Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2202-2213.doi: 10.3864/j.issn.0578-1752.2022.11.010

• HORTICULTURE • Previous Articles     Next Articles

Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening

LI Ang(),MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang(),ZENG WenFang()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou 450009
  • Received:2021-09-29 Accepted:2022-01-12 Online:2022-06-01 Published:2022-06-16
  • Contact: ZhiQiang WANG,WenFang ZENG E-mail:1125351664la@gmail.com;wangzhiqiang@caas.cn;zengwenfang@caas.cn

Abstract:

【Objective】 The aim of this study was to explore the differences between melting flesh and stony hard peaches at the peptide level and precursor protein level during fruit ripening, so as to provide a theoretical basis for mining the key peptides of determining or regulating the ripening process.【Method】 The characteristics of peptides and precursor protein functions in CN13 (melting flesh, MF) and CN16 (stony hard, SH) peaches were analyzed by peptidome, the relative contents of precursor proteins and peptides during MF and SH peach fruit ripening were compared, and the precursor proteins of different peptide segments were analyzed by function enrichment.【Result】 In this study, the peptides of CN13 and CN16 (S3 and S4III) were extracted for mass spectrometry. A total of 473 precursor proteins were identified, including 2 580 specific peptide sequences. The molecular weight, isoelectric point and cleavage sites of the peptide were summarized. In addition, the high-abundance precursor proteins corresponding to endogenous peptides were explored by COG function annotations and pathway enrichment analysis, and the results showed that the precursor proteins were mainly involved in the processes of general function prediction, post-translational modification, protein turnover, energy production and conversion, carbohydrate transport and metabolism. The enrichment analysis showed that the differential peptide precursor proteins of CN13 were related to biological processes, such as oxidation reduction, oxygen and oxygen and electron transport chain, which were mainly involved in glycolysis/gluconeogenesis, pentose phosphate pathway and RNA transport; the differential peptide precursor proteins in CN16 were related to biological processes, such as response to metal ion, response to inorganic substance, and response to cadmium ion, which were mainly involved in microbial metabolism in diverse environments, spliceosome and RNA transport; the differential peptide precursor proteins at the same stage in CN13 and CN16 at S4III were related to gene expression, translation and cellular macromolecular biological processes, which were mainly involved in RNA degradation, RNA transport and splicing.【Conclusion】 There were significant differences in peptides between CN13 and CN16 during fruit ripening. The precursor proteins of differential peptide were involved in starch/sucrose metabolism, glycolysis and ribosome synthesis, and it was suggested that these metabolic pathways were closely related to peach fruit ripening, which provided a theoretical reference for further exploring the key peptides of regulating peach fruit ripening and senescence.

Key words: peach, melting flesh, stony hard, fruit ripening, peptidomics

Table 1

Overview of the identification results of CN13 and CN16"

样本名称 Sample name 图谱数目 Spectrum number 多肽数目 Peptide number 蛋白数目 Protein number
CN13_S3 1855 1265 288
CN13_S4III 2121 1450 298
CN16_S3 2051 1359 313
CN16_S4III 1409 988 269
归并 Combined 7436 2580 473

Fig. 1

Reliability analysis of appraisal results"

Fig. 2

CN13 and CN16 polypeptide characteristics"

Fig. 3

Statistical distribution map of polypeptide cleavage sites"

Fig. 4

The COG function annotation analysis of the identified proteins in CN13 and CN16"

Table 2

The differential expressed proteins of CN13 and CN16 in different comparison groups"

CN13_S4III/CN13_S3 CN16_S4III/CN13_S4III CN16_S4III/CN16_S3
定量的蛋白数量Quantitative protein number 196 189 191
表达量显著差异蛋白数目Significant difference number 74 54 67
表达量显著上调蛋白数目Up-regulated number 42 23 42
表达量显著下调蛋白数目Down-regulated number 32 31 25

Table 3

The differential expressed peptide of CN13 and CN16 in different comparison groups"

CN13_S4III/CN13_S3 CN16_S4III/CN13_S4III CN16_S4III/CN16_S3
定量的多肽数量 Quantitative peptide number 642 576 555
表达量显著差异多肽数目 Significant difference number 88 72 65
表达量显著上调多肽数目 Up-regulated number 117 40 60
表达量显著下调多肽数目 Down-regulated number 205 112 125

Fig. 5

The KEGG enrichment analysis of the differential expressed proteins in CN13 and CN16 peach A:CN13_S4III vs CN13_S3;B:CN16_S4III vs CN16_S3;C:CN16_S4III vs CN13_S4III"

Table 4

KEGG pathyway of differential protein in CN13_S4III vs CN13_S3"

通路
Map name
Uniprot号
Uniprot ID
蛋白描述
Protein description
差异倍数
Fold change
淀粉和蔗糖代谢
Starch and sucrose metabolism
A0A251R9S2 葡萄糖-6-磷酸异构酶Glucose-6-phosphate isomerase 2.76
M4QFX1 UDP-葡萄糖6-脱氢酶UDP-glucose 6-dehydrogenase 2.14
M5XDI1 磷酸葡萄糖变位酶Phosphoglucomutase 0.21
糖酵解/糖异生
Glycolysis/Gluconeogenesis
A0A251MRE3 含有ADH_zinc_N结构域的蛋白ADH_zinc_N domain-containing protein 2.19
M5VPR4 磷酸丙酮酸水合酶Phosphopyruvate hydratase 3.12
M5XFH2 果糖二磷酸醛缩酶Fructose-bisphosphate aldolase 2.97
核糖体
Ribosome
A0A251NA79 未表征蛋白Uncharacterized protein 0.47
M5WAA2 含有RRM结构域的蛋白RRM domain-containing protein 0.20
M5WJM0 40S核糖体蛋白S25 40S ribosomal protein S25 2.38

Table 5

KEGG Pathyway of differential protein in CN16_S4III vs CN16_S3"

通路
Map name
Uniprot号
Uniprot ID
蛋白描述
Protein description
差异倍数
Fold change
淀粉和蔗糖代谢Starch and sucrose metabolism M5XH82 葡萄糖-6-磷酸异构酶Glucose-6-phosphate isomerase 0.39
糖酵解/糖异生Glycolysis/Gluconeogenesis A0A251PJZ3 磷酸甘油酸激酶Phosphoglycerate kinase 0.44
M5XQ59 甘油醛-3-磷酸脱氢酶Glyceraldehyde-3-phosphate dehydrogenase 0.19
核糖体Ribosome A0A251NA79 为表征蛋白Uncharacterized protein 0.26
M5WAA2 含有RRM结构域的蛋白RRM domain-containing protein 0.14
A0A251MVP0 含有RRM结构域的蛋白RRM domain-containing protein 2.51

Table 6

KEGG pathyway of differential protein in CN16_S4III vs CN13_S4III"

通路
Map name
Uniprot号
Uniprot ID
蛋白描述
Protein description
差异倍数
Fold change
淀粉和蔗糖代谢Starch and sucrose metabolism M5XH82 葡萄糖-6-磷酸异构酶Glucose-6-phosphate isomerase 0.35
糖酵解/糖异生Glycolysis/Gluconeogenesis A0A251PJZ3 磷酸甘油酸激酶Phosphoglycerate kinase 0.44
M5VPR4 磷酸丙酮酸水合酶Phosphopyruvate hydratase 0.44
核糖体Ribosome A0A251NA79 未表征蛋白Uncharacterized protein 0.34
M5WAA2 含有RRM结构域的蛋白RRM domain-containing protein 0.36
M5WJM0 40S核糖体蛋白S2540S ribosomal protein S25 0.34
[1] 曾文芳, 王志强, 牛良, 潘磊, 丁义峰, 鲁振华, 崔国朝. 桃果实肉质研究进展. 果树学报, 2017, 34(11): 1475-1482. doi: 10.13925/j.cnki.gsxb.20170142.
doi: 10.13925/j.cnki.gsxb.20170142
ZENG W F, WANG Z Q, NIU L, PAN L, DING Y F, LU Z H, CUI G C. Research process on peach fruit flesh texture. Journal of Fruit Science, 2017, 34(11): 1475-1482. doi: 10.13925/j.cnki.gsxb.20170142. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20170142
[2] 孙平平, 王文辉. 2017/2018年世界苹果、梨、葡萄、桃及樱桃产量、市场与贸易情况. 中国果树, 2018(2): 99-108. doi: 10.16626/j.cnki.issn1000-8047.2018.02.029.
doi: 10.16626/j.cnki.issn1000-8047.2018.02.029
SUN P P, WANG W H. Situation of world apple, pear, grape, peach and cherry production, market and trade. China Fruits, 2018(2): 99-108. doi: 10.16626/j.cnki.issn1000-8047.2018.02.029. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2018.02.029
[3] 王雁, 王小贝, 邓丽, 牛良, 潘磊, 鲁振华, 崔国朝, 曾文芳, 王志强. 1-MCP处理采后不同成熟度桃果实生理效应及转录组分析. 果树学报, 2020, 37(12): 1798-1810. doi: 10.13925/j.cnki.gsxb.20190207.
doi: 10.13925/j.cnki.gsxb.20190207
WANG Y, WANG X B, DENG L, NIU L, PAN L, LU Z H, CUI G C, ZENG W F, WANG Z Q. Physiological effects and transcriptome analysis of peach fruit with different maturity after 1-MCP treatment. Journal of Fruit Science, 2020, 37(12): 1798-1810. doi: 10.13925/j.cnki.gsxb.20190207. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20190207
[4] 孙婷婷, 张乐乐, 王倩, 李纯, 程备久, 张欣. 基于Nano LC-MS/MS的水稻多肽组学研究. 植物生理学报, 2015, 51(7): 1173-1178. doi: 10.13592/j.cnki.ppj.2015.0004.
doi: 10.13592/j.cnki.ppj.2015.0004
SUN T T, ZHANG L L, WANG Q, LI C, CHENG B J, ZHANG X. Rice peptidomics based on nano LC-MS/MS analysis. Plant Physiology Journal, 2015, 51(7): 1173-1178. doi: 10.13592/j.cnki.ppj.2015.0004. (in Chinese)
doi: 10.13592/j.cnki.ppj.2015.0004
[5] 曾文芳, 王小贝, 潘磊, 牛良, 鲁振华, 崔国朝, 王志强. 桃Aux/IAA家族基因鉴定及在果实成熟过程中的表达分析. 园艺学报, 2017, 44(2): 233-244. doi: 10.16420/j.issn.0513-353x.2016-0388.
doi: 10.16420/j.issn.0513-353x.2016-0388
ZENG W F, WANG X B, PAN L, NIU L, LU Z H, CUI G C, WANG Z Q. Identification and expression profiling of Aux/IAA family gene during peach fruit ripening. Acta Horticulturae Sinica, 2017, 44(2): 233-244. doi: 10.16420/j.issn.0513-353x.2016-0388. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0388
[6] ZENG W F, PAN L, LIU H, NIU L, LU Z H, CUI G C, WANG Z Q. Characterization of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes during nectarine fruit development and ripening. Tree Genetics & Genomes, 2015, 11(2): 1-10. doi: 10.1007/s11295-015-0833-6.
doi: 10.1007/s11295-015-0833-6
[7] CHAI T T, EE K Y, KUMAR D T, MANAN F A, WONG F C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein and Peptide Letters, 2021, 28(6): 623-642. doi: 10.2174/0929866527999201211195936.
doi: 10.2174/0929866527999201211195936
[8] MATSUBAYASHI Y, SAKAGAMI Y. Peptide hormones in plants. Annual Review of Plant Biology, 2006, 57: 649-674.
doi: 10.1146/annurev.arplant.56.032604.144204
[9] DJORDJEVIC M A, MOHD-RADZMAN N A, IMIN N. Small- peptide signals that control root nodule number, development, and symbiosis. Journal of Experimental Botany, 2015, 66(17): 5171-5181. doi: 10.1093/jxb/erv357.
doi: 10.1093/jxb/erv357
[10] PATEL N, MOHD-RADZMAN N A, CORCILIUS L, CROSSETT B, CONNOLLY A, CORDWELL S J, IVANOVICI A, TAYLOR K, WILLIAMS J, BINOS S, MARIANI M, PAYNE R J, DJORDJEVIC M A. Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Molecular & Cellular Proteomics, 2018, 17(1): 160-174. doi: 10.1074/mcp.RA117.000168.
doi: 10.1074/mcp.RA117.000168
[11] HIGASHIYAMA T, TAKEUCHI H. The mechanism and key molecules involved in pollen tube guidance. Annual Review of Plant Biology, 2015, 66: 393-413. doi: 10.1146/annurev-arplant-043014-115635.
doi: 10.1146/annurev-arplant-043014-115635
[12] QU X Y, CAO B, KANG J K, WANG X N, HAN X Y, JIANG W Q, SHI X, ZHANG L S, CUI L J, HU Z B, ZHANG Y H, WANG G D. Fine-tuning stomatal movement through small signaling peptides. Frontiers in Plant Science, 2019, 10: 69. doi: 10.3389/fpls.2019.00069.
doi: 10.3389/fpls.2019.00069
[13] TALESKI M, IMIN N, DJORDJEVIC M A. CEP peptide hormones: Key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany, 2018, 69(8): 1829-1836. doi: 10.1093/jxb/ery037.
doi: 10.1093/jxb/ery037
[14] ZIEMANN S, VAN DER LINDE K, LAHRMANN U, ACAR B, KASCHANI F, COLBY T, KAISER M, DING Y Z, SCHMELZ E, HUFFAKER A, HOLTON N, ZIPFEL C, DOEHLEMANN G. An apoplastic peptide activates salicylic acid signalling in maize. Nature Plants, 2018, 4(3): 172-180. doi: 10.1038/s41477-018-0116-y.
doi: 10.1038/s41477-018-0116-y
[15] ZHANG J H, YUE L, WU X L, LIU H, WANG W. Function of small peptides during male-female crosstalk in plants. Frontiers in Plant Science, 2021, 12: 671196. doi: 10.3389/fpls.2021.671196.
doi: 10.3389/fpls.2021.671196
[16] KAGEYAMA Y, KONDO T, HASHIMOTO Y. Coding vs non-coding: Translatability of short ORFs found in putative non-coding transcripts. Biochimie, 2011, 93(11): 1981-1986. doi: 10.1016/j.biochi.2011.06.024.
doi: 10.1016/j.biochi.2011.06.024
[17] ANDREWS S J, ROTHNAGEL J A. Emerging evidence for functional peptides encoded by short open reading frames. Nature Reviews Genetics, 2014, 15(3): 193-204. doi: 10.1038/nrg3520.
doi: 10.1038/nrg3520
[18] PUEYO J I, MAGNY E G, COUSO J P. New peptides under the s (ORF) ace of the genome. Trends in Biochemical Sciences, 2016, 41(8): 665-678. doi: 10.1016/j.tibs.2016.05.003.
doi: 10.1016/j.tibs.2016.05.003
[19] YU Y, ZHANG Y C, CHEN X M, CHEN Y Q. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology, 2019, 35: 407-431. doi: 10.1146/annurev-cellbio-100818-125218.
doi: 10.1146/annurev-cellbio-100818-125218
[20] NIARCHOU A, ALEXANDRIDOU A, ATHANASIADIS E, SPYROU G. C-PAmP: Large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PLoS ONE, 2013, 8(11): e79728. doi: 10.1371/journal.pone.0079728.
doi: 10.1371/journal.pone.0079728
[21] HUSSON S J, CLYNEN E, BAGGERMAN G, DE LOOF A, SCHOOFS L. Peptidomics of Caenorhabditis elegans: In search of neuropeptides. Communications in Agricultural and Applied Biological Sciences, 2005, 70(2): 153-156.
[22] TINOCO A D, SAGHATELIAN A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry, 2011, 50(35): 7447-7461. doi: 10.1021/bi200417k.
doi: 10.1021/bi200417k
[23] YUAN N, DAI C, LING X T, ZHANG B L, DU J C. Peptidomics- based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance. Molecular Breeding, 2019, 39(10/11): 1-11. doi: 10.1007/s11032-019-1069-1.
doi: 10.1007/s11032-019-1069-1
[24] LEASE K A, WALKER J C. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiology, 2006, 142(3): 831-838.
[25] CHEN Y C, SIEMS W F, PEARCE G, Ryan C A. Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. Journal of Biological Chemistry, 2008, 283(17):11469-11476.
doi: 10.1074/jbc.M709002200
[26] 赵楠, 程孟春, 吴玉林, 刘丹, 张晓哲. 基于超高效液相色谱-高分辨质谱的多肽组学技术用于人参不同部位多肽的差异分析. 色谱, 2019, 37(12): 1305-1313. doi: 10.3724/SP.J.1123.2019.09006.
doi: 10.3724/SP.J.1123.2019.09006
ZHAO N, CHENG M C, WU Y L, LIU D, ZHANG X Z. Differential analysis of peptides in Panax ginseng C. A. Meyer root by ultra-performance liquid chromatography-high resolution mass spectrometry. Chinese Journal of Chromatography, 2019, 37(12): 1305-1313. doi: 10.3724/SP.J.1123.2019.09006. (in Chinese)
doi: 10.3724/SP.J.1123.2019.09006
[27] WANG X B, MENG J R, DENG L, WANG Y, LIU H, YAO J L, NIEUWENHUIZEN N J, WANG Z Q, ZENG W F. Diverse functions of IAA-leucine resistant PpILR1 provide a genic basis for auxin- ethylene crosstalk during peach fruit ripening. Frontiers in Plant Science, 2021, 12: 655758. doi: 10.3389/fpls.2021.655758.
doi: 10.3389/fpls.2021.655758
[28] 徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 2020, 47(8): 1595-1609. doi: 10.16420/j.issn.0513-353x.2020-0284.
doi: 10.16420/j.issn.0513-353x.2020-0284
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. doi: 10.16420/j.issn.0513-353x.2020-0284. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0284
[29] KANG R Y, ZHANG L, JIANG L, YU M L, MA R J, YU Z Y. Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Postharvest Biology and Technology, 2016, 112(7): 277-289.
doi: 10.1016/j.postharvbio.2015.08.017
[30] WANG X B, DING Y F, WANG Y, PAN L, NIU L, LU Z H, CUI G C, ZENG W F, WANG Z Q. Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Scientia Horticulturae, 2017, 224: 306-316.
doi: 10.1016/j.scienta.2017.06.035
[31] XIAO Y Y, KUANG J F, QI X N, YE Y J, WU Z X, CHEN J Y, LU W J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnology Journal, 2018, 16(1): 151-164. doi: 10.1111/pbi.12756.
doi: 10.1111/pbi.12756
[32] YU J W, WANG K Y, BECKLES D M. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC Plant Biology, 2021, 21(1): 479. doi: 10.1186/s12870-021-03253-6.
doi: 10.1186/s12870-021-03253-6
[33] ZHANG A D, WANG W Q, TONG Y, LI M J, GRIERSON D, FERGUSON I, CHEN K S, YIN X R. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiology, 2018, 178(2): 850-863. doi: 10.1104/pp.18.00427.
doi: 10.1104/pp.18.00427
[34] CHO Y G, KANG K K. Functional analysis of starch metabolism in plants. PLANTS-BASEL, 2020, 9(9): 1152.
[35] ZHANG S, CAO L N, SUN X, YU J J, XU X Y, CHANG R H, SUO J F, LIU G J, XU Z R, QU C P. Genome-wide analysis of UGDH genes in Populus trichocarpa and responsiveness to nitrogen treatment. 3 Biotech, 2021, 11(3): 1-13. doi: 10.1007/s13205-021-02697-9.
doi: 10.1007/s13205-021-02697-9
[36] LIN Y X, LIN Y F, CHEN Y H, WANG H, SHI J, LIN H T. Hydrogen peroxide induced changes in energy status and respiration metabolism of harvested longan fruit in relation to pericarp browning. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4627-4632. doi: 10.1021/acs.jafc.6b01430.
doi: 10.1021/acs.jafc.6b01430
[37] LI X P, ZHU X Y, WANG H L, LIN X, LIN H W, CHEN W. Postharvest application of wax controls pineapple fruit ripening and improves fruit quality. Postharvest Biology and Technology, 2018, 136: 99-110.
doi: 10.1016/j.postharvbio.2017.10.012
[38] PERVEEN S, QU M N, CHEN F M, ESSEMINE J, KHAN N, LYU M J A, CHANG T G, SONG Q F, CHEN G Y, ZHU X G. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice. Journal of Experimental Botany, 2020, 71(16): 4944-4957. doi: 10.1093/jxb/eraa248.
doi: 10.1093/jxb/eraa248
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[8] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[9] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[10] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[11] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[12] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
[13] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[14] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
[15] WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!