Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4702-4716.doi: 10.3864/j.issn.0578-1752.2022.23.011
• HORTICULTURE • Previous Articles Next Articles
GUO ShaoLei1(),XU JianLan1,WANG XiaoJun1,2,SU ZiWen1,2,ZHANG BinBin1,MA RuiJuan1,YU MingLiang1,*()
[1] |
YOSHIOKA H, HAYAMA H, TATSUKI M, NAKAMURA Y. Cell wall modification during development of mealy texture in the stony-hard peach “Odoroki” treated with propylene. Postharvest Biology and Technology, 2010, 55(1): 1-7.
doi: 10.1016/j.postharvbio.2009.08.005 |
[2] |
BRUMMELL D A, HARPSTER M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 2001, 47(1/2): 311-340.
doi: 10.1023/A:1010656104304 |
[3] |
MA M M, YUAN Y B, CHENG C X, ZHANG Y, YANG S L. The MdXTHB gene is involved in fruit softening in ‘Golden Del. Reinders’ (Malus pumila). Journal of the Science of Food and Agriculture, 2021, 101(2): 564-572.
doi: 10.1002/jsfa.10668 |
[4] |
WITASARI L D, HUANG F C, HOFFMANN T, ROZHON W, FRY S C, SCHWAB W. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH9 and FvXTH6 accelerates fruit ripening. The Plant Journal, 2019, 100(6): 1237-1253. doi: 10.1111/tpj.14512.
doi: 10.1111/tpj.14512 |
[5] |
HAN Y, BAN Q Y, LI H, HOU Y L, JIN M J, HAN S K, RAO J P. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Scientific Reports, 2016, 6: 39155. doi: 10.1038/srep39155.
doi: 10.1038/srep39155 pmid: 27966647 |
[6] | 韩叶. 柿果实木葡聚糖内糖基转移/水解酶基因表达特性及功能分析[D]. 杨凌: 西北农林科技大学, 2017. |
HAN Y. Expression and functional analysis of xyloglucan endotransglycosylase/hydrolase genes in persimmon fruit[D]. Yangling: Northwest A&F University, 2017. (in Chinese) | |
[7] |
ZHU Q G, ZHANG Z K, RAO J P, HUBER D J, LV J Y, HOU Y L, SONG K H. Identification of xyloglucan endotransglucosylase/ hydrolase genes (XTHs) and their expression in persimmon fruit as influenced by 1-methylcyclopropene and gibberellic acid during storage at ambient temperature. Food Chemistry, 2013, 138(1): 471-477. doi: 10.1016/j.foodchem.2012.09.141.
doi: 10.1016/j.foodchem.2012.09.141 |
[8] |
SCHRÖDER R, ATKINSON R G, LANGENKÄMPER G, REDGWELL R J. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta, 1998, 204(2): 242-251. doi: 10.1007/s004250050253.
doi: 10.1007/s004250050253 pmid: 9487728 |
[9] |
EKLÖF J M, BRUMER H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 2010, 153(2): 456-466. doi: 10.1104/pp.110.156844.
doi: 10.1104/pp.110.156844 pmid: 20421457 |
[10] |
BAUMANN M J, EKLÖF J M, MICHEL G, KALLAS A M, TEERI T T, CZJZEK M, BRUMER H. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 2007, 19(6): 1947-1963. doi: 10.1105/tpc.107.051391.
doi: 10.1105/tpc.107.051391 |
[11] |
ROSE J K C, BRAAM J, FRY S C, NISHITANI K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 2002, 43(12): 1421-1435. doi: 10.1093/pcp/pcf171.
doi: 10.1093/pcp/pcf171 pmid: 12514239 |
[12] |
COSGROVE D J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.
pmid: 16261190 |
[13] |
ATKINSON R G, JOHNSTON S L, YAUK Y K, SHARMA, SCHRODER R. Analysis of xyloglucan endotransglucosylase/ hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 2009, 51(2): 149-157.
doi: 10.1016/j.postharvbio.2008.06.014 |
[14] |
WU D, LIU A Q, QU X Y, LIANG J Y, SONG M. Genome-wide identification, and phylogenetic and expression profiling analyses of XTH gene families in Brassica rapa L. and Brassica oleracea L.. BMC Genomics, 2020, 21(1): 782.
doi: 10.1186/s12864-020-07153-1 |
[15] |
LI Q Y, LI H Y, YIN C Y, WANG X T, JIANG Q, ZHANG R, GE F F, CHEN Y D, YANG, L. Genome-wide identification and characterization of xyloglucan endotransglycosylase/hydrolase in Ananas comosus during development. Genes, 2019, 10(7): E537. doi: 10.3390/genes10070537.
doi: 10.3390/genes10070537 |
[16] |
FU M M, LIU C, WU F B. Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in barley (Hordeum vulgare). Molecules (Basel, Switzerland), 2019, 24(10): E 1935. doi: 10.3390/molecules24101935.
doi: 10.3390/molecules24101935 |
[17] |
WANG M, XU Z C, DING A M, Kong Y Z. Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes, 2018, 9(6): 273.
doi: 10.3390/genes9060273 |
[18] |
ZHANG Z Y, WANG N, JIANG S H, XU H F, WANG Y C, WANG C Z, LI M, LIU J X, QU C Z, LIU W, WU S J, CHEN X L, CHEN X S. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. Journal of Agricultural and Food Chemistry, 2017, 65(2): 429-434. doi: 10.1021/acs.jafc.6b04536.
doi: 10.1021/acs.jafc.6b04536 pmid: 28025888 |
[19] |
HAN Y, ZHU Q G, ZHANG Z K, MENG K, HOU Y L, BAN Q Y, SUO J T, RAO J P. Analysis of xyloglucan endotransglycosylase/ hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS ONE, 2015, 10(4): e0123668.
doi: 10.1371/journal.pone.0123668 |
[20] | 丛郁, 刘洪, 李慧, 颜志梅, 俞明亮, 常有宏.成熟砂梨果实木葡聚糖转移酶基因PpXTH1的克隆及其在夏季货架期的表达规律, 江苏农业学报, 2010, 26(1): 143-151. |
CONG Y, LIU H, LI H, YAN Z M, YU M L, CHANG Y H. Cloning of an xyloglucan endotransglycosylase/hydrolase gene (PpXTH1) from mature sandy pear fruit and its expression characteristics during summer shelf life. Jiangsu Journal of Agricultural Sciences, 2010, 26(1): 143-151. (in Chinese) | |
[21] |
OPAZO M C, LIZANA R, STAPPUNG Y, DAVIS T M, HERRERA R, MOYA-LEÓN M A. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. BMC Genomics, 2017, 18(1): 852. doi: 10.1186/s12864-017-4255-8.
doi: 10.1186/s12864-017-4255-8 |
[22] | LU W J, NAKANO R, KUBO Y, INABA A, JIANG Y M. Cloning and expression analysis of an XET cDNA in the peel and pulp of banana fruit ripening and softening. Acta Botanica Sinica, 2004, 46(3): 355-362. |
[23] |
YOKOYAMA R, NISHITANI K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant and Cell Physiology, 2001, 42(10): 1025-1033. doi: 10.1093/pcp/pce154.
doi: 10.1093/pcp/pce154 |
[24] |
YOKOYAMA R, ROSE J K C, NISHITANI K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiology, 2004, 134(3): 1088-1099.
pmid: 14988479 |
[25] |
SALADIÉ M, ROSE J K, COSGROVE D J, CATALÁ C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. The Plant Journal, 2006, 47(2): 282-295. doi: 10.1111/j.1365-313x.2006.02784.x.
doi: 10.1111/j.1365-313x.2006.02784.x |
[26] | HAN Y, BAN Q Y, HOU Y L, MENG K, SUO J T, RAO J P. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/ hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Frontiers in Plant Science, 2016, 7: 624. |
[27] |
CAMPBELL P, BRAAM J. In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant Journal, 1999, 18(4): 371-382. doi: 10.1046/j.1365-313x.1999.00459.x.
doi: 10.1046/j.1365-313x.1999.00459.x |
[28] |
STROHMEIER M, HRMOVA M, FISCHER M, HARVEY A J, FINCHER G B, PLEISS J. Molecular modeling of family GH16 glycoside hydrolases: Potential roles for xyloglucan transglucosylases/ hydrolases in cell wall modification in the Poaceae. Protein Science, 2004, 13(12): 3200-3213. doi: 10.1110/ps.04828404.
doi: 10.1110/ps.04828404 |
[29] |
BEHAR H, GRAHAM S W, BRUMER H. Comprehensive cross- genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant Journal, 2018, 95(6): 1114-1128. doi: 10.1111/tpj.14004.
doi: 10.1111/tpj.14004 |
[30] |
MICHAILIDIS G, ARGIRIOU A, DARZENTAS N, TSAFTARIS A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. Journal of Plant Physiology, 2009, 166(4): 403-416. doi: 10.1016/j.jplph.2008.06.013.
doi: 10.1016/j.jplph.2008.06.013 pmid: 18789555 |
[31] |
MUÑOZ-BERTOMEU J, MIEDES E, LORENCES E P. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. Journal of Plant Physiology, 2013, 170(13): 1194-1201.
doi: 10.1016/j.jplph.2013.03.015 |
[32] |
FINN R D, COGGILL P, EBERHARDT R Y, EDDY S R, MISTRY J, MITCHELL A L, POTTER S C, PUNTA M, QURESHI M, SANGRADOR-VEGAS A, SALAZAR G A, TATE J, BATEMAN A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 2015, 44(D1): D279-D285. doi: 10.1093/nar/gkv1344.
doi: 10.1093/nar/gkv1344 |
[33] |
GOODSTEIN D M, SHU S Q, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Resesearch, 2012, 40(D1): D1178-D1186. doi: 10.1093/nar/gkr944.
doi: 10.1093/nar/gkr944 |
[34] |
MARCHLER-BAUER A, BO Y, HAN L Y, HE J E, LANCZYCKI C J, LU S N, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LU F, MARCHLER G H, SONG J S, THANKI N, WANG Z X, YAMASHITA R A, ZHANG D C, ZHENG C J, GEER L Y, BRYANT S H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2016, 45(D1): D200-D203. doi: 10.1093/nar/gkw1129.
doi: 10.1093/nar/gkw1129 |
[35] |
WILKINS M R, GASTEIGER E, BAIROCH A, SANCHEZ J C, WILLIAMS K L, APPEL R D, HOCHSTRASSER D F. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 1999, 112: 531-552. doi: 10.1385/1-59259-584-7:531.
doi: 10.1385/1-59259-584-7:531 pmid: 10027275 |
[36] |
CHOU K C, SHEN H B. Cell-PLoc: A package of web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3(2): 153-162. doi: 10.1038/nprot.2007.494.
doi: 10.1038/nprot.2007.494 |
[37] |
BAILEY T L, JOHNSON J, GRANT C E, NOBLE W S. The MEME Suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.
doi: 10.1093/nar/gkv416 |
[38] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[39] |
LAMESCH P, BERARDINI T Z, LI D H, SWARBRECK D, WILKS C, SASIDHARAN R, MULLER R, DREHER K, ALEXANDER D L, GARCIA-HERNANDEZ M, KARTHIKEYAN A S, LEE C H, NELSON W D, PLOETZ L, SINGH S, WENSEL A, HUALA E. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2011, 40(D1): D1202-D1210. doi: 10.1093/nar/gkr1090.
doi: 10.1093/nar/gkr1090 |
[40] |
JOHANSSON P, BRUMER H, BAUMANN M J, KALLAS A M, HENRIKSSON H, DENMAN S E, TEERI T T, JONES T A. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. The Plant Cell, 2004, 16(4): 874-886. doi:10.1105/tpc.020065.
doi: 10.1105/tpc.020065 |
[41] |
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[42] |
ROBERT X, GOUET P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 2014, 42(W1): W320-W324. doi: 10.1093/nar/gku316.
doi: 10.1093/nar/gku316 |
[43] |
VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78. doi: 10.1093/jhered/93.1.77.
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[44] |
TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10: 71. doi: 10.1186/1471-2199-10-71.
doi: 10.1186/1471-2199-10-71 pmid: 19619301 |
[45] |
LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[46] | 王昊, 尹莲, 刘洁霞, 贾丽丽, 丁旭, 沈迪, 冯凯, 徐志胜, 熊爱生. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色. 中国农业科学, 2021, 54(15): 3279-3294. |
WANG H, YIN L, LIU J X, JIA L L, DING X, SHEN D, FENG K, XU Z S, XIONG A S. The carotenoid cleavage dioxygenases gene AgCCD4 regulates the pigmentation of celery tissues with different colors. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294. (in Chinese) | |
[47] | 徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 2020, 47(8): 1595-1609. |
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. (in Chinese) | |
[48] |
IQBAL N, KHAN N A, FERRANTE A, TRIVELLINI A, FRANCINI A, KHAN M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science, 2017, 8: 475. doi: 10.3389/fpls.2017.00475.
doi: 10.3389/fpls.2017.00475 pmid: 28421102 |
[49] |
ZHAI Z F, FENG C, WANG Y Y, SUN Y T, PENG X, XIAO Y Q, ZHANG X, ZHOU X, JIAO J L, WANG W L. Genome-wide identification of the xyloglucan endotransglucosylase/hydrolase (XTH) and polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry. International Journal of Molecular Sciences, 2021, 22(22): 12331. doi: 10.3390/ijms222212331.
doi: 10.3390/ijms222212331 |
[50] |
CHENG Z H, ZHANG X M, YAO W J, GAO Y, ZHAO K, GUO Q, ZHOU B R, JIANG T B. Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar. BMC Genomics, 2021, 22(1): 804. doi: 10.1186/s12864-021-08134-8.
doi: 10.1186/s12864-021-08134-8 pmid: 34749656 |
[51] | 杨勇, 马瑞娟, 张斌斌, 宋志忠, 张春华, 郭绍雷, 俞明亮. 不同溶质桃果实的软化与乙烯合成相关基因的差异表达. 园艺学报, 2015, 42(10): 1869-1878. |
YANG Y, MA R J, ZHANG B B, SONG Z Z, ZHANG C H, GUO S L, YU M L. Differential expression analysis in fruit softening and ethylene biosynthetic pathways in peaches of different flesh textures. Acta Horticulturae Sinica, 2015, 42(10): 1869-1878. (in Chinese) | |
[52] |
CHEEVARUNGNAPAKUL K, KHAKSAR G, PANPETCH P, BOONJING P, SIRIKANTARAMAS S. Identification and functional characterization of genes involved in the biosynthesis of caffeoylquinic acids in sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2019, 10: 968. doi: 10.3389/fpls.2019.00968.
doi: 10.3389/fpls.2019.00968 |
[1] | QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101. |
[2] | CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963. |
[3] | PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980. |
[4] | ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429. |
[5] | HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198. |
[6] | LIU SuNing, BIE HangLing, WANG JunXiu, CHEN XueJia, WANG XinWei, WANG LiRong, CAO Ke. Background Selection and Comparison of Marker Superiority and Inferiority of Aphid-Resistant Seedlings in an Interspecific Cross Peach Population [J]. Scientia Agricultura Sinica, 2023, 56(15): 2995-3005. |
[7] | WANG ZhaoHui, LI Yong, CAO Ke, ZHU GengRui, FANG WeiChao, CHEN ChangWen, WANG XinWei, WU JinLong, WANG LiRong. Genotype Identification and Combination Analysis of Loci Related to the Peach Flesh Texture Trait via 189 Peach Accessions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2367-2379. |
[8] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[9] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[10] | YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158. |
[11] | LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574. |
[12] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[13] | HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499. |
[14] | ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338. |
[15] | KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766. |
|