Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4702-4716.doi: 10.3864/j.issn.0578-1752.2022.23.011

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage

GUO ShaoLei1(),XU JianLan1,WANG XiaoJun1,2,SU ZiWen1,2,ZHANG BinBin1,MA RuiJuan1,YU MingLiang1,*()   

  1. 1Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014
    2College of Horticulture, Nanjing Agricultural University, Nanjing 210095
  • Received:2022-02-23 Accepted:2022-07-24 Online:2022-12-01 Published:2022-12-06
  • Contact: MingLiang YU E-mail:guoshaolei0305@126.com;mly1008@aliyun.com

Abstract:

【Objective】 The aim of this study was to identify members of the XTH gene family from peach, and to analyze the expression of PpXTHs in peach fruit with different textures during storage, which not only provided data for the research on the candidate PpXTHs involved in peach fruit softening, but also laid the foundation for further study on the PpXTHs function in peach fruit softening.【Method】 The HMM profiles of the Glyco_hydro_16 domain and XET_C domain were used to search all XTH proteins with the Hmmer 3.1 software in the peach protein database. The molecular weight, theoretical isoelectric point and other physicochemical properties were then predicted by the online tool ProtParam. PpXTHs subcellular localization were predicted by the online software Plant-mPLoc. The MEGA 11 software was used to construct a phylogenetic tree. The online tool MEME was used to analyze conserved motifs, the conserved motifs, conserved protein domains and gene structure maps were draw by Tbtools. According to the PpXTH gene family location information, chromosome mapping was carried out with MapChart software. The expressions of PpXTHs in peach fruit with different textures during storage were monitored by qRT-PCR..【Result】 A total of 27 PpXTH genes were systematically identified from peach, which were distributed on seven chromosomes. Based on the phylogenetic tree, the ancestral group, Ⅰ/Ⅱ subfamily, ⅢA subfamily and ⅢB subfamily were classified. In addition, according to the analysis of protein domains, all PpXTH gene family proteins had Glyco_hydro_16 and XET_C conserved domain. The results from qRT-PCR analysis showed that PpXTH33 belonging to the ⅢB subfamily was upregulated as the storage period increased in melting peach fruit, with the expression being markedly higher than that during the storage period of stony hard peach fruit. The positive clone sequencing was consistent with the coding sequence of the Prunus persica reference genome with a length of 924 bp for a 307 amino acid sequence. The PpXTH33 combined with green fluorescent protein may mainly located in the cell wall and nucleus detected by confocal laser scanning microscopy..【Conclusion】 All 27 PpXTHs protein structures contained two highly XTH conserved domains and the genes were distributed on seven chromosomes. The expression characteristics of PpXTH33 in peach fruit with different flesh textures during storage suggested that PpXTH33 was closely associated with peach fruit softening during storage.

Key words: peach, fruit softening, XTH gene family, gene expression, subcellular localization

Table 1

Primers used for qRT-PCR and subcellular localization"

基因
Gene
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
PpXTH1a ATGGCTTTCTCAGTGGTTCGT AAAGCCGGACTTCTCTTCCA
PpXTH1b GCAATCACGCTGCAGACAAA TAGGCTGTGTTGGGTAGGGA
PpXTH5 CCGCAGCTTACCACTCCTAC AGAATTTGGCCTCCACCGAG
PpXTH6 GAGTTCTTGGGGAACCGGAC GGGTTGGAGCTTGGGGTATG
PpXTH8 GATGGGTGCCAATGGGAAGA GGCAAAGTTGGGTAGCGTTC
PpXTH9 CAAGGACCAAGCTATGGGGG CTGCTGCACTTCTTTGCGTT
PpXTH10 GGAAATGTGGCAGGCAAACC AGCTGTCGCCATTCCATAGG
PpXTH16a GCCAAACCGCGATGAGATTG ACGCTGAGGGTTCCAAAGAA
PpXTH16b AAACGGACTGGTCAAAGGCA CACTCAACTGGAGGGCCTTG
PpXTH16c AAGACTGACTGGAGCCATGC CGGGAACTTAGGACGGTCAG
PpXTH16d CTGGAACTCTCAGCGCATC AGGAGCTTGTGTCCAGTCAG
PpXTH16e TCTTCTCAAGGGCCAACCCA GGCTGTTCCAGACAATGGAGT
PpXTH16f ATGACTTCTTCCAAGGTCACTGT TGAGAAGCTGTCCTCCGTTG
PpXTH16g CCCTACACTCTCCACACAAAC GGGTTGGCTTTTGGGAAATGG
PpXTH16h GGTGCTCATTCTTTCTTTGGTC TCTGCATGTCAATCCTGCCC
PpXTH25a CCACAAGAGGTGGACTGGTG ACCCATGCCATCTTCCCTTG
PpXTH25b CAGGCTCTTCCCGTTGTTCT GTGGGAAGCGCTTGGTATCT
PpXTH25c AACGCCAATGCTTGCGTATG TTCAGGAGGGAGGCCTTGT
PpXTH25d ACTGGGCTACAAGAGGAGGT TCTTGGCCGGTGGAGTCTAA
PpXTH25e AATGCCTGCGTATGGTCCTC AGCCTTGGGGAAATCTCTTGG
PpXTH25f AGAGCTCCTTTCACTGCTTCC CAGCCTCTCCTGCCTTGTTA
PpXTH26 CAGGGGATTGCTTACCCCAA TGTCTCCGTTCCACTTGCAG
PpXTH28 CTACACGGCTGTGCAGTTGA TGTGACGGGGTCAAACACTC
PpXTH30 CAGGTTCAGGCAGCGATACA GATTGCGATTGCGGGTTCTC
PpXTH32a CTGGGGTCCTCAGCATCAAA GTCATGGTACCCCGGATGAG
PpXTH32b TGTGGGGTCCACAGATCAC CCTGATCAAACCCTACTGTGCT
PpXTH33 CTACACAAGCCCAAGCGTTC ACAACCCCAGAAGTGAGACC
TEF2 GGTGTGACGATGAAGAGTGATG TGAAGGAGAGGGAAGGTGAAAG
pCAMBIA1302-PpXTH33-GFP AACACGGGGGACTCTTGAccatgg
ATGGCATTTTTGCAGGGAAAAC
TCC
GAAAAGTTCTTCTCCTTTactagt
TTTGCACTCTGGTGGCATGAC

Table 2

Characteristic analysis of XTH gene family members in peach"

命名方式
Symbol
基因号
Gene ID
氨基酸数量
Number of amino acid
分子量
Mw (Da)
理论等电点
pI
亚细胞定位
Subcellular localization
PpXTH1a Prupe.8G200900.1 287 33055.89 6.19 细胞壁 Cell wall
PpXTH1b Prupe.8G201000.1 289 33545.54 6.31 细胞壁 Cell wall
PpXTH5 Prupe.1G210900.1 332 38568.82 8.73 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH6 Prupe.6G213600.1 291 33271.63 7.60 细胞壁 Cell wall
PpXTH8 Prupe.4G025600.1 300 34771.06 4.92 细胞壁 Cell wall
PpXTH9 Prupe.3G223200.1 296 33606.76 5.73 细胞壁 Cell wall
PpXTH10 Prupe.8G152500.1 295 34300.00 9.35 细胞壁 Cell wall
PpXTH16a Prupe.4G072800.1 282 32460.74 9.44 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH16b Prupe.1G169700.1 277 31640.95 9.28 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH16c Prupe.3G172100.1 269 30385.02 8.58 细胞壁 Cell wall
PpXTH16d Prupe.3G171500.1 285 32329.43 8.36 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH16e Prupe.3G171600.1 285 32263.44 8.91 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH16f Prupe.3G171700.1 282 32083.21 8.98 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH16g Prupe.3G172000.1 285 32135.26 8.70 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH16h Prupe.3G171800.1 288 32353.36 8.48 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH25a Prupe.1G088500.1 297 33791.75 4.80 细胞壁 Cell wall
PpXTH25b Prupe.1G069800.1 285 31908.85 8.25 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH25c Prupe.1G088800.1 284 32099.38 8.49 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH25d Prupe.1G088600.1 293 32945.77 5.12 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH25e Prupe.1G089000.1 299 33370.47 5.49 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH25f Prupe.1G088900.1 296 32990.73 6.74 细胞壁 Cell wall,
细胞质 Cytoplasm
PpXTH26 Prupe.7G225000.1 290 32996.23 8.20 细胞壁 Cell wall
PpXTH28 Prupe.1G337000.1 338 38610.43 6.94 细胞壁 Cell wall
PpXTH30 Prupe.5G027800.1 359 41218.83 8.96 细胞壁 Cell wall
PpXTH32a Prupe.7G128000.1 292 33720.45 9.52 细胞壁 Cell wall
PpXTH32b Prupe.6G110300.1 351 39654.76 5.97 细胞壁 Cell wall
PpXTH33 Prupe.1G255100.1 307 34235.96 8.39 细胞壁 Cell wall

Fig. 1

Phylogenetic analysis of full-length XTH proteins in peach Red circles represent XTH protein in peach, blue circles represent XTH protein in Arabidopsis thaliana, yellow circles represent XTH protein in tomato, black circles represent XTH protein in other species"

Fig. 2

Structural and chromosome distribution analysis of XTH family members in peach A: Distribution of XTH genes on peach chromosomes; B: Conserved motif location; C: Domain location; D: Intron/exon structure"

Fig. 3

Multiple alignment of deduced amino acid sequences of XTH in peach A: Ⅰ/Ⅱ subfamily and ancestral group; B:ⅢA and ⅢB subfamily, active site (black line), loops 1, 2 and 3 (green line), the conserved residues are shown in red letters"

Fig.4

Expression characteristics of XTH family members in peach firuit with different textures during room temperature storage HJML is the melting peach and XC is the stony hard peach *indicate significant difference of different textures in the same period (P<0.05). The same as below"

Fig. 5

Analysis of peach fruit firmness with different textures during room temperature storage"

Fig. 6

Structure of pCAMBIA1302-PpXTH33-GFP vector and the subcellular localization of PpXTH33 protein"

[1] YOSHIOKA H, HAYAMA H, TATSUKI M, NAKAMURA Y. Cell wall modification during development of mealy texture in the stony-hard peach “Odoroki” treated with propylene. Postharvest Biology and Technology, 2010, 55(1): 1-7.
doi: 10.1016/j.postharvbio.2009.08.005
[2] BRUMMELL D A, HARPSTER M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 2001, 47(1/2): 311-340.
doi: 10.1023/A:1010656104304
[3] MA M M, YUAN Y B, CHENG C X, ZHANG Y, YANG S L. The MdXTHB gene is involved in fruit softening in ‘Golden Del. Reinders’ (Malus pumila). Journal of the Science of Food and Agriculture, 2021, 101(2): 564-572.
doi: 10.1002/jsfa.10668
[4] WITASARI L D, HUANG F C, HOFFMANN T, ROZHON W, FRY S C, SCHWAB W. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH9 and FvXTH6 accelerates fruit ripening. The Plant Journal, 2019, 100(6): 1237-1253. doi: 10.1111/tpj.14512.
doi: 10.1111/tpj.14512
[5] HAN Y, BAN Q Y, LI H, HOU Y L, JIN M J, HAN S K, RAO J P. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Scientific Reports, 2016, 6: 39155. doi: 10.1038/srep39155.
doi: 10.1038/srep39155 pmid: 27966647
[6] 韩叶. 柿果实木葡聚糖内糖基转移/水解酶基因表达特性及功能分析[D]. 杨凌: 西北农林科技大学, 2017.
HAN Y. Expression and functional analysis of xyloglucan endotransglycosylase/hydrolase genes in persimmon fruit[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[7] ZHU Q G, ZHANG Z K, RAO J P, HUBER D J, LV J Y, HOU Y L, SONG K H. Identification of xyloglucan endotransglucosylase/ hydrolase genes (XTHs) and their expression in persimmon fruit as influenced by 1-methylcyclopropene and gibberellic acid during storage at ambient temperature. Food Chemistry, 2013, 138(1): 471-477. doi: 10.1016/j.foodchem.2012.09.141.
doi: 10.1016/j.foodchem.2012.09.141
[8] SCHRÖDER R, ATKINSON R G, LANGENKÄMPER G, REDGWELL R J. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta, 1998, 204(2): 242-251. doi: 10.1007/s004250050253.
doi: 10.1007/s004250050253 pmid: 9487728
[9] EKLÖF J M, BRUMER H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 2010, 153(2): 456-466. doi: 10.1104/pp.110.156844.
doi: 10.1104/pp.110.156844 pmid: 20421457
[10] BAUMANN M J, EKLÖF J M, MICHEL G, KALLAS A M, TEERI T T, CZJZEK M, BRUMER H. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 2007, 19(6): 1947-1963. doi: 10.1105/tpc.107.051391.
doi: 10.1105/tpc.107.051391
[11] ROSE J K C, BRAAM J, FRY S C, NISHITANI K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 2002, 43(12): 1421-1435. doi: 10.1093/pcp/pcf171.
doi: 10.1093/pcp/pcf171 pmid: 12514239
[12] COSGROVE D J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.
pmid: 16261190
[13] ATKINSON R G, JOHNSTON S L, YAUK Y K, SHARMA, SCHRODER R. Analysis of xyloglucan endotransglucosylase/ hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 2009, 51(2): 149-157.
doi: 10.1016/j.postharvbio.2008.06.014
[14] WU D, LIU A Q, QU X Y, LIANG J Y, SONG M. Genome-wide identification, and phylogenetic and expression profiling analyses of XTH gene families in Brassica rapa L. and Brassica oleracea L.. BMC Genomics, 2020, 21(1): 782.
doi: 10.1186/s12864-020-07153-1
[15] LI Q Y, LI H Y, YIN C Y, WANG X T, JIANG Q, ZHANG R, GE F F, CHEN Y D, YANG, L. Genome-wide identification and characterization of xyloglucan endotransglycosylase/hydrolase in Ananas comosus during development. Genes, 2019, 10(7): E537. doi: 10.3390/genes10070537.
doi: 10.3390/genes10070537
[16] FU M M, LIU C, WU F B. Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in barley (Hordeum vulgare). Molecules (Basel, Switzerland), 2019, 24(10): E 1935. doi: 10.3390/molecules24101935.
doi: 10.3390/molecules24101935
[17] WANG M, XU Z C, DING A M, Kong Y Z. Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes, 2018, 9(6): 273.
doi: 10.3390/genes9060273
[18] ZHANG Z Y, WANG N, JIANG S H, XU H F, WANG Y C, WANG C Z, LI M, LIU J X, QU C Z, LIU W, WU S J, CHEN X L, CHEN X S. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. Journal of Agricultural and Food Chemistry, 2017, 65(2): 429-434. doi: 10.1021/acs.jafc.6b04536.
doi: 10.1021/acs.jafc.6b04536 pmid: 28025888
[19] HAN Y, ZHU Q G, ZHANG Z K, MENG K, HOU Y L, BAN Q Y, SUO J T, RAO J P. Analysis of xyloglucan endotransglycosylase/ hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS ONE, 2015, 10(4): e0123668.
doi: 10.1371/journal.pone.0123668
[20] 丛郁, 刘洪, 李慧, 颜志梅, 俞明亮, 常有宏.成熟砂梨果实木葡聚糖转移酶基因PpXTH1的克隆及其在夏季货架期的表达规律, 江苏农业学报, 2010, 26(1): 143-151.
CONG Y, LIU H, LI H, YAN Z M, YU M L, CHANG Y H. Cloning of an xyloglucan endotransglycosylase/hydrolase gene (PpXTH1) from mature sandy pear fruit and its expression characteristics during summer shelf life. Jiangsu Journal of Agricultural Sciences, 2010, 26(1): 143-151. (in Chinese)
[21] OPAZO M C, LIZANA R, STAPPUNG Y, DAVIS T M, HERRERA R, MOYA-LEÓN M A. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. BMC Genomics, 2017, 18(1): 852. doi: 10.1186/s12864-017-4255-8.
doi: 10.1186/s12864-017-4255-8
[22] LU W J, NAKANO R, KUBO Y, INABA A, JIANG Y M. Cloning and expression analysis of an XET cDNA in the peel and pulp of banana fruit ripening and softening. Acta Botanica Sinica, 2004, 46(3): 355-362.
[23] YOKOYAMA R, NISHITANI K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant and Cell Physiology, 2001, 42(10): 1025-1033. doi: 10.1093/pcp/pce154.
doi: 10.1093/pcp/pce154
[24] YOKOYAMA R, ROSE J K C, NISHITANI K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiology, 2004, 134(3): 1088-1099.
pmid: 14988479
[25] SALADIÉ M, ROSE J K, COSGROVE D J, CATALÁ C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. The Plant Journal, 2006, 47(2): 282-295. doi: 10.1111/j.1365-313x.2006.02784.x.
doi: 10.1111/j.1365-313x.2006.02784.x
[26] HAN Y, BAN Q Y, HOU Y L, MENG K, SUO J T, RAO J P. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/ hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Frontiers in Plant Science, 2016, 7: 624.
[27] CAMPBELL P, BRAAM J. In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant Journal, 1999, 18(4): 371-382. doi: 10.1046/j.1365-313x.1999.00459.x.
doi: 10.1046/j.1365-313x.1999.00459.x
[28] STROHMEIER M, HRMOVA M, FISCHER M, HARVEY A J, FINCHER G B, PLEISS J. Molecular modeling of family GH16 glycoside hydrolases: Potential roles for xyloglucan transglucosylases/ hydrolases in cell wall modification in the Poaceae. Protein Science, 2004, 13(12): 3200-3213. doi: 10.1110/ps.04828404.
doi: 10.1110/ps.04828404
[29] BEHAR H, GRAHAM S W, BRUMER H. Comprehensive cross- genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant Journal, 2018, 95(6): 1114-1128. doi: 10.1111/tpj.14004.
doi: 10.1111/tpj.14004
[30] MICHAILIDIS G, ARGIRIOU A, DARZENTAS N, TSAFTARIS A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. Journal of Plant Physiology, 2009, 166(4): 403-416. doi: 10.1016/j.jplph.2008.06.013.
doi: 10.1016/j.jplph.2008.06.013 pmid: 18789555
[31] MUÑOZ-BERTOMEU J, MIEDES E, LORENCES E P. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. Journal of Plant Physiology, 2013, 170(13): 1194-1201.
doi: 10.1016/j.jplph.2013.03.015
[32] FINN R D, COGGILL P, EBERHARDT R Y, EDDY S R, MISTRY J, MITCHELL A L, POTTER S C, PUNTA M, QURESHI M, SANGRADOR-VEGAS A, SALAZAR G A, TATE J, BATEMAN A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 2015, 44(D1): D279-D285. doi: 10.1093/nar/gkv1344.
doi: 10.1093/nar/gkv1344
[33] GOODSTEIN D M, SHU S Q, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Resesearch, 2012, 40(D1): D1178-D1186. doi: 10.1093/nar/gkr944.
doi: 10.1093/nar/gkr944
[34] MARCHLER-BAUER A, BO Y, HAN L Y, HE J E, LANCZYCKI C J, LU S N, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LU F, MARCHLER G H, SONG J S, THANKI N, WANG Z X, YAMASHITA R A, ZHANG D C, ZHENG C J, GEER L Y, BRYANT S H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2016, 45(D1): D200-D203. doi: 10.1093/nar/gkw1129.
doi: 10.1093/nar/gkw1129
[35] WILKINS M R, GASTEIGER E, BAIROCH A, SANCHEZ J C, WILLIAMS K L, APPEL R D, HOCHSTRASSER D F. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 1999, 112: 531-552. doi: 10.1385/1-59259-584-7:531.
doi: 10.1385/1-59259-584-7:531 pmid: 10027275
[36] CHOU K C, SHEN H B. Cell-PLoc: A package of web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3(2): 153-162. doi: 10.1038/nprot.2007.494.
doi: 10.1038/nprot.2007.494
[37] BAILEY T L, JOHNSON J, GRANT C E, NOBLE W S. The MEME Suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.
doi: 10.1093/nar/gkv416
[38] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190
[39] LAMESCH P, BERARDINI T Z, LI D H, SWARBRECK D, WILKS C, SASIDHARAN R, MULLER R, DREHER K, ALEXANDER D L, GARCIA-HERNANDEZ M, KARTHIKEYAN A S, LEE C H, NELSON W D, PLOETZ L, SINGH S, WENSEL A, HUALA E. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2011, 40(D1): D1202-D1210. doi: 10.1093/nar/gkr1090.
doi: 10.1093/nar/gkr1090
[40] JOHANSSON P, BRUMER H, BAUMANN M J, KALLAS A M, HENRIKSSON H, DENMAN S E, TEERI T T, JONES T A. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. The Plant Cell, 2004, 16(4): 874-886. doi:10.1105/tpc.020065.
doi: 10.1105/tpc.020065
[41] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120.
doi: 10.1093/molbev/msab120 pmid: 33892491
[42] ROBERT X, GOUET P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 2014, 42(W1): W320-W324. doi: 10.1093/nar/gku316.
doi: 10.1093/nar/gku316
[43] VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78. doi: 10.1093/jhered/93.1.77.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[44] TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10: 71. doi: 10.1186/1471-2199-10-71.
doi: 10.1186/1471-2199-10-71 pmid: 19619301
[45] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[46] 王昊, 尹莲, 刘洁霞, 贾丽丽, 丁旭, 沈迪, 冯凯, 徐志胜, 熊爱生. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色. 中国农业科学, 2021, 54(15): 3279-3294.
WANG H, YIN L, LIU J X, JIA L L, DING X, SHEN D, FENG K, XU Z S, XIONG A S. The carotenoid cleavage dioxygenases gene AgCCD4 regulates the pigmentation of celery tissues with different colors. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294. (in Chinese)
[47] 徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 2020, 47(8): 1595-1609.
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. (in Chinese)
[48] IQBAL N, KHAN N A, FERRANTE A, TRIVELLINI A, FRANCINI A, KHAN M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science, 2017, 8: 475. doi: 10.3389/fpls.2017.00475.
doi: 10.3389/fpls.2017.00475 pmid: 28421102
[49] ZHAI Z F, FENG C, WANG Y Y, SUN Y T, PENG X, XIAO Y Q, ZHANG X, ZHOU X, JIAO J L, WANG W L. Genome-wide identification of the xyloglucan endotransglucosylase/hydrolase (XTH) and polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry. International Journal of Molecular Sciences, 2021, 22(22): 12331. doi: 10.3390/ijms222212331.
doi: 10.3390/ijms222212331
[50] CHENG Z H, ZHANG X M, YAO W J, GAO Y, ZHAO K, GUO Q, ZHOU B R, JIANG T B. Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar. BMC Genomics, 2021, 22(1): 804. doi: 10.1186/s12864-021-08134-8.
doi: 10.1186/s12864-021-08134-8 pmid: 34749656
[51] 杨勇, 马瑞娟, 张斌斌, 宋志忠, 张春华, 郭绍雷, 俞明亮. 不同溶质桃果实的软化与乙烯合成相关基因的差异表达. 园艺学报, 2015, 42(10): 1869-1878.
YANG Y, MA R J, ZHANG B B, SONG Z Z, ZHANG C H, GUO S L, YU M L. Differential expression analysis in fruit softening and ethylene biosynthetic pathways in peaches of different flesh textures. Acta Horticulturae Sinica, 2015, 42(10): 1869-1878. (in Chinese)
[52] CHEEVARUNGNAPAKUL K, KHAKSAR G, PANPETCH P, BOONJING P, SIRIKANTARAMAS S. Identification and functional characterization of genes involved in the biosynthesis of caffeoylquinic acids in sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2019, 10: 968. doi: 10.3389/fpls.2019.00968.
doi: 10.3389/fpls.2019.00968
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963.
[3] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[4] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[5] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[6] LIU SuNing, BIE HangLing, WANG JunXiu, CHEN XueJia, WANG XinWei, WANG LiRong, CAO Ke. Background Selection and Comparison of Marker Superiority and Inferiority of Aphid-Resistant Seedlings in an Interspecific Cross Peach Population [J]. Scientia Agricultura Sinica, 2023, 56(15): 2995-3005.
[7] WANG ZhaoHui, LI Yong, CAO Ke, ZHU GengRui, FANG WeiChao, CHEN ChangWen, WANG XinWei, WU JinLong, WANG LiRong. Genotype Identification and Combination Analysis of Loci Related to the Peach Flesh Texture Trait via 189 Peach Accessions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2367-2379.
[8] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[9] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[10] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[11] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[12] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[13] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[14] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[15] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!