Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (14): 2812-2824.doi: 10.3864/j.issn.0578-1752.2022.14.011

• HORTICULTURE • Previous Articles     Next Articles

Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene

DUAN YaRu1(),GAO MeiLing1,2(),GUO Yu1,LIANG XiaoXue1,LIU XiuJie3,XU HongGuo1,LIU JiXiu3,GAO Yue3,LUAN Feishi4   

  1. 1. College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, Heilongjiang
    2. Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihar 161006, Heilongjiang
    3. Qiqihar Agricultural Technology Extension Center, Qiqihar 161006, Heilongjiang
    4. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030
  • Received:2021-11-03 Accepted:2022-02-03 Online:2022-07-16 Published:2022-07-26
  • Contact: MeiLing GAO E-mail:1141941808@qq.com;gaomeiling0539@163.com

Abstract:

【Objective】 Based on the result of fruit shape gene preliminary mapping by genotyping-by-sequencing (GBS) high-density genetic map, the fine mapping of the fruit shape gene was conducted by using map-based cloning method, and the functional molecular markers were developed in watermelon. The present study could facilitate comprehensive study on the function of fruit shape gene and molecular marker-assisted selection breeding. 【Method】GWAS (Genome-wide association study) analysis was performed on 114 watermelon inbred lines by using whole-genome re-sequencing data and their fruit shape index phenotypes. The candidate regions of fruit shape gene ClFSI were confirmed by combing the results of GWAS with fruit shape gene preliminary mapping. The F2 segregating population were derived from a cross between two inbred lines K2 (oval, FSI=1.54±0.13) and L1 (round, FSI=1.11±0.07), which were purified from commercial small watermelon varieties. Fine-mapping of the fruit shape gene ClFSI was conducted by developing molecular markers. Candidate gene was identified by gene annotation of the candidate region in watermelon reference genome ‘97103’ v1 and validated by using real-time quantitative PCR (qRT-PCR). 【Result】 The 1 152 F2 plants were used for fine mapping and the ClFSI gene was finally mapped into 63 kb region on chromosome 3 between FMFSI-1 and FMFSI-2, containing a total of 5 annotated genes. The Cla011257 gene belonged to the SUN gene family that has been reported to control the fruit shape. There were two SNPs identified in the genomic region of third exon of ClFSI gene in the watermelon oval line K2. One SNP was a mutation from G to A at Chr3: 26846636 (‘97103’ v1), which resulted in a mutation from asparagine acid (Asn) to aspartic acid (Asp). Another SNP was a mutation from G to A at Chr3: 26846636 (‘97103’ v1), which resulted in another mutation from glutamic acid (Glu) to lysine acid (Lys). The FSICAPS-2 functional molecular marker was developed based on the Chr3: 26847041 SNP site. qRT-PCR expression analysis showed that candidate gene expression level was not significantly difference in K2 (oval) and Charleston Gray (elongated), but both were significantly higher than that in L1 (round). 【Conclusion】In this study, the ClFSI gene was mapped into a 63 kb candidate region on chromosome 3, and Cla011257 was the good candidate gene. Chr3: 26847041 and Chr3: 26846636 mutations were important loci that caused elongation of different degrees in fruit shape. A functional marker FSICAPS-2 was developed, which could identify multiple mutation types of Cla011257 simultaneously.

Key words: watermelon, fruit shape gene, map-based cloning, molecular marker

Fig. 1

Phenotype of mature fruit and ovary of parents K2 and L1 A: Matured fruit of oval watermelon K2; B: Matured fruit of round watermelon L1; C: Ovary of oval watermelon K2; D: Ovary of round watermelon L1"

Table 1

Primers information of candidate gene clones"

引物名称Primer name 正向序列
Forward primer
反向序列
Reverse primer
产物长度
Product length (bp)
FSIgene-1 GGACTCAATTTGTAGAGCATGG AAGAACGCAGTGATGAGCAA 460
FSIgene-2 TCGAGTTTGCTCATCACTGC CGGAATTAAGCGACGACCTA 463
FSIgene-3 TCCGGCAATCTGGGATTT ATTAGGCGAGGAAAGCACTG 556
FSIgene-4 CAGTGCTTTCCTCGCCTAAT GAAAAATGGGGAGAGCAACC 547

Table 2

Candidate gene qRT-PCR primers information"

引物名称 Primer name 正向序列 Forward primer 反向序列 Reverse primer
qClFSI AAGGGTTTCGTTGAATGAATTG GGCTTCTTGAACTTGAGAACA
Actin CCATGTATGTTGCCATCCAG GGATAGCATGGGGTAGAGCA

Table 3

Statistics of phenotypic fruit shape related traits"

性状
Trait
K2 (n=20) L1 (n=20) F1 (n=20) 2016F2
均值±标准差
Mean±SD
均值±标准差
Mean±SD
均值±标准差
Mean±SD
均值±标准差
Mean±SD
范围
Range
峰度
Kurtosis
偏度
Skewness
果实纵径 Fruit length (cm) 20.4±3.0A 15.3±2.4B 19.3±2.6A 16.2±2.6 10.8-23.6 -0.18 0.40
果实横径 Fruit width (cm) 13.3±1.5b 13.8±1.8b 15.4±1.3a 13.6±1.2 9.7-18.5 -0.42 0.16
果形指数 Fruit shape index (cm) 1.54±0.13A 1.11±0.07B 1.26±0.22B 1.20±0.20 0.92-1.77 0.27 1.09

Fig. 2

Frequency distribution of fruit shape related traits in F2 population"

Table 4

Spearman's rank correlation coefficients among fruit shape traits"

性状 Trait 果实纵径 Fruit length 果实横径 Fruit diameter 果形指数 Fruit shape index
果实纵径 Fruit length 1
果实横径 Fruit width 0.43** 1
果形指数 Fruit shape index -0.38** 0.67** 1

Fig. 3

Linkage analysis between qfsi3.1 and phenotypic markers of fruit shape index (FSI) The red, green and blue lines are the fruit shape index, fruit length and fruit width respectively"

Fig. 4

Fine mapping of the ClFS1 A: Results of the preliminary designation of GBS high-density genetic mapping; B: The primary mapping of ClFS1 gene, numbers above markers indicated the linkage genetic distance; C: Fine mapping of the ClFS1 gene, numbers under markers indicated the numbers of recombinants; D: Candidate genes within the mapping interval, the while arrows indicated annotated open reading frames and the black arrows indicated candidate genes in this region; E: Structure of ClFS1 gene, black represents three exons, and red triangle represents the mutation site on the exon"

Table 5

KAPS primers used for fine mapping"

引物名称
Primer name
物理位置(V1)
Physical position
变异位点
Variation locus
引物序列
Pprimer sequence (5' to 3')
FMFSI-3 chr3-26695927 C/A Fa: GAAGGTGACCAAGTTCATGCTGTAAGAACAGCCAAATGTTGAACAAATC
Fb: GAAGGTCGGAGTCAACGGATTTTGTAAGAACAGCCAAATGTTGAACAAATA
R: CAAGACAGTGATCTTTTCACAACACAATAATT
FMFSI-4 chr3-26775520 G/C Fa: GAAGGTGACCAAGTTCATGCTGTAATAAATGTGGAGGAAATATGGCTAC
Fb: GAAGGTCGGAGTCAACGGATTGTAATAAATGTGGAGGAAATATGGCTAG
R: TAACCATTTACTTTTTTGGTTTTGGTTTTTGAAAA
FMFSI-1 chr3-26801978 C/T Fa: GAAGGTGACCAAGTTCATGCTACACATTCTAATGCCCTAGTTAGTAC
Fb: GAAGGTCGGAGTCAACGGATTCACACATTCTAATGCCCTAGTTAGTAT
R: TTGGATCATCGAATTTTATGAACACTCCTAT

Table 6

CAPS and dCAPSprimers used for fine mapping"

引物名称
Primer name
物理位置(V1)
Physical position
变异位点
Variation locus
正向序列
Forward sequence
反向序列
Reverse sequence
限制性内切酶Restriction endonuclease
GFSI-1 chr3-26846636 C/T AGACTACTTCTCGATTCCATGAATT CGGAATTTCCATGACTCTGA EcoR I (dCPAS)
FSICAPS-2 chr3-26847041 C/T ACCGCCAGAGTTCACAAATC ATTAGGCGAGGAAAGCACTG Taq I
FM-FSI-2 chr3-26864789 C/G AATTGATGGGGGTATCGTGA TGGTTGGGGTTATTTGGGTA Rsa I
CW3CAPS47 chr3-26882166 T/G GAACCAATACCAACGGGAAT TGCATGAGCCAAAATTCACT Xho I
CHR3-FSI-3 chr3-26940134 T/C CTTTGAAGTTCGGAGGTTGG ATGGATCAAACAGACGCAAA Taq I
CHR3-FSI-5 chr3-26945758 A/G CCAAGCAGGCCAAATAACAT GCCAAATTTTCGAAGCACAG Hind II
CHR3-FSI-7 chr3-27106460 G/A CAAAAGCCTCCAAGTTCCAG AAGCTGGTGGTCTTGGTTTG Taq I
CHR3-FSI-11 chr3-27121470 C/T TTGATCGCTGGAGATGAATG GCATCGGTTTTGGAAGGATA Hind III

Table 7

Information of predicted genes in candidate segments"

编号
No.
基因号
Gene ID
基因功能
Gene function
基因位置
Region in ‘97103’ v1
1 Cla011252 低温诱导蛋白 Cold induced protein like (AHRD V1 *---Q94JH8_ORYSJ) Chr3: 26806979-26807611 (+strand) 633 bp
2 Cla011253 精氨酸tRNA合成酶 Arginine tRNA synthetase (AHRD V1 **** O23247_ARATH);
含有Interpro结构域IPR001278 Contains interpro domains IPR001278,精氨酸tRNA合成酶 Arginine tRNA synthetase,IC类 Class IC
Chr3: 26809083-26816437 (-strand) 7355 bp
3 Cla011254 未知蛋白质 Unknown protein (AHRD V1) Chr3: 26819389-26819613 (+strand) 225 bp
4 Cla011255 激酶家族蛋白 Kinase family proteins (AHRD V1 ***-D7MCM2_ARALL);含有Interpro结构域IPR002290 Contains interpro domains IPR002290,丝氨酸/苏氨酸蛋白激酶 Serine/ Threonine protein kinase Chr3: 268219 46-26833394 (+strand) 11449 bp
5 Cla011256 果胶酯酶 Pectin esterase (AHRD V1 ***-B9RKG6_RICCO);含有Interpro结构域IPR000070 Contains interpro domains IPR000070,果胶酯酶 Pectin esterase,具有催化作用 With catalysis Chr3: 26838409-26839804 (+strand) 1396 bp
6 Cla011257 钙调素结合家族蛋白 Calmodulin binding family proteins (AHRD V1 **-* Q9ZU28_ ARATH);含有Interpro域IPR000048 IQ Contains interpro domains IPR000048 IQ,钙调蛋白结合区 Calmodulin-binding domain Chr3: 26846490-26847637 (-strand) 1148 bp

Fig. 5

Locus of watermelon fruit shape was identified through GWAS"

Fig. 6

The changes of fruit shape related traits at different developmental stages of watermelon"

Fig. 7

Expression analysis of Cla011257 in different strains Data are the means of three replicates (±SD). Analysis of relative transcript abundance used expression of Cla011257 in L1 as the reference (*: P<0.05)"

Fig. 8

FSICAPS-2 Molecular markers for the identification of fruit shape in selected natural watermelon populations 1-6: Elonglate watermelon strains; 7-12: Oval watermelon strains; 13-18: Round watermelon strains"

[1] HARTMAN J L, PERKINS V P, WEHNER T C. Citrulline and arginine are moderately heritable in two red-fleshed watermelon populations. HortScience, 2019, 54(2): 200-205.
doi: 10.21273/HORTSCI13715-18
[2] RODRÍGUEZ G R, MUÑOS S, ANDERSON C, SIM S C, MICHEL A, CAUSSE M, GARDENER B B M, FRANCIS D, VAN DER KNAAP E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 2011, 156(1): 275-285. doi: 10.1104/pp.110.167577.
doi: 10.1104/pp.110.167577
[3] WANG Y P, CLEVENGER J P, ILLA-BERENGUER E, MEULIA T, VAN DER KNAAP E, SUN L. A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant and Cell Physiology, 2019, 60(5): 1067-1081. doi: 10.1093/pcp/pcz024.
doi: 10.1093/pcp/pcz024
[4] LIU J P, VAN ECK J, CONG B, TANKSLEY S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS, 2002, 99(20): 13302-13306. doi: 10.1073/pnas.162485999.
doi: 10.1073/pnas.162485999
[5] XIAO H, JIANG N, SCHAFFNER E, STOCKINGER E J, VAN DER KNAAP E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 2008, 319(5869): 1527-1530. doi: 10.1126/science.1153040.
doi: 10.1126/science.1153040
[6] ZHU W Y, HUANG L, CHEN L, YANG J T, WU J N, QU M L, YAO D Q, GUO C L, LIAN H L, HE H L, PAN J S, CAI R. A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 2016, 7: 437. doi: 10.3389/fpls.2016.00437.
doi: 10.3389/fpls.2016.00437
[7] GAO Z H, ZHANG H Y, CAO C X, HAN J, LI H, REN Z H. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Horicultural Plant Journal, 2020, 6(3): 132-144.
[8] PAN Y P, LIANG X J, GAO M L, LIU H Q, MENG H W, WENG Y Q, CHENG Z H. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theoretical and Applied Genetics, 2017, 130(3): 573-586. doi: 10.1007/s00122-016-2836-6.
doi: 10.1007/s00122-016-2836-6
[9] 栾非时, 矫士琦, 盛云燕, 朱子成. 甜瓜果实相关性状QTL分析. 东北农业大学学报, 2017, 48(3): 1-9. doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001.
doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001
LUAN F S, JIAO S Q, SHENG Y Y, ZHU Z C. Mapping of QTL for fruit traits in melon. Journal of Northeast Agricultural University, 2017, 48(3): 1-9. doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001
[10] 王岭, 才羿, 王桂超, 王迪, 盛云燕. 甜瓜SLAF图谱构建及果实相关性状QTL分析. 中国农业科学, 2021, 54(19): 4196-4206. doi: 10.3864/j.issn.0578-1752.2021.19.014.
doi: 10.3864/j.issn.0578-1752.2021.19.014
WANG L, CAI Y, WANG G C, WANG D, SHENG Y Y. Specific length amplified fragment (SFLA) sequencing mapping construction and QTL analysis of fruit related traits in muskmelon. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206. doi: 10.3864/j.issn.0578-1752.2021.19.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.19.014
[11] WEETMAN L M. Inheritance and correlation of shape, size and color in the watermelon. Iowa agr.expt.sta.res.bul, 1937, 228(2): 342-350.
[12] POOLE C F, GRIMBALL P C. Interaction of sex, shape, and weight genes in watermelon. Journal of Agricultural Research, 1944, 71: 533-552.
[13] TANAKA T, WIMOL S, MIZUTABI T. Inheritance of fruit shape and seed size of watermelon. Journal of the Japanese Society for Horticultural Science, 1995, 64(3): 543-548.
[14] GUNER N, WEHNER T C. The genes of watermelon. Hortscience A Publication of the American Society for Horticultural Science, 2004, 39(6): 1175-1182.
[15] LOU L L, WEHNER T C. Qualitative inheritance of external fruit traits in watermelon. Hortence A Publication of the American Society for Horticultural Science, 2016, 51(5): 487-496.
[16] SANDLIN K, PROTHRO J, HEESACKER A, KHALILIAN N, OKASHAH R, XIANG W W, BACHLAVA E, CALDWELL D G, TAYLOR C A, SEYMOUR D K, WHITE V, CHAN E, TOLLA G, WHITE C, SAFRAN D, GRAHAM E, KNAPP S, MCGREGOR C. Comparative mapping in watermelon [Citrullus lanatus (thunb.) matsum. et nakai]. Theoretical and Applied Genetics, 2012, 125(8): 1603-1618. doi: 10.1007/s00122-012-1938-z.
doi: 10.1007/s00122-012-1938-z
[17] CHENG Y, LUAN F S, WANG X Z, GAO P, ZHU Z C, LIU S, BALOCH A M, ZHANG Y S. Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Scientia Horticulturae, 2016, 202: 25-31.
doi: 10.1016/j.scienta.2016.01.004
[18] REN Y, MCGREGOR C, ZHANG Y, GONG G Y, ZHANG H Y, GUO S G, SUN H H, CAI W T, ZHANG J, XU Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biology, 2014, 14: 33. doi: 10.1186/1471-2229-14-33.
doi: 10.1186/1471-2229-14-33
[19] REDDY U K, ABBURI L, ABBURI V L, SAMINATHAN T, CANTRELL R, VAJJA V G, REDDY R, TOMASON Y R, LEVI A, WEHNER T C, NIMMAKAYALA P. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. Journal of Heredity, 2014, 106(2): 166-176. doi: 10.1093/jhered/esu077.
doi: 10.1093/jhered/esu077
[20] KIM K H, HWANG J H, HAN D Y, PARY M, KIM S, CHOI D, KIM Y, LEE G P, KIM S T, PARK Y H. major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS ONE, 2015, 10(12): e0145665.
[21] 卢丙洋, 周慧文, 陈欣, 栾非时, 王学征, 姜羽. 西瓜果实几个性状的QTL分析. 果树学报, 2016, 33(10): 1206-1218. doi: 10.13925/j.cnki.gsxb.20160002.
doi: 10.13925/j.cnki.gsxb.20160002
LU B Y, ZHOU H W, CHEN X, LUAN F S, WANG X Z, JIANG Y. QTL analysis of fruit traits in watermelon. Journal of Fruit Science, 2016, 33(10): 1206-1218. doi: 10.13925/j.cnki.gsxb.20160002. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160002
[22] 刘传奇, 高鹏, 栾非时. 西瓜遗传图谱构建及果实相关性状QTL分析. 中国农业科学, 2014, 47(14): 2814-2829. doi: 10.3864/j.issn.0578-1752.2014.14.012.
doi: 10.3864/j.issn.0578-1752.2014.14.012
LIU C Q, GAO P, LUAN F S. Construction of a genetic linkage map and QTL analysis of fruit-associated traits in watermelon. Scientia Agricultura Sinica, 2014, 47(14): 2814-2829. doi: 10.3864/j.issn.0578-1752.2014.14.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.14.012
[23] DOU J L, ZHAO S J, LU X, HE N, ZHANG L, ALIi A, KUANG H H, LIU W G. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theoretical and Applied Genetics, 2018, 131(4): 947-958.
doi: 10.1007/s00122-018-3050-5
[24] MARAGAL S, RAO E S, LAKSHMANA REDDY D C. Genetic analysis of fruit quality traits in prebred lines of watermelon derived from a wild accession of Citrullus amarus. Euphytica, 2019, 215(12): 1-15. doi: 10.1007/s10681-019-2527-x.
doi: 10.1007/s10681-019-2527-x
[25] LEGENDRE R, KUZY J, MCGREGOR C. Markers for selection of three alleles of ClSUN25-26-27a (Cla011257) associated with fruit shape in watermelon. Molecular Breeding, 2020, 40(2): 1-13. doi: 10.1007/s11032-020-1104-2.
doi: 10.1007/s11032-020-1104-2
[26] 李娜, 尚建立, 李楠楠, 周丹, 孔胜楠, 王吉明, 马双武. 西瓜果实形状的分子精准鉴定. 园艺学报, 2021, 48(7): 1386-1396. doi: 10.16420/j.issn.0513-353x.2021-0152.
doi: 10.16420/j.issn.0513-353x.2021-0152
LI N, SHANG J L, LI N N, ZHOU D, KONG S N, WANG J M, MA S W. Accurate molecular identification for fruit shape in watermelon (Citrullus lanatus). Acta Horticulturae Sinica, 2021, 48(7): 1386-1396. doi: 10.16420/j.issn.0513-353x.2021-0152. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0152
[27] NEFF M M, TURK E, KALISHMAN M. Web-based primer design for single nucleotide polymorphism analysis. Trends in Genetics, 2002, 18: 613-615.
doi: 10.1016/S0168-9525(02)02820-2
[28] UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, YE J, FAIRCLOTH B C, REMM M, ROZEN S G. Primer3: new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15): e115. doi: 10.1093/nar/gks596.
doi: 10.1093/nar/gks596
[29] LI Y H, YANG L M, PATHAK M, LI D W, HE X M, WENG Y Q. Fine genetic mapping of cp: A recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theoretical and Applied Genetics, 2011, 123(6): 973-983. doi: 10.1007/s00122-011-1640-6.
doi: 10.1007/s00122-011-1640-6
[30] SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467.
[31] KONG Q S, YUAN J X, GAO L Y, ZHAO L Q, CHENG F, HUANG Y, BIE Z L. Evaluation of appropriate reference genes for gene expression normalization during watermelon fruit development. PLoS ONE, 2015, 10(6): e0130865. doi: 10.1371/journal.pone.0130865.
doi: 10.1371/journal.pone.0130865
[32] PAN Y P, WANG Y H, MCGREGOR C, LIU S, LUAN F S, GAO M L, WENG Y Q. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 2020, 133(1): 1-21. doi: 10.1007/s00122-019-03481-3.
doi: 10.1007/s00122-019-03481-3
[33] CLEVENGER J P, VAN HOUTEN J, BLACKWOOD M, RODRÍGUEZ G R, JIKUMARU Y, KAMIYA Y, KUSANO M, SAITO K, VISA S, VAN DER KNAAP E. Network analyses reveal shifts in transcript profiles and metabolites that accompany the expression of SUN and an elongated tomato fruit. Plant Physiology, 2015, 168(3): 1164-1178. doi: 10.1104/pp.15.00379.
doi: 10.1104/pp.15.00379
[34] MONFORTE A J, DIAZ A, CAÑO-DELGADO A, VAN DER KNAAP E. The genetic basis of fruit morphology in horticultural crops: Lessons from tomato and melon. Journal of Experimental Botany, 2014, 65(16): 4625-4637. doi: 10.1093/jxb/eru017.
doi: 10.1093/jxb/eru017
[35] WU S, XIAO H, CABRERA A, MEULIA T, VAN DER KNAAP E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 2011, 157(3): 1175-1186. doi: 10.1104/pp.111.181065.
doi: 10.1104/pp.111.181065
[36] HUANG Z J, HOUTEN J, GONZALEZ G, XIAO H, KNAAP E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics, 2013, 288(3/4): 111-129. doi: 10.1007/s00438-013-0733-0.
doi: 10.1007/s00438-013-0733-0
[37] JIANG N, GAO D Y, XIAO H, WAN DER KNAAP E. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. The Plant Journal, 2010, 60(1): 181-193.
doi: 10.1111/j.1365-313X.2009.03946.x
[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[5] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[6] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[7] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[8] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[9] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[10] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[11] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[12] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[13] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[14] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[15] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!