruit period (4-EP)

Table 2

Combination design of the orthogonal trial factors and levels"

处理
Treatment
因素A
Fac A
因素B
Fac B
因素C
Fac C
A:病害防治
DCP
B:施肥类型
FT
C:激素调控
HR
BR1 1 1 1 不防治 1-DCK 不施肥 1-FCK 不调控 1-RCK
BR2 1 2 2 不防治 1-DCK N-P-K复合肥2-CF 2-GA3
BR3 1 3 3 不防治 -DCK 全营养施肥3-FF 3-BRs
BR4 2 1 2 小果期 2-YS 不施肥 1-FCK 2-GA3
BR5 2 2 3 小果期 2-YS N-P-K复合肥 2-CF 3-BRs
BR6 2 3 1 小果期 2-YS 全营养施肥 3-FF 不调控 1-RCK
BR7 3 1 3 膨果期 3-ES 不施肥 1-FCK 3-BRs
BR8 3 2 1 膨果期 3-ES N-P-K复合肥 2-CF 不调控 1-RCK
BR9 3 3 2 膨果期 3-ES 全营养施肥 3-FF 2-GA3
BR10 4 1 1 全果期 4-EP 不施肥 1-FCK 不调控 1-RCK
BR11 4 2 2 全果期 4-EP N-P-K复合肥 2-CF 2-GA3
BR12 4 3 3 全果期 4-EP 全营养施肥 3-FF 3-BRs

Table 3

Schedule of the date and process for field test"

操作
Operation
日期(月-日)Date (Month-Day)
花前
Before flowering
小果期
Young fruit stage
膨果期
Expansion fruit stage
采收前
Before harvest
成熟期
Mature stage
选树挂牌Selecting trees and hanging brands 3-6
疏花Flower thinning 3-18—20
疏果 Fruit thinning 5-10—12
叶片喷施Leaf spraying 4-2、4-20、5-6、5-18 6-5、6-22、7-5
土壤施肥Soil application 4-10、5-6 6-4、6-29
采前杀菌Preharvest sterilization 7-19
采收 Harvesting 7-21、7-23、7-27

Table 4

Comparison of descriptive statistical analysis results for the fruit characteristic quality and mineral element content under different treatments at harvest time"

最小值
Minimum
最大值
Maximum
平均值
Average
CV
(%)
P 最小值
Minimum
最大值
Maximum
平均值
Average
CV
(%)
P
单果质量SFM (g) 7.03 10.13 8.44 11.53 0 果皮全铜 TP-Cu (mg∙kg-1) 5.32 7.43 6.32 11.22 0
可食率ERF (%) 63.67 69.87 67.04 3.08 0 果皮全锌 TP-Zn (mg∙kg-1) 8.16 47.49 22.91 56.71 0
TSS (%) 20.55 23.31 21.79 4.21 0 果皮全铁 TP-Fe (mg∙kg-1) 15.21 20.19 17.68 7.64 0.001
果表 FSL* 51.03 55.68 53.95 2.19 0 果皮全锰 TP-Mn (mg∙kg-1) 8.67 30.51 21.04 36.62 0
果表 FSa* 8.35 12.48 9.79 12.04 0 果皮全硼 TP-B (mg∙kg-1) 18.64 36.52 27.07 19.00 0
果表 FSb* 25.44 27.90 26.62 2.82 0 果肉全氮 TA-N (g∙kg-1) 8.78 11.83 10.42 9.28 0
果表 FSc* 26.85 29.87 28.43 2.92 0 果肉全磷 TA-P (g∙kg-1) 1.37 1.78 1.66 7.16 0
表果 FSh° 65.27 73.10 69.80 3.22 0 果肉全钾 TA-K (g∙kg-1) 14.08 17.21 16.10 5.14 0
果锈度 RPTC 2.00 6.00 4.31 31.98 - 果肉全钙 TA-Ca (g∙kg-1) 0.46 0.88 0.60 22.76 0
果净度 CDFS 1.00 5.00 3.46 49.50 - 果肉全镁 TA-Mg (g∙kg-1) 0.42 0.55 0.48 8.73 0
果肉爽脆度 AC 2.00 6.00 4.62 27.32 - 果肉全铜 TA-Cu (mg∙kg-1) 6.66 11.70 8.24 17.43 0
果皮全氮 TP-N (g∙kg-1) 8.55 12.13 10.16 10.11 0 果肉全锌 TA-Zn (mg∙kg-1) 9.88 14.94 12.01 12.23 0
果皮全磷 TP-P (g∙kg-1) 1.14 2.50 1.76 18.67 0 果肉全铁 TA-Fe (mg∙kg-1) 13.85 88.39 27.30 77.43 0
果皮全钾 TP-K (g∙kg-1) 6.75 11.18 9.18 14.42 0 果肉全锰 TA-Mn (mg∙kg-1) 4.42 6.85 5.60 14.07 0
果皮全钙 TP-Ca (g∙kg-1) 5.27 11.39 8.49 23.19 0 果肉全硼 TA-B (mg∙kg-1) 2.93 5.94 4.19 19.45 0
果皮全镁 TP-Mg (g∙kg-1) 0.47 1.00 0.75 20.43 0

Fig. 1

Comparison of the fruit EBI (A), ABI (B), MFR (C) and EFR (D) under different treatments during the storage at 5℃ The marked *or ** in the upper right corner of the days indicates the significant or extremely significant differences between treatments. The same as below"

Fig. 2

Comparison of fruit SDSSs after stored 25, 40 and 55 days at 5℃"

Fig. 3

Fruit EBSs, ABSs, MFRSs, EFRSs and CSESs among different treatments during the entire storage at 5℃"

Table 5

Correlations between the fruit storage effects and trial factors and fruit characteristic quality"

贮藏效果
Storage effect
因素A
Fac A
因素B
Fac B
因素C
Fac C
果表
FS b*
果净度
CDFS
全锌
TP-Zn
全锰
TP-Mn
褐变评分 EBS -0.937** -0.254 -0.243 -0.620* -0.819** -0.523 -0.868**
霉变率评分 MFRS -0.888** -0.219 -0.194 -0.579* -0.810** -0.519 -0.743**
自溶评分 ABS -0.851** -0.456 -0.137 -0.559* -0.840** -0.702** -0.886**
好果率评分 EFRS 0.810** 0.254 0.101 0.585* 0.691** 0.357 0.571*
耐贮性总评分 CSES 0.920** 0.316 0.199 0.604* 0.847** 0.596* 0.857**

Table 6

Correlations between fruit characteristic quality and mineral element content"

果实特征品质
Fruit characteristic
果皮全钾
TP-K
果皮全钙
TP-Ca
果皮全镁
TP-Mg
果皮全锌
TP-Zn
果皮全锰
TP-Mn
果皮全硼
TP-B
果肉全氮
TA-N
果肉全钾
TA-K
果肉全钙
TA-Ca
果肉全镁
TA-Mg
果肉全铜
TA-Cu
果肉全锌
TA-Zn
单果质量 SFM 0.794** -0.626* -0.558* 0.676* 0.205 0.337 -0.554* -0.338 -0.788** -0.673* 0.069 -0.004
可食率 ERF 0.722** -0.506 -0.392 0.548 0.065 0.277 -0.347 -0.334 -0.742** -0.556* -0.147 -0.062
TSS 0.361 -0.277 -0.614* 0.154 0.024 -0.180 -0.463 -0.843** -0.586* -0.595* 0.166 -0.329
果表 FSL* 0.185 0.081 -0.030 0.090 -0.156 0.163 -0.468 -0.157 -0.580* -0.600* -0.589* -0.713**
果表 FSa* 0.532 -0.750** -0.915** 0.185 0.061 -0.353 -0.572* -0.442 -0.297 -0.419 0.719** 0.076
果表 FSh° -0.550 0.815** 0.916** -0.161 0.060 0.379 0.469 0.416 0.269 0.333 -0.770** -0.178
果锈度 RPTC 0.763** -0.700** -0.761** 0.679* 0.311 0.177 -0.855** -0.405 -0.656* -0.758** 0.358 -0.026
果净度 CDFS 0.405 0.007 -0.125 0.762** 0.818** 0.732** -0.407 0.033 -0.318 -0.354 -0.013 0.185
果肉爽脆度 ACD 0.649* -0.463 -0.400 0.774** 0.057 0.539 -0.238 -0.017 -0.342 -0.27 0.026 0.410

Table 7

Comparison of main effect test results based on fruit characteristic quality and storage effect as dependent variables"

因变量
Dependent variable

Source
P R2 因变量
Dependent variable

Source
P R2
单果质量 SFM 因素Fac A 0.951 0.515 果锈度 RPTC 因素 Fac A 0.423 0.594
因素Fac B 0.223 因素 Fac B 0.324
因素Fac C 0.514 因素 Fac C 0.916
可食率 ERF 因素Fac A 0.913 0.483 *全锌 TP-Zn 因素 Fac A 0.002 0.990
因素Fac B 0.24 因素 Fac B 0
因素Fac C 0.65 因素 Fac C 0.099
TSS
因素Fac A 0.85 0.415 *全锰 TP-Mn 因素 Fac A 0.004 0.927
因素Fac B 0.716 因素 Fac B 0.215
因素Fac C 0.414 因素 Fac C 0.356
果表 FSL* 因素Fac A 0.406 0.713 *果肉爽脆度 AC

因素 Fac A 0.507 0.991
因素Fac B 0.108 因素 Fac B 0.004
因素Fac C 0.272 因素 Fac C 0.545
果表 FSa* 因素Fac A 0.235 0.580 *褐变评分 EBS

因素 Fac A 0.002 0.940
因素Fac B 0.894 因素 Fac B 0.612
因素Fac C 0.645 因素 Fac C 0.499
*果表 FSb* 因素Fac A 0.067 0.789 *自溶评分 MFRS

因素 Fac A 0.004 0.929
因素Fac B 0.314 因素 Fac B 0.283
因素Fac C 0.250 因素 Fac C 0.494
*果表 FSC* 因素Fac A 0.044 0.830 *霉变率评分 ABS 因素 Fac A 0.004 0.937
因素Fac B 0.220 因素 Fac B 0.051
因素Fac C 0.185 因素 Fac C 0.266
果表 FSh° 因素Fac A 0.276 0.54 *好果率评分 EFRS 因素 Fac A 0.003 0.931
因素Fac B 0.987 因素 Fac B 0.395
因素Fac C 0.671 因素 Fac C 0.256
*果净度 CDFS 因素Fac A 0.026 0.881 * 耐贮性总评分 CES 因素 Fac A 0.003 0.940
因素Fac B 0.058 因素 Fac B 0.235
因素Fac C 0.494 因素 Fac C 0.439

Table 8

The estimated marginal means of fruit characteristic indicators at different levels of each trial factor"

因素 Factor 水平 Level 果表 FSb* 果表 FSC* 果净度 CDFS 果肉爽脆度 ACD
A:病害防治 DCP 1-DCK 25.785 27.414 1.667 4.667
2-YS 26.587 28.326 2.667 4.667
3-ES 26.648 28.960* 4.000* 4.667
4 -EP 27.313* 28.919* 4.819**/* 4.083
B:施肥类型 FT 1-FCK 26.318 28.074 2.924 3.971
2-CF 26.958 28.841 2.458 3.571
3-FF 26.474 28.299 4.483*/* 6.021**/**
C:激素调控 HR 1-RCK 27.011 28.851 3.591 4.638
2-GA3 26.321 28.004 3.458 4.238
3-BRs 26.418 28.358 2.816 4.688/*

Table 9

The estimated marginal means of the indicators for fruit storage effect at different levels of each trial factor"

因素
Factor
水平
Level
褐变评分
EBS
霉变率评分
MFRS
自溶评分
ABS
好果率评分
EFRS
耐贮性总评分
CSES
A:病害防治 DCP 1-DCK 0.949 0.762 0.932 -0.569 -1.007
2-YS 0.576 0.624 0.280 -0.112 -0.564
3-ES -0.153**/* -0.266**/* 0.164* -0.275 0.097*
4-EP -0.987**/**//* -0.784**/** -0.993**/**//** 0.729**/**//** 1.053**/**//*
B:施肥类型 FT 1-FCK 0.189 0.410 0.056 -0.202 -0.249
2-CF 0.139 0.167 0.335 0.010 -0.244
3-FF -0.039 -0.325** -0.104/* 0.022 0.177*
C:激素调控 HR 1-RCK 0.260 0.121 0.229 -0.108 -0.233
2-GA3 -0.036 -0.141 -0.081 0.121 0.098
3-BRs 0.064 0.271 0.139 -0.184 -0.180
[1] SIDDIQUI M W. Principles and Practices for Quality Maintenance,Postharvest Biology and Technology of Horticultural Crops. Oakville Canada: Apple Academic Press, 2015: 89-95.
[2] REICHEL M, CARLE R, SRUAMSIRI P, NEIDHART S. Influence of harvest maturity on quality and shelf-life of litchi fruit (Litchi chinensis Sonn.). Postharvest Biology and Technology, 2010, 57: 162-175. doi: 10.1016/j.postharvbio.2010.04.005.
[3] SALVADOR A, ARNAL L, BESADA C, LARREA V, QUILES A, PEREZ-MUNUERA I. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biology and Technology, 2007, 46: 181-188. doi: 10.1016/j.postharvbio.2007.05.003.
[4] JU Z G, DUA Y S, JU Z Q, GUO A X. Different responses of ‘Snow Giant’ and ‘Elegant Lady’ peaches to fruit maturity and storage temperature. The Journal of Horticultural Science and Biotechnology, 2001, 76(5): 575-580. doi: 10.1080/14620316.2001.11511413.
[5] 高豪杰, 贾志伟, 李雯, 李隆伟, 刘康德. 采收成熟度与果实贮藏保鲜关系的研究进展. 安徽农业科学, 2012, 40(5): 2897-2898, 2900.
GAO H J, JIA Z W, LI W, LI L W, LIU K D. Advances in studies on relationship between harvest maturity and storage and preservation of fruits. Journal of Anhui Agricultural Sciences, 2012, 40(5): 2897-2898, 2900. (in Chinese)
[6] 韩冬梅, 杨武, 吴振先, 李建光, 帅良, 牛佳佳, 潘学文, 郭栋梁. 龙眼果实贮藏品质理化指标评估体系的构建. 华南农业大学学报, 2015, 36(6): 39-46.
HAN D M, YANG W, WU Z X, LI J G, SHUAI L, NIU J J, PAN X W, GUO D L. Establishment of an evaluation system for longan fruit storage quality based on the physicochemical indices. Journal of South China Agricultural University, 2015, 36(6): 39-46. (in Chinese)
[7] DONG T, XIA R X, XIAO Z Y, WANG P, SONG W H. Effect of pre-harvest application of calcium and boron on dietary fibre, hydrolases and ultrastructure in ‘Cara Cara’ navel orange (Citrus sinensis L. Osbeck) fruit. Scientia Horticulturae, 2009, 121: 272-277. doi: 10.1016/j.scienta.2009.02.003
[8] 杨帅. 蓝莓外表皮蜡质与果实贮藏品质的研究[D]. 金华: 浙江师范大学, 2015.
YANG S. Researches of epicuticular wax and fruit storage quality of blueberry[D]. Jinhua: Zhejiang Normal University, 2015. (in Chinese)
[9] KONAESKR A. Differences in the fruit peel structures between two apple cultivars during storage. Acta Scientiarum Po-lonorum- hortorum Cultus, 2012, 11(2): 105-116. doi: 10.1080/01140671.2012.661744.
[10] 楚文靖. 蓝莓蜡质对果实采后衰老的影响及机理研究[D]. 南京: 南京农业大学, 2017.
CHU W J. Effects of cuticular wax on postharvest senescence in blueberry fruit and the possible mechanism[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[11] FAN X T, SOKORAI K, PHILLIPS J. Development of antibrowning and antimicrobial formulations to minimize listeria monocytogenes contamination and inhibit browning of fresh-cut ‘Granny Smith’ apples. Postharvest Biology and Technology, 2018, 143: 43-49. https://doi.org/10.1016/j.postharvbio.2018.04.009.
[12] SIDDIQUI M W. Preharvest Modulation of Postharvest Fruit and Vegetable Quality. London: Academic Press, 2018: 169-182.
[13] 张居念, 林河通, 谢联辉, 林奇英, 王宗华. 龙眼果实潜伏性病原真菌的初步研究. 热带作物学报, 2006, 27(4): 78-82.
ZHANG J N, LIN H T, XIE L H, LIN Q Y, WANG Z H. Preliminary studies on latent fungal pathogens in longan fruits. Chinese Journal of Tropical Crops, 2006, 27(4): 78-82. (in Chinese)
[14] 陈艺晖, 林河通, 林艺芬, 张居念, 赵云峰. 拟茎点霉侵染对龙眼果实采后果皮褐变和活性氧代谢的影响. 中国农业科学, 2011, 44(23): 4858-4866.
CHEN Y H, LIN H T, LIN Y F, ZHANG J N, ZHAO Y F. Effects of Phomopsis longanae Chi infection on browning and active oxygen metabolism in pericarp of harvested longan fruits. Scientia Agricultura Sinica, 2011, 44(23): 4858-4866. (in Chinese)
[15] 刘爱媛, 陈维信, 程海慧. 龙眼采后炭疽病及对贮藏效果的影响. 果树学报, 2006, 23(1): 77-80.
LIU A Y, CHEN W X, CHENG H H. Development of postharvest anthracnose of longan and the effects of the disease on storage life of the fruit. Journal of Fruit Science, 2006, 23(1): 77-80. (in Chinese)
[16] LUO T, NIU J J, GUOX M, WU H T, HAN D M, SHUAI L, WU Z X. Preharvest zinc sulfate spray improves the storability of longan (Dimocarpus longan Lour.) fruits by protecting the cell wall components and antioxidants of pericarp. Journal Science of Food and Agriculture, 2019, 99(3): 1098-1107. doi: 10.1002/jsfa.9277.
[17] 牛佳佳. 采前矿质营养调控龙眼果实贮藏品质及其分子基础研究[D]. 广州: 华南农业大学, 2014.
NIU J J. Effection of different preharvest mineral nutrition treatments on longan fruit during storage and its molecular mechanism[D]. Guangzhou: South China Agricultural University, 2014. (in Chinese)
[18] 韩冬梅, 陈泳琪, 张佳丽, 陈美芸, 吴振先, 李建光. 龙眼鲜果贮藏品质采前优化调控技术比较. 华南农业大学学报, 2021, 42(1): 61-71.
HAN D M, CHEN Y Q, ZHANG J L, CHEN M Y, WU Z X, LI J G. Comparison of different preharvest technologies to regulate and control storage quality of Dimocarpus longan fruit. Journal of South China Agricultural University, 2021, 42(1): 61-71. (in Chinese)
[19] PRADEEP R, DILLI R, DURGA M, ARJUN K, KRISHNA P. Effect of pre-harvest application of gibberellic acid on fruit quality and shelf life of mandarin (Citrus reticulata Blanco). American Journal of Plant Sciences, 2016(7): 1033-1039.
[20] ZHANG C X, WHITING M. Pre-harvest foliar application of Prohexadione-Ca and gibberellins modify canopy source-sink relations and improve quality and shelf-life of ‘Bing’ sweet cherry. Plant Growth Regulation, 2011, 65(1): 145-156. doi: 10.1007/s10725-011-9584-z.
[21] LI M, CHENG S C, WANG Y, DONG Y. Improving fruit coloration, quality attributes, and phenolics content in ‘Rainier’ and ‘Bing’ cherries by gibberellic acid combined with homobrassinolide. Journal of Plant Growth Regulation, 2020, 39: 1130-1139. doi: 10.1007/s00344-019-10049-4.
[22] GILANI S A Q, BASIT A, SAJID M, SHAH S T, ULLAH I, MOHAMED H I. Gibberellic acid and boron enhance antioxidant activity, phenolic content, and yield quality in Pyrus communis L. Gesunde Pflanzen, 2021, 73(4): 395-406. doi: 10.1007/s10343-021-00555-5.
[23] 韩冬梅, 杨武, 牛佳佳, 吴振先, 李建光, 潘学文, 郭栋梁. 龙眼果实低温贮藏性能常规指标评价体系的构建. 热带作物学报, 2015, 36(9): 1685-1693.
HAN D M, YANG W, NIU J J, WU Z X, LI J G, PAN X W, GUO D L. Evaluation system based on the conventional indicators established for the storability of longan fruit under low atmospheric temperature. Chinese Journal of Tropical Crops, 2015, 36(9): 1685-1693. (in Chinese)
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Soil Agricultural Chemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[25] 刘凤枝. 农业环境监测实用手册. 北京: 中国标准出版社, 2001.
LIU F Z. Practical Manual for Agricultural Environment Monitoring. Beijing: Standards Press of China, 2001. (in Chinese)
[26] 邓维斌, 唐兴艳, 胡大权, 周玉敏. SPSS19统计分析实用教程. 北京: 电子工业出版社, 2013
DENG W B, TANG X Y, HU D Q, ZHOU Y M. Statistical Analysis Utility Tutorial For SPSS19. Beijing: Electronic Industry Press, 2013. (in Chinese)
[27] 张晓林, 和丽忠, 陈锦玉, 樊永言, 曹槐, 刘世熙, 程辉斗, 温永琴, 张晓海, 李金培, 王绍坤. 土壤-烤烟矿质营养元素相互关系的主组分分析. 土壤学报, 2001, 38(2): 193-203.
ZHANG X L, HE L Z, CHEN J Y, FAN Y Y, CAO H, LIU S X, CHENG H D, WEN Y Q, ZHANG X H, LI J P, WANG S K. Relationship between mineral nutrient elements of soil and flue-cured tobacco. Acta Pedologica Sinica, 2001, 38(2): 193-203. (in Chinese)
[28] 韩冬梅, 吴振先, 杨武, 帅良, 李建光, 潘学文, 郭栋梁. 龙眼果实品质评价理化指标体系的构建. 植物遗传资源学报, 2015, 16(3): 503-511, 519.
HAN D M, WU Z X, YANG W, SHUAI L, LI J G, PAN X W, GUO D L. Evaluation system established for the quality of ripened longan fruit based on physicochemical indices. Journal of Plant Genetic Resources, 2015, 16(3): 503-511, 519. (in Chinese)
[29] 潘学文, 唐小浪. 龙眼品种图谱. 广州: 广东科技出版社, 2006.
PAN X W, TANG X L. An Album of Longan Variety. Guangzhou: Guangdong Science and Technology Press, 2006. (in Chinese)
[30] 韩冬梅, 曾婷, 李建光, 罗焘, 李保建, 吴振先. 龙眼果实挂树成熟与退糖期间的解剖学结构比较. 广东农业科学, 2018, 45(4): 43-50.
HAN D M, ZENG T, LI J G, LUO T, LI B J, WU Z X. Comparative observation on the anatomical structure of Longan fruit during ripening and sugar-dropping on tree. Guangdong Agricultural Sciences, 2018, 45(4): 43-50. (in Chinese)
[31] 刘丽琴, 李建光, 舒波, 王一承, 武红霞, 决登伟, 石胜友. GA3对‘石硖’龙眼假种皮糖积累及蔗糖代谢相关酶的影响. 西南农业学报, 2016, 29(11): 2698-2703.
LIU LI Q, LI J G, SHU B, WANG Y CH, WU H X, JUE D W, SHI SH Y. Effects of GA3 on sugar accumulation and sugar metabolism- related enzyme activities in Shixia of Dimocarpus Longan Lour fruits. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2698-2703. (in Chinese)
[32] 李雅善, 南立军, 王萌, 郁松林, 崔长伟, 杨俊梅, 王艳君. 芸苔素内酯对紫香无核葡萄果实基本特征指标的影响. 中国果菜, 2019, 39(6): 27-31.
LI Y S, NAN L J, WANG M, YU S L, CUI C W, YANG J M, WANG Y J. Effects of brassinolide on basic characteristic indices of purple sweet seedless grape. China Fruit & Vegetable, 2019, 39(6): 27-31. (in Chinese)
[33] 韦剑锋, 梁和, 韦冬萍, 何燕文, 孙传芝. 钙硼营养对龙眼果实品质及耐贮性的影响. 中国农学通报, 2006, 22(9): 311-314.
WEI J F, LIANG H, WEI D P, HE Y W, SUN C Z. Effects of calcium and boron nutrient on quality and storage of longan fruit. Chinese Agricultural Science Bulletin, 2006, 22(9): 311-314. (in Chinese)
[34] 韦剑锋, 韦冬萍, 何燕文, 梁和, 孙传芝. 喷施钙硼对龙眼叶片和果实矿质营养状况的影响. 西南农业学报, 2007, 20(1): 77-80.
WEI J F, WEI D P, HE Y W, LIANG H, SUN C Z. Effects of calcium and boron spray on mineral element content in leaf and fruit of longan. Southwest China Journal of Agricultural Sciences, 2007, 20(1): 77-80. (in Chinese)
[35] 吴淑娟. 赤霉素和芸苔素内酯在采后番茄果实早疫病抗性调控中的作用机制[D]. 北京: 中国农业科学院, 2018.
WU S J. The mechanism of gibberellins and brassinolide in regulation of resistance to early blight of postharvest tomato fruit[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[1] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[2] LIANG Ying,LI Yi,ZHANG LiuJuan,LIU XianJin,LU BaiYi. Discussion on the Definition and Screening Method of Characteristic Quality Indicators of Edible Agricultural Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3155-3162.
[3] CHENG Guang-lei, ZHANG Hai-jiao, ZHAO Jiu-ran, LIU Chun-ge, WANG Yuan-dong, WANG Xiao-guang, WANG Rong-huan, CHEN Chuan-yong, XU Tian-jun. Vigor and Physiological Changes of Different Genotypes of Maize Seed (Zea mays L.) Under Critical Stress Storage Conditions [J]. Scientia Agricultura Sinica, 2015, 48(1): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!