Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 785-795.doi: 10.3864/j.issn.0578-1752.2022.04.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit

XIANG MiaoLian1(),WU Fan1,LI ShuCheng1,WANG YinBao1,XIAO LiuHua1,PENG WenWen1,CHEN JinYin1,2,CHEN Ming1()   

  1. 1College of Agronomy, Jiangxi Agricultural University/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province/Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables, Nanchang 330045
    2Pingxiang University, Pingxiang 337055, Jiangxi
  • Received:2021-06-08 Accepted:2021-08-20 Online:2022-02-16 Published:2022-02-23
  • Contact: Ming CHEN E-mail:mlxiang@jxau.edu.cn;mingchen@jxau.edu.cn

Abstract:

【Objective】 The aim of this study was to explore the effects of melatonine (MT) treatment on postharvest black spot disease and storage quality of pear fruit, so as to provide the theoretical basis and reference for exogenous substances regulating postharvest disease and storage quality of pear fruit. 【Method】 ‘Cuiguan’ pears were used as the experimental material, which were sprayed with 0.1 mmol·L-1 MT solution and then kept at room temperature for 48 h. The treated fruits were inoculated with two 1 mm diameter × 3 mm depth small holes along both sides of the fruit equator. Twenty µL Alternaria alternata spore suspension with 1.0×106 spores/mL were injected into the two holes, and the sterile water treatment was used as control. The fruit was placed at 25℃ after inoculation, and then the lesion diameters and induced effects as well as the genes expression of defense enzymes, such as catalase (PpCAT), peroxidase (PpPOD), polyphenol oxidase (PpPPO), and copper-zinc superoxide dismutase (Cu-ZnSOD), and pathogenesis-related protein including chitinase (PpCHI) and β-1,3 glucanase (PpGLU), were analysed to demonstrate the effect and mechanism of MT-induced pear fruit against black spot disease. In addition, the pear fruits were sprayed with 0.1 mmol·L-1 MT solution, and then stored at (5±1)℃, 85%-90% relative humidity for 42 d. The sterile water treatment was used as the control. The decay rate, weight loss rate, respiration rate, firmness, total soluble solids, titratable acid, vitamin C, total phenols and malondialdehyde contents were measured at fixed period, and the effect of MT treatment on the storage effect and quality of pear fruit were discussed. 【Result】 The lesion diameters of pear fruits inoculated with A. alternata gradually increased with the time, while the lesion diameters under MT treatment was significantly smaller than those under the control (P<0.05). The MT-induced resistance effects on pear fruits black spot were 29.16%, 45.03% and 23.26% on the 3rd, 5th and 7th day, respectively. The relative expression levels of PpCAT, PpPOD, PpPPO, Cu-ZnSOD, PpCHI and PpGLU in MT-treated group were significantly higher than those of the control group during 4-7 days post inoculation (dpi), and the maximum values of them were 1.35, 2.08, 2.28, 2.02, 2.89 and 3.45 times of control fruits, respectively. The induced expression of PpPOD, PpPPO and PpCHI indicated that MT treatment inducing resistance of pear fruit to black spot disease possible depended on these defense enzyme and pathogenesis-related proteins. For the low temperature storage, the fruit decay rate was not significantly different between MT treatment group and control group, which was probably caused by the inhibition growth of pathogen under low temperature. All of fruit firmness gradually decreased during storage, while the fruit firmness under MT treatment was higher than that under the control with 1.06 times of significant difference at 28 d. Furthermore, the fruit respiration rate increased in the early storage stage (7-14 d) and decreased in the later stage. In comparison with the control group, the effects of MT treatment inhibiting fruit respiration and delaying fruit senescence were more significantly in the early storage stage than in the later stage. In addition, MT treatment also significantly reduced the fruit weight loss rate, maintained the high levels of total soluble solids, and delayed the degradation of titratable acid and vitamin C. Also, it promoted the accumulation of total phenolic content, enhanced the fruit antioxidant capacity, inhibited the accumulation of MDA content, and reduced the damage of cell membrane lipid peroxidation. The above results indicated that MT might enhance fruit quality and storage resistance by regulating fruit sugar, acid, and cell wall metabolism. 【Conclusion】0.1 mmol·L-1 MT treatment induced the resistance of pear fruit to black spot, stimulated the relative expression of defense enzymes and pathogenesis-related protein coded-genes, and finally improved the storage quality of pear fruit.

Key words: melatonin, pear, fruit, black spot, induced resistance, storage quality

Table 1

Sequences of primers"

基因
Gene
基因登录号
GenBank Acc. No.
引物序列
Primer sequence (5′→3′)
大小
Size (bp)
退火温度
Annealing temperature (℃)
PpPPO AY338251 F-GACATTCGCTATGCCGTTCT
R-TCGGTCCCGTTGTAATCG
94 60
PpPOD JX290377.1 F-CAACATGGACCCAACCAC
R-TTGGCCCACCTTCTTACC
95 60
PpCAT KM670006.1 F-AGGATGAGGCTATTAAGGTTGG
R-CCAGGTCTTAGTAACATCAAGTG
103 60
Cu-ZnSOD XM_009358664.2 F-GGGAGATGGCCCAACTACTG
R-CCAGTTGACATGCAACCGTT
120 60
PpCHI FJ589786 F-CACAGACGATGCCTACTGC
R-AACTTGCGTCCGCCTGAT
102 60
PpGLU JX127223 F-CCTTACTTCAGCTACAATGACAC R-GTACTGAGCGTCCAGGAGAG 100 60
PpACTIN JN684184 F-CCATCCAGGCTGTTCTCTC
R-GCAAGGTCCAGACGAAGG
122 60

Fig. 1

Effects of melatonin induced resistance of postharvest pear fruit to black spot ** indicate the difference level is extremely significant (P<0.01) between MT treatment and control at the same time, respectively. The different lowercase letters indicate significant difference at P<0.05 level by Duncan’s new repolarization difference test. The same as below"

Fig. 2

Effect of MT treatment on relative gene expression of defense enzymes in pear fruits"

Fig. 3

Effect of MT treatment on relative expression level of pathogenesis-related protein genes PpCHI and PpGLU in pear fruits"

Fig. 4

Effects of MT treatment on decay rate and weight loss rate of pear fruit during cold storage *indicate significant difference (P<0.05). The same as below"

Fig. 5

Effects of MT treatment on TSS, TA, VC and total sugar content of pear fruit during cold storage"

Fig. 6

Effects of MT treatment on hardness, respiratory intensity, total phenol and MDA content of pear fruit during storage"

[1] 邓秀新, 王力荣, 李绍华, 张绍铃, 张志宏, 丛佩华, 易干军, 陈学森, 陈厚彬, 钟彩虹. 果树育种40年回顾与展望. 果树学报, 2019, 36(4):514-520.
DENG X X, WANG L R, LI S H, ZHANG S L, ZHANG Z H, CONG P H, YI G J, CHEN X S, CHEN H B, ZHONG C H. Retrospection and prospect of fruit breeding for last four decades in China. Journal of Fruit Science, 2019, 36(4):514-520. (in Chinese)
[2] 李丙新, 何锋, 刘娟娟, 赵延存, 孙伟波, 操海群, 刘凤权. 梨黑斑病菌遗传操作体系的建立与RFP标记转化子的致病性分析. 植物病理学报, 2018, 48(5):648-655. doi: 10.13926/j.cnki.apps.000182.
doi: 10.13926/j.cnki.apps.000182
LI B X, HE F, LIU J J, ZHAO Y C, SUN W B, CAO H Q, LIU F Q. Established genetic transformation of Alternaria alternata and pathogenicity analysis of the RFP labeled transformants. Acta Phytopathologica Sinica, 2018, 48(5):648-655. doi: 10.13926/j.cnki.apps.000182. (in Chinese)
doi: 10.13926/j.cnki.apps.000182
[3] 王志华, 王文辉, 贾朝爽, 姜云斌. CO2体积分数对气调贮藏‘红香酥’梨果实货架期相关生理指标的影响. 果树学报, 2020, 37(10):1562-1572. doi: 10.13925/j.cnki.gsxb.20200272.
doi: 10.13925/j.cnki.gsxb.20200272
WANG Z H, WANG W H, JIA C S, JIANG Y B. Effects of carbon dioxide concentrations on the physiological indexes of 'Hongxiangsu'pears during shelf-life after controlled atmosphere storage. Journal of Fruit Science, 2020, 37(10):1562-1572. doi: 10.13925/j.cnki.gsxb.20200272. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20200272
[4] 杜艳民, 王文辉, 贾晓辉, 佟伟, 王阳, 张鑫楠. 不同O2浓度对鸭梨采后生理代谢及贮藏品质的影响. 中国农业科学, 2020, 53(23):4918-4928.
DU Y M, WANG W H, JIA X H, TONG W, WANG Y, ZHANG X N. The effects of different oxygen concentration on postharvest physiology and storage quality of yali pear. Scientia Agricultura Sinica, 2020, 53(23):4918-4928. (in Chinese)
[5] LI M, ZHI H H, DONG Y. The influence of pre- and postharvest 1-MCP application and oxygen regimes on textural properties, cell wall metabolism, and physiological disorders of late-harvest ‘Bartlett’ pears. Postharvest Biology and Technology, 2021, 173:111429.
doi: 10.1016/j.postharvbio.2020.111429
[6] 马强, 石雅君, 李正男, 王文辉, 孙平平. Vishniacozyma carnescens PGLY-1的分离、鉴定及对梨青霉病的抑制作用评价. 中国果树, 2020(5):50-54. doi: 10.16626/j.cnki.issn1000-8047.2020.05.009.
doi: 10.16626/j.cnki.issn1000-8047.2020.05.009
MA Q, SHI Y J, LI Z N, WANG W H, SUN P P. Isolation and identification of Vishniacozyma carnescens PGLY-1 for the inhibition of pear green mold. China Fruits, 2020(5):50-54. doi: 10.16626/j.cnki.issn1000-8047.2020.05.009. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2020.05.009
[7] 张靖国, 陈启亮, 杨晓平, 范净, 胡红菊. 1-MCP处理对翠冠梨货架期品质的影响. 湖北农业科学, 2020, 59(21):121-123. doi: 10.14088/j.cnki.issn0439-8114.2020.21.025.
doi: 10.14088/j.cnki.issn0439-8114.2020.21.025
ZHANG J G, CHEN Q L, YANG X P, FAN J, HU H J. Effects of 1-MCP treatment on shelf life quality of Cuiguan pear. Hubei Agricultural Sciences, 2020, 59(21):121-123. doi: 10.14088/j.cnki.issn0439-8114.2020.21.025. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2020.21.025
[8] KAN C N, GAO Y, WAN C P, CHEN M, ZHAO X Y, LIU S J, CHEN J Y. Influence of different cold storage times on quality of ‘Cuiguan’pear fruits during shelf life. Journal of Food Processing and Preservation, 2019, 43(12):14245.
[9] 王蕊, 杨小龙, 须晖, 李天来. 高等植物褪黑素的合成和代谢研究进展. 植物生理学报, 2016, 52(5):615-627.
WANG R, YANG X L, XU H, LI Y L. Research progress of melatonin biosynthesis and metabolism in higher plants. Plant Physiology Journal, 2016, 52(5):615-627. (in Chinese)
[10] 巩彪, 史庆华. 园艺作物褪黑素的研究进展. 中国农业科学, 2017, 50(12):2326-2337. doi: 10.3864/j.issn.0578-1752.2017.12.013.
doi: 10.3864/j.issn.0578-1752.2017.12.013
GONG B, SHI Q H. Review of melatonin in horticultural crops. Scientia Agricultura Sinica, 2017, 50(12):2326-2337. doi: 10.3864/j.issn.0578-1752.2017.12.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.013
[11] WANG L, LUO Z S, BAN Z J, JIANG N, YANG M Y, LI L. Role of exogenous melatonin involved in phenolic metabolism of Zizyphus jujuba fruit. Food Chemistry, 2021, 341(pt 2):128268. doi: 10.1016/j.foodchem.2020.128268.
doi: 10.1016/j.foodchem.2020.128268
[12] 卞凤娥, 肖秋红, 郝桂梅, 孙永江, 陆文利, 杜远鹏, 翟衡. 根施褪黑素对NaCl胁迫下葡萄内源褪黑素及叶绿素荧光特性的影响. 中国农业科学, 2018, 51(5):952-963.
BIAN F E, XIAO Q H, HAO G M, SUN Y J, LU W L, DU Y P, ZHAI H. Effect of root-applied melatonin on endogenous melatonin and chlorophyll fluorescence characteristics in grapevine under NaCl stress. Scientia Agricultura Sinica, 2018, 51(5):952-963. (in Chinese)
[13] 乔沛, 殷菲胧, 王雨萱, 李静, 董新红. 外源褪黑素处理对采后荔枝褐变及活性氧代谢的影响. 食品工业科技, 2021, 42(6):282-287. doi: 10.13386/j.issn1002-0306.2020060279.
doi: 10.13386/j.issn1002-0306.2020060279
QIAO P, YIN F L, WANG Y X, LI J, DONG X H. Effects of exogenous melatonin on browning and active oxygen metabolism of postharvest Litchi. Science and Technology of Food Industry, 2021, 42(6):282-287. doi: 10.13386/j.issn1002-0306.2020060279. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020060279
[14] GAO H, LU Z M, YANG Y, WANG D N, YANG T, CAO M M, CAO W. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 2018, 245:659-666. doi: 10.1016/j.foodchem.2017.10.008.
doi: 10.1016/j.foodchem.2017.10.008
[15] 何欢, 刘昭雪, 张亚琳, 张欢欢, 芦玉佳, 朱璇. 外源褪黑素调控活性氧代谢对减轻采后杏果实冷害的分析. 食品科学, 2021. https://kns.cnki.net/kcms/detail/11.2206.TS.20210322.1129.018.html.
HE H, LIU Z X, ZHANG Y L, ZHANG H H, LU Y J, ZHU X. Effects of exogenous melatonin on reactive oxygen species metabolism and chilling injury of postharvest apricot fruit. Food Science, 2021. https://kns.cnki.net/kcms/detail/11.2206.TS.20210322.1129.018.html. (in Chinese)
[16] 王纪忠, 童瑶, 史云勇, 魏树伟. 外源褪黑素处理对常温货架期梨果实贮藏品质的影响. 果树学报, 2021, 38(4):569-579.
WANG J Z, TONG Y, SHI Y Y, WEI S W. Effects of exogenous melatonin treatment on storage quality of pear fruits during shelf life at room temperature. Journal of Fruit Science, 2021, 38(4):569-579. (in Chinese)
[17] AGHDAM M S, LUO Z, LI L, JANNATIZADEH A, FARD J R, PIRZAD F. Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chemistry, 2020, 303:125385. doi: 10.1016/j.foodchem.2019.125385.
doi: 10.1016/j.foodchem.2019.125385
[18] ONIK J C, WAI S C, LI A, LIN Q, SUN Q Q, WANG Z D, DUAN Y Q. Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 2021, 337:127753. doi: 10.1016/j.foodchem.2020.127753.
doi: 10.1016/j.foodchem.2020.127753
[19] 刘帅民, 胡康琦, 刘港帅, 张善英, 潘永贵, 史学群, 张正科. 外源褪黑素处理对鲜切芒果贮藏品质的影响. 食品科学, 2020, 41(21):160-166. doi: 10.7506/spkx1002-6630-20191031-358.
doi: 10.7506/spkx1002-6630-20191031-358
LIU S M, HU K Q, LIU G S, ZHANG S Y, PAN Y G, SHI X Q, ZHANG Z K. Effect of exogenous melatonin treatment on storage quality of fresh-cut mango. Food Science, 2020, 41(21):160-166. doi: 10.7506/spkx1002-6630-20191031-358. (in Chinese)
doi: 10.7506/spkx1002-6630-20191031-358
[20] 生吉萍, 赵瑞瑞, 陈玲玲, 申琳. 褪黑素采前喷施对采后番茄果实抗病性和贮藏品质的影响. 食品科学, 2020, 41(9):188-193. doi: 10.7506/spkx1002-6630-20190416-204.
doi: 10.7506/spkx1002-6630-20190416-204
SHENG J P, ZHAO R R, CHEN L L, SHEN L. Effect of pre-harvest melatonin spraying on the post-harvest disease resistance and storage quality of tomato fruit. Food Science, 2020, 41(9):188-193. doi: 10.7506/spkx1002-6630-20190416-204. (in Chinese)
doi: 10.7506/spkx1002-6630-20190416-204
[21] 刘建龙. 外源褪黑素对梨果实发育、采后品质和抗轮纹病的影响及其调控机制研究[D]. 杨凌: 西北农林科技大学, 2019.
LIU J L. Regulatory function of exogenous melatonin on fruit development, postharvest fruit quality and ring rot disease resistance in pears[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[22] 余辰. γ-氨基丁酸对梨果实青霉病抗性的诱导作用及相关机理研究[D]. 杭州: 浙江大学, 2014.
YU C. Induced effect of γ-aminobutvric acid on host resistance against blue mold and defense-related mechanism in pear fruit[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[23] LIVAK K J, SCHMITTGEN T D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
[24] PAN L Y, ZHAO X Y, CHEN M, FU Y Q, XIANG M L, CHEN J Y. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chemistry, 2020, 305:125483. doi: 10.1016/j.foodchem.2019.125483.
doi: 10.1016/j.foodchem.2019.125483
[25] 李磊, 陆杰, 包亚洲, 李勇, 吕文河, 王晓丹. 四种化合物诱导马铃薯抗晚疫病的效果及其相关防御基因表达分析. 植物保护学报, 2020, 47(6):1277-1286. doi: 10.13802/j.cnki.zwbhxb.2020.2020019.
doi: 10.13802/j.cnki.zwbhxb.2020.2020019
LI L, LU J, BAO Y Z, LI Y, LÜ W H, WANG X D. Resistant effects of potato against late blight and expression analysis of potato-related defense genes induced by four kinds of compounds. Journal of Plant Protection, 2020, 47(6):1277-1286. doi: 10.13802/j.cnki.zwbhxb.2020.2020019. (in Chinese)
doi: 10.13802/j.cnki.zwbhxb.2020.2020019
[26] 杨艺琳, 张正敏, 李美琳, 赵立艳, 金鹏, 郑永华. 2, 4-表油菜素内酯对葡萄果实采后灰霉病的抑制作用机理. 食品科学, 2019, 40(15):231-238. doi: 10.7506/spkx1002-6630-20180821-222.
doi: 10.7506/spkx1002-6630-20180821-222
YANG Y L, ZHANG Z M, LI M L, ZHAO L Y, JIN P, ZHENG Y H. Modes of action of 2, 4-epibrassionolide against postharvest gray mold decay of grapes. Food Science, 2019, 40(15):231-238. doi: 10.7506/spkx1002-6630-20180821-222. (in Chinese)
doi: 10.7506/spkx1002-6630-20180821-222
[27] 孙子荀, 倪照君, 高志红, 乔玉山, 万春雁, 古咸彬. 外源褪黑素提高草莓黑斑病抗性的效果和作用机制初探. 西北植物学报, 2020, 40(10):1679-1687. doi: 10.7606/j.issn.1000-4025.2020.10.1679.
doi: 10.7606/j.issn.1000-4025.2020.10.1679
SUN Z X, NI Z J, GAO Z H, QIAO Y S, WAN C Y, GU X B. Effect and mechanism of exogenous melatonin on improvement of black rot disease resistance in strawberry. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10):1679-1687. doi: 10.7606/j.issn.1000-4025.2020.10.1679. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2020.10.1679
[28] 郭博铖, 柯希望, 高尚雨, 于昕卉, 孙启明, 左豫虎. 褪黑素诱导小豆抗锈病机理的初步研究. 植物保护, 2020, 46(1):145-150, 156. doi: 10.16688/j.zwbh.2018521.
doi: 10.16688/j.zwbh.2018521
GUO B C, KE X W, GAO S Y, YU X H, SUN Q M, ZUO Y H. A preliminary study on the mechanisms of melatonin-induced rust resistance of adzuki bean. Plant Protection, 2020, 46(1):145-150, 156. doi: 10.16688/j.zwbh.2018521. (in Chinese)
doi: 10.16688/j.zwbh.2018521
[29] ADHIKARY T, GILL P P S, JAWANDHA S K, BHARDWAJ R D, ANURAG R K. Efficacy of postharvest sodium nitroprusside application to extend storability by regulating physico-chemical quality of pear fruit. Food Chemistry, 2021, 346:128934. doi: 10.1016/j.foodchem.2020.128934.
doi: 10.1016/j.foodchem.2020.128934
[30] MIRANDA S, VILCHES P, SUAZO M, PAVEZ L, GARCÍA K, MÉNDEZ M A, GONZÁLEZ M, MEISEL L A, DEFILIPPI B G, DEL POZO T. Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry, 2020, 319:126360. doi: 10.1016/j.foodchem.2020.126360.
doi: 10.1016/j.foodchem.2020.126360
[31] LORENTE-MENTO J M, GUILLÉN F, CASTILLO S, MARTÍNEZROMERO D, VALVERDE J M, VALERO D, SERRANO M. Melatonin treatment to pomegranate trees enhances fruit bioactive compounds and quality traits at harvest and during postharvest storage. Antioxidants, 2021, 10(6):820.
doi: 10.3390/antiox10060820
[32] 胡苗, 李佳颖, 饶景萍. 褪黑素处理对采后猕猴桃果实后熟衰老的影响. 食品科学, 2018, 39(19):226-232. doi: 10.7506/spkx1002-6630-201819035.
doi: 10.7506/spkx1002-6630-201819035
HU M, LI J Y, RAO J P. Effect of melatonin on ripening and senescence of postharvest kiwifruits. Food Science, 2018, 39(19):226-232. doi: 10.7506/spkx1002-6630-201819035. (in Chinese)
doi: 10.7506/spkx1002-6630-201819035
[33] ZHAO H D, WANG B G, CUI K B, CAO J K, JIANG W B. Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature. Scientia Horticulturae, 2019, 246:68-78.
doi: 10.1016/j.scienta.2018.10.054
[34] WANG D, CHEN Q Y, CHEN W W, GUO Q G, XIA Y, WU D, JING D L, LIANG G L. Melatonin treatment maintains quality and delays lignification in loquat fruit during cold storage. Scientia Horticulturae, 2021, 284:110126
doi: 10.1016/j.scienta.2021.110126
[35] 徐利伟, 岑啸, 李林香, 沈子明, 陈景丹, 陈馨, 陈伟, 杨震峰. 外源褪黑素对低温胁迫下桃果实蔗糖代谢的影响. 核农学报, 2017, 31(10):1963-1971. doi: 10.11869/j.issn.100-8551.2017.10.1963.
doi: 10.11869/j.issn.100-8551.2017.10.1963
XU L W, CEN X, LI L X, SHEN Z M, CHEN J D, CHEN X, CHEN W, YANG Z F. Effect of exogenous melatonin on sucrose metabolism in peach fruit exposed to low temperature stress. Journal of Nuclear Agricultural Sciences, 2017, 31(10):1963-1971. doi: 10.11869/j.issn.100-8551.2017.10.1963. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.10.1963
[36] TANG Q, LI C Y, GE Y H, LI X, CHENG Y, HOU J B, LI J R. Exogenous application of melatonin maintains storage quality of jujubes by enhancing anti-oxidative ability and suppressing the activity of cell wall-degrading enzymes. LWT-Food Science and Technology, 2020, 127:109431.
doi: 10.1016/j.lwt.2020.109431
[37] POSE G, PATRIARCA A, KYANKO V, PARDO A, FERNÁNDEZ PINTO V. Water activity and temperature effects on mycotoxin production by Alternaria alternata on a synthetic tomato medium. International Journal of Food Microbiology, 2010, 142(3):348-353. doi: 10.1016/j.ijfoodmicro.2010.07.017.
doi: 10.1016/j.ijfoodmicro.2010.07.017
[38] 黄伟, 冯作山, 白羽嘉, 张培岭, 郑峰. 采后果实链格孢属真菌病害防治方法研究进展. 食品与机械, 2016, 32(3):247-252.
HUANG W, FENG Z S, BAI Y J, ZHANG P L, ZHENG F. Advances on methods to control fungal diseases of Alternaria spp in postharvest. Food & Machinery, 2016, 32(3):247-252. (in Chinese)
[1] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[2] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[5] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[6] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[7] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[8] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[11] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[12] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[13] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[14] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[15] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!