Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2202-2213.doi: 10.3864/j.issn.0578-1752.2022.11.010
• HORTICULTURE • Previous Articles Next Articles
LI Ang(),MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang(),ZENG WenFang()
[1] |
曾文芳, 王志强, 牛良, 潘磊, 丁义峰, 鲁振华, 崔国朝. 桃果实肉质研究进展. 果树学报, 2017, 34(11): 1475-1482. doi: 10.13925/j.cnki.gsxb.20170142.
doi: 10.13925/j.cnki.gsxb.20170142 |
ZENG W F, WANG Z Q, NIU L, PAN L, DING Y F, LU Z H, CUI G C. Research process on peach fruit flesh texture. Journal of Fruit Science, 2017, 34(11): 1475-1482. doi: 10.13925/j.cnki.gsxb.20170142. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20170142 |
|
[2] |
孙平平, 王文辉. 2017/2018年世界苹果、梨、葡萄、桃及樱桃产量、市场与贸易情况. 中国果树, 2018(2): 99-108. doi: 10.16626/j.cnki.issn1000-8047.2018.02.029.
doi: 10.16626/j.cnki.issn1000-8047.2018.02.029 |
SUN P P, WANG W H. Situation of world apple, pear, grape, peach and cherry production, market and trade. China Fruits, 2018(2): 99-108. doi: 10.16626/j.cnki.issn1000-8047.2018.02.029. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2018.02.029 |
|
[3] |
王雁, 王小贝, 邓丽, 牛良, 潘磊, 鲁振华, 崔国朝, 曾文芳, 王志强. 1-MCP处理采后不同成熟度桃果实生理效应及转录组分析. 果树学报, 2020, 37(12): 1798-1810. doi: 10.13925/j.cnki.gsxb.20190207.
doi: 10.13925/j.cnki.gsxb.20190207 |
WANG Y, WANG X B, DENG L, NIU L, PAN L, LU Z H, CUI G C, ZENG W F, WANG Z Q. Physiological effects and transcriptome analysis of peach fruit with different maturity after 1-MCP treatment. Journal of Fruit Science, 2020, 37(12): 1798-1810. doi: 10.13925/j.cnki.gsxb.20190207. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20190207 |
|
[4] |
孙婷婷, 张乐乐, 王倩, 李纯, 程备久, 张欣. 基于Nano LC-MS/MS的水稻多肽组学研究. 植物生理学报, 2015, 51(7): 1173-1178. doi: 10.13592/j.cnki.ppj.2015.0004.
doi: 10.13592/j.cnki.ppj.2015.0004 |
SUN T T, ZHANG L L, WANG Q, LI C, CHENG B J, ZHANG X. Rice peptidomics based on nano LC-MS/MS analysis. Plant Physiology Journal, 2015, 51(7): 1173-1178. doi: 10.13592/j.cnki.ppj.2015.0004. (in Chinese)
doi: 10.13592/j.cnki.ppj.2015.0004 |
|
[5] |
曾文芳, 王小贝, 潘磊, 牛良, 鲁振华, 崔国朝, 王志强. 桃Aux/IAA家族基因鉴定及在果实成熟过程中的表达分析. 园艺学报, 2017, 44(2): 233-244. doi: 10.16420/j.issn.0513-353x.2016-0388.
doi: 10.16420/j.issn.0513-353x.2016-0388 |
ZENG W F, WANG X B, PAN L, NIU L, LU Z H, CUI G C, WANG Z Q. Identification and expression profiling of Aux/IAA family gene during peach fruit ripening. Acta Horticulturae Sinica, 2017, 44(2): 233-244. doi: 10.16420/j.issn.0513-353x.2016-0388. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0388 |
|
[6] |
ZENG W F, PAN L, LIU H, NIU L, LU Z H, CUI G C, WANG Z Q. Characterization of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes during nectarine fruit development and ripening. Tree Genetics & Genomes, 2015, 11(2): 1-10. doi: 10.1007/s11295-015-0833-6.
doi: 10.1007/s11295-015-0833-6 |
[7] |
CHAI T T, EE K Y, KUMAR D T, MANAN F A, WONG F C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein and Peptide Letters, 2021, 28(6): 623-642. doi: 10.2174/0929866527999201211195936.
doi: 10.2174/0929866527999201211195936 |
[8] |
MATSUBAYASHI Y, SAKAGAMI Y. Peptide hormones in plants. Annual Review of Plant Biology, 2006, 57: 649-674.
doi: 10.1146/annurev.arplant.56.032604.144204 |
[9] |
DJORDJEVIC M A, MOHD-RADZMAN N A, IMIN N. Small- peptide signals that control root nodule number, development, and symbiosis. Journal of Experimental Botany, 2015, 66(17): 5171-5181. doi: 10.1093/jxb/erv357.
doi: 10.1093/jxb/erv357 |
[10] |
PATEL N, MOHD-RADZMAN N A, CORCILIUS L, CROSSETT B, CONNOLLY A, CORDWELL S J, IVANOVICI A, TAYLOR K, WILLIAMS J, BINOS S, MARIANI M, PAYNE R J, DJORDJEVIC M A. Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Molecular & Cellular Proteomics, 2018, 17(1): 160-174. doi: 10.1074/mcp.RA117.000168.
doi: 10.1074/mcp.RA117.000168 |
[11] |
HIGASHIYAMA T, TAKEUCHI H. The mechanism and key molecules involved in pollen tube guidance. Annual Review of Plant Biology, 2015, 66: 393-413. doi: 10.1146/annurev-arplant-043014-115635.
doi: 10.1146/annurev-arplant-043014-115635 |
[12] |
QU X Y, CAO B, KANG J K, WANG X N, HAN X Y, JIANG W Q, SHI X, ZHANG L S, CUI L J, HU Z B, ZHANG Y H, WANG G D. Fine-tuning stomatal movement through small signaling peptides. Frontiers in Plant Science, 2019, 10: 69. doi: 10.3389/fpls.2019.00069.
doi: 10.3389/fpls.2019.00069 |
[13] |
TALESKI M, IMIN N, DJORDJEVIC M A. CEP peptide hormones: Key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany, 2018, 69(8): 1829-1836. doi: 10.1093/jxb/ery037.
doi: 10.1093/jxb/ery037 |
[14] |
ZIEMANN S, VAN DER LINDE K, LAHRMANN U, ACAR B, KASCHANI F, COLBY T, KAISER M, DING Y Z, SCHMELZ E, HUFFAKER A, HOLTON N, ZIPFEL C, DOEHLEMANN G. An apoplastic peptide activates salicylic acid signalling in maize. Nature Plants, 2018, 4(3): 172-180. doi: 10.1038/s41477-018-0116-y.
doi: 10.1038/s41477-018-0116-y |
[15] |
ZHANG J H, YUE L, WU X L, LIU H, WANG W. Function of small peptides during male-female crosstalk in plants. Frontiers in Plant Science, 2021, 12: 671196. doi: 10.3389/fpls.2021.671196.
doi: 10.3389/fpls.2021.671196 |
[16] |
KAGEYAMA Y, KONDO T, HASHIMOTO Y. Coding vs non-coding: Translatability of short ORFs found in putative non-coding transcripts. Biochimie, 2011, 93(11): 1981-1986. doi: 10.1016/j.biochi.2011.06.024.
doi: 10.1016/j.biochi.2011.06.024 |
[17] |
ANDREWS S J, ROTHNAGEL J A. Emerging evidence for functional peptides encoded by short open reading frames. Nature Reviews Genetics, 2014, 15(3): 193-204. doi: 10.1038/nrg3520.
doi: 10.1038/nrg3520 |
[18] |
PUEYO J I, MAGNY E G, COUSO J P. New peptides under the s (ORF) ace of the genome. Trends in Biochemical Sciences, 2016, 41(8): 665-678. doi: 10.1016/j.tibs.2016.05.003.
doi: 10.1016/j.tibs.2016.05.003 |
[19] |
YU Y, ZHANG Y C, CHEN X M, CHEN Y Q. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology, 2019, 35: 407-431. doi: 10.1146/annurev-cellbio-100818-125218.
doi: 10.1146/annurev-cellbio-100818-125218 |
[20] |
NIARCHOU A, ALEXANDRIDOU A, ATHANASIADIS E, SPYROU G. C-PAmP: Large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PLoS ONE, 2013, 8(11): e79728. doi: 10.1371/journal.pone.0079728.
doi: 10.1371/journal.pone.0079728 |
[21] | HUSSON S J, CLYNEN E, BAGGERMAN G, DE LOOF A, SCHOOFS L. Peptidomics of Caenorhabditis elegans: In search of neuropeptides. Communications in Agricultural and Applied Biological Sciences, 2005, 70(2): 153-156. |
[22] |
TINOCO A D, SAGHATELIAN A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry, 2011, 50(35): 7447-7461. doi: 10.1021/bi200417k.
doi: 10.1021/bi200417k |
[23] |
YUAN N, DAI C, LING X T, ZHANG B L, DU J C. Peptidomics- based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance. Molecular Breeding, 2019, 39(10/11): 1-11. doi: 10.1007/s11032-019-1069-1.
doi: 10.1007/s11032-019-1069-1 |
[24] | LEASE K A, WALKER J C. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiology, 2006, 142(3): 831-838. |
[25] |
CHEN Y C, SIEMS W F, PEARCE G, Ryan C A. Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. Journal of Biological Chemistry, 2008, 283(17):11469-11476.
doi: 10.1074/jbc.M709002200 |
[26] |
赵楠, 程孟春, 吴玉林, 刘丹, 张晓哲. 基于超高效液相色谱-高分辨质谱的多肽组学技术用于人参不同部位多肽的差异分析. 色谱, 2019, 37(12): 1305-1313. doi: 10.3724/SP.J.1123.2019.09006.
doi: 10.3724/SP.J.1123.2019.09006 |
ZHAO N, CHENG M C, WU Y L, LIU D, ZHANG X Z. Differential analysis of peptides in Panax ginseng C. A. Meyer root by ultra-performance liquid chromatography-high resolution mass spectrometry. Chinese Journal of Chromatography, 2019, 37(12): 1305-1313. doi: 10.3724/SP.J.1123.2019.09006. (in Chinese)
doi: 10.3724/SP.J.1123.2019.09006 |
|
[27] |
WANG X B, MENG J R, DENG L, WANG Y, LIU H, YAO J L, NIEUWENHUIZEN N J, WANG Z Q, ZENG W F. Diverse functions of IAA-leucine resistant PpILR1 provide a genic basis for auxin- ethylene crosstalk during peach fruit ripening. Frontiers in Plant Science, 2021, 12: 655758. doi: 10.3389/fpls.2021.655758.
doi: 10.3389/fpls.2021.655758 |
[28] |
徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 2020, 47(8): 1595-1609. doi: 10.16420/j.issn.0513-353x.2020-0284.
doi: 10.16420/j.issn.0513-353x.2020-0284 |
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. doi: 10.16420/j.issn.0513-353x.2020-0284. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0284 |
|
[29] |
KANG R Y, ZHANG L, JIANG L, YU M L, MA R J, YU Z Y. Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Postharvest Biology and Technology, 2016, 112(7): 277-289.
doi: 10.1016/j.postharvbio.2015.08.017 |
[30] |
WANG X B, DING Y F, WANG Y, PAN L, NIU L, LU Z H, CUI G C, ZENG W F, WANG Z Q. Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Scientia Horticulturae, 2017, 224: 306-316.
doi: 10.1016/j.scienta.2017.06.035 |
[31] |
XIAO Y Y, KUANG J F, QI X N, YE Y J, WU Z X, CHEN J Y, LU W J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnology Journal, 2018, 16(1): 151-164. doi: 10.1111/pbi.12756.
doi: 10.1111/pbi.12756 |
[32] |
YU J W, WANG K Y, BECKLES D M. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC Plant Biology, 2021, 21(1): 479. doi: 10.1186/s12870-021-03253-6.
doi: 10.1186/s12870-021-03253-6 |
[33] |
ZHANG A D, WANG W Q, TONG Y, LI M J, GRIERSON D, FERGUSON I, CHEN K S, YIN X R. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiology, 2018, 178(2): 850-863. doi: 10.1104/pp.18.00427.
doi: 10.1104/pp.18.00427 |
[34] | CHO Y G, KANG K K. Functional analysis of starch metabolism in plants. PLANTS-BASEL, 2020, 9(9): 1152. |
[35] |
ZHANG S, CAO L N, SUN X, YU J J, XU X Y, CHANG R H, SUO J F, LIU G J, XU Z R, QU C P. Genome-wide analysis of UGDH genes in Populus trichocarpa and responsiveness to nitrogen treatment. 3 Biotech, 2021, 11(3): 1-13. doi: 10.1007/s13205-021-02697-9.
doi: 10.1007/s13205-021-02697-9 |
[36] |
LIN Y X, LIN Y F, CHEN Y H, WANG H, SHI J, LIN H T. Hydrogen peroxide induced changes in energy status and respiration metabolism of harvested longan fruit in relation to pericarp browning. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4627-4632. doi: 10.1021/acs.jafc.6b01430.
doi: 10.1021/acs.jafc.6b01430 |
[37] |
LI X P, ZHU X Y, WANG H L, LIN X, LIN H W, CHEN W. Postharvest application of wax controls pineapple fruit ripening and improves fruit quality. Postharvest Biology and Technology, 2018, 136: 99-110.
doi: 10.1016/j.postharvbio.2017.10.012 |
[38] |
PERVEEN S, QU M N, CHEN F M, ESSEMINE J, KHAN N, LYU M J A, CHANG T G, SONG Q F, CHEN G Y, ZHU X G. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice. Journal of Experimental Botany, 2020, 71(16): 4944-4957. doi: 10.1093/jxb/eraa248.
doi: 10.1093/jxb/eraa248 |
[1] | YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158. |
[2] | GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716. |
[3] | HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499. |
[4] | WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017. |
[5] | SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028. |
[6] | TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435. |
[7] | ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037. |
[8] | MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404. |
[9] | MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307. |
[10] | ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418. |
[11] | ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044. |
[12] | LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940. |
[13] | TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892. |
[14] | Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581. |
[15] | WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709. |
|