Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 111-128.doi: 10.3864/j.issn.0578-1752.2019.01.011

• HORTICULTURE • Previous Articles     Next Articles

Identification of the Fruit Characteristic Organic Acids of Chaenomeles speciosa from Qijiang, Chongqing by GC-MS and Their Dynamic Change Researching During Its Fruit Developing Period

LIU ShiYao(),RAN Hui,MAO YunZhi,CHEN XinYu   

  1. College of Horticulture and Landscape Architecture, South West University/Key Laboratory of Horticulture Science for Southwest Mountainous Regions, Ministry of Education, Chongqing 400715
  • Received:2018-06-28 Accepted:2018-10-18 Online:2019-01-01 Published:2019-01-12
  • Contact: ShiYao LIU E-mail:cqliushiyao@126.com

Abstract:

【Objective】 The study was carried out to identify characteristic organic acids and disclosing their dynamic changing law of Chaenomeles speciosa fruit from Qijiang, Chongqing during its fruit developing period, so as to provide the basic data for the C. speciosa fruit organic acids metabolic research. 【Method】 By methanol extracting, methyl derivating and GC-MS detecting, the organic acids composition and their content of 8 developing period C. speciosa cv. Daluo fruit samples of Qijiang was measured. The 2012 chromatographic similarity analysis software of Chinese Pharmacopoeia Commission was used to match their common constituent peaks. The dynamic law of the total organic acids, strong-sour and weak-sour organic acids were showed in SigmaPlots10.0 software and the PCA and HCA of all the samples was processed separately by Simca-P 11.5 and SPSS 20.0 softwares. 【Result】 The total 41 common characteristic constituents, including 10 short-chain carboxylic acids, 21 long-chain fatty acids, 5 aromatic-organic acids, 3 monobasic-phenol acids and 2 amino-acids, were successfully matched among 8 TICs of different period fruit samples C. speciosa cv. Daluo from Qijiang. The baseline of all the TICs were smooth and stable, the organic acid derivatives peaks' distribution were well-distributed, and the separating-degree of samples’ peaks was high. All target components were well separated. The total organic acids content of Qijiang C. speciosa cv. Daluo fruit from 90 th day after its full-bloom stage to 160 th days showed the changing on reversed ‘Z’ that including the sharply decreasing, slowly increasing and then decreasing again. The total organic acids content was significant positive correlated with the strong sour (r=0.970) and the weak sour taste organic acids (r=0.998). At the same time, the strong sour taste organic acids were significant positive correlated with short-chain carboxylic acids (r=0.999) and positive correlated with monobasic phenol acids (r=0.747). The weak sour taste organic acids were significant positive correlated with long chain fatty acids (r=0.999). The malic acid, laevulic acid and citric acid, whose relative content sum was more than 90%, were the key ingredients of strong sour organic acids. The malic acid content had experienced a reverse ‘Z’ trend that decreased firstly (90 thd-120 thd), increased slightly (120 thd-130 thd) and decreased finally (130 thd-160 thd). The citric acid had a similar process, but the levulic acid had an obviously reverse process of changing with malic acid. Actually the levulic acid showed the increasing progress gradually. The correlation analysis showed that the strong sour taste organic acids had significant positive correlation with malate and citrate, but weakly negative correlation with levulic acid, isocitric acid, and salicylic acid. The analyzing result showed that most of the weak sour organic acids including 9-octadecenoic acid, 9,12-octadecadienoic acid, hexadecanoic acid and 10-hydroxy-hexadecanoic acid experienced the similar accumulating progress which was rapidly decreasing firstly, then slowly increased and decreased in the final stage. However, nonadecanoic acid showed an opposite process that was gradually increasing. Correlation analysis showed that the total weak sour organic acids were positively related to most of them such as 9-Octadecenoic acid and 9, 12-Octadecadienoic acid but negative to nonadecanoic acid. The PCA result by Simca-p 11.5 disclosed that PC1 and PC2 separately distributed 40.00% and 23.20% of the total variance contribution rate. The main component score of each sample showed that: S1 and S2 clustered together which decided by α-Ketoglutaric acid, malic acid, quinic acid, shikimic acid, hexadecanoic acid and linoleic acid. The S3, S4 and S5 got into one branch that mainly because of oleinic acid and 10-hydroxy-Hexadecanoic acid. The S6 was closer to S7 largely because of malonic acid, levulic acid, isocitric acid, salicyluric acid. The S8 formed a unit alone that mostly decided by succinic acid, nonadecanoic acid, tetracosanoic acid. This result was very similar to the other one that clustered by Ward's method with Squared Euclidean Distance in SPSS. 【Conclusion】 C. speciosa cv. Daluo in Qijiang,Chongqing is a typical malate-accumulating fruit. During its developing period of C. speciosa fruit, the accumulating pattern of organic acids changed from Malate-Citrate accumulating type on 90 th days to Levulinic acid-Malic acid - Citric acid accumulating type on 160 th days after its flower-blooming. The change of acid accumulation pattern played a key role in the determination of acidity and flavor quality of C. speciosa fruit in Chongqing.

Key words: Chaenomeles speciosa cv. Daluo, organic acids, GC-MS, fruit developing period, changing law

Fig. 1

The GC-MS total ion current chromatograms of organic acids methylized derivatives of Chaenomeles speciosa cv. Daluo fruit in Qijiang, Chongqing A: TIC peak integral of the fruits sampled on the 90th d day after flower-blooming; B: The TIC matching figure of 8 C.speciosa cv. Daluo fruit samples"

Table 1

MS analyzing result of organic acids methylized derivatives of 8 C. speciosa fruit samples from Qijiang, Chongqing"

成分名称
Component name
分子式
Formula
分子量
Molecular weight
平均保留时间
Mean reservation time (min)
相对标准差RSD
(%)
平均相对含量
Mean relative content (%)
相对标准差 RSD (%) 酸度系数
pKa1
总低碳羧酸 Short-chain carboxylic acid 33.125 6.55
1 草酸 Oxalic acid C2H2O4 90.04 2.906 0.07 0.723 0.25 1.23
2 丙二酸 Malonic acid C3H4O4 104.06 4.048 0.09 0.214 0.11 2.86
3 乙酰丙酸 4-oxo-pentanoic acid C5H8O3 106.12 4.920 0.12 6.558 5.55 4.05
4 富马酸 Fumaric acid C4H4O4 116.07 5.444 0.01 0.232 0.10 3.02
5 α-酮戊二酸 2-oxo-Pentanedioic acid C5H6O5 146.1 5.582 0.07 0.188 0.09 2.47
6 苹果酸 Malic acid C4H6O5 134.09 7.064 0.21 21.473 5.56 3.46
7 琥珀酸 Succinic acid C4H6O4 118.09 7.367 0.24 0.859 0.36 4.21
8 反式乌头酸 1-Propene-1,2,3-tricarboxylic acid C6H6O6 174.11 11.618 0.30 0.067 0.04 1.95
9 柠檬酸 Citric acid C6H8O7 192.12 12.050 0.04 2.776 0.78 3.13
10 异柠檬酸
1-hydroxy-1,2,3-Propanetricarboxylic acid
C6H8O7 192.14 12.614 0.08 0.036 0.02 3.13
总长链脂肪酸long-chain fatty acid 61.727 6.91
11 月桂酸 Dodecanoic acid(12C:0) C12H24O2 200.32 12.788 0.61 0.246 0.16 5.11
12 杜鹃花酸 Azelaic acid (9C:0) C9H16O4 188.22 13.089 0.82 0.153 0.06 5.07
成分名称
Component name
分子式
Formula
分子量
Molecular weight
平均保留时间
Mean reservation time (min)
相对标准差RSD
(%)
平均相对含量
Mean relative content (%)
相对标准差 RSD (%) 酸度系数
pKa1
13 肉豆蔻酸 Tetradecanoic acid(14C:0) C14H28O2 228.83 15.267 0.30 0.215 0.09 5.14
14 十五烷酸 Pentadecanoic acid(15C:0) C15H30O2 242.4 16.416 0.65 0.105 0.06 5.15
15 棕榈油酸 9-Hexadecenoic acid(16C:1) C16H30O2 254.41 17.315 0.75 0.447 0.45 5.17
16 棕榈酸 Hexadecanoic acid(16C:0) C16H32O2 256.42 17.512 0.80 6.785 0.94 5.18
17 亚油酸 9,12-Octadecadienoic acid(18C:2) C18H32O2 280.45 19.287 0.55 12.079 1.98 5.20
18 油酸 9-Octadecenoic acid(18C:1) C18H34O2 282.46 19.334 0.32 25.136 7.60 5.16
19 硬脂酸 Stearic acid(18C:0) C18H36O2 284.48 19.553 0.81 0.042 0.05 5.17
20 山嵛酸 Docosanedioic acid(22C:0) C22H44O2 340.58 20.383 0.31 0.224 0.07 5.25
21 顺-11-二十碳烯酸
cis-11-Eicosenoic acid(20C:1)
C20H30O2 302.45 21.219 0.24 0.532 0.24 5.21
22 花生酸 Eicosanoic acid(20C:0) C20H40O2 312.53 21.419 0.18 0.872 0.28 5.22
23 顺式-5,8,11-二十碳三烯酸(20C:3)
cis-5,8,11-Eicosatrienoic acid
C20H34O2 306.43 21.893 0.15 0.143 0.15 5.20
24 7,10,13-二十碳三烯酸(20C:3)
7,10,13-Eicosatrienoic acid
C20H34O2 306.43 21.931 0.15 0.235 0.11 5.20
25 10,13-二十碳二烯酸(20C:2)
10,13-Eicosadienoic acid
C20H36O2 308.43 22.016 0.23 1.269 0.53 5.21
26 羟基-十六烷酸(16C:0)
10-hydroxy-Hexadecanoic acid
C16H32O3 262.42 22.235 0.18 5.420 2.76 5.17
27 7-羟基-十八烷酸(18C:0)
7-hydroxy-Octadecanoic acid
C18H34O3 298.46 22.543 0.16 1.102 0.25 5.19
28 十九烷酸 Nonadecanoic acid(19C:0) C19H38O2 298.5 23.141 0.11 1.666 1.45 5.22
29 二十四烷酸 Tetracosanoic acid(24C:0) C24H48O2 368.64 24.998 0.20 2.411 1.02 5.27
30 9,10-二羟基-十八烷酸(18C:0)
9,10-dihydroxy-Octadecanoic acid
C18H34O4 314.46 25.791 0.21 2.646 1.42 5.19
31 二十一烷酸 Heneicosanoic acid (21C:0) C21H42O2 326.56 26.110 0.30 1.663 0.41 5.23
芳香族有机酸Aromatic dicarboxylic acid 2.846 1.64
32 糠酸 2-Furancarboxylic acid C5H4O3 112.08 4.789 0.27 0.127 0.04 3.16
33 苯甲酸/安息香酸 Benzoic acid C7H6O2 122.12 6.656 0.12 2.079 1.31 4.21
34 DL-扁桃酸 alpha.-hydroxy-benzeneacetic acid C8H8O3 152.15 9.645 0.32 0.122 0.03 3.37
35 肉桂酸 Cinnamic acid C9H8O2 148.16 11.011 0.12 0.478 0.41 4.44
36 香草酸 vanillic acid C8H8O4 168.15 12.827 0.27 0.040 0.01 4.45
总一元酚酸Monobasic phenol acid 0.639 0.24
37 水杨酸 p-Hydroxybenzoic acid C7H6O3 138.12 11.874 0.32 0.228 0.17 2.98
38 奎尼酸 Quinic acid C7H12O6 192.17 14.010 0.68 0.333 0.17 3.70
39 莽草酸 Shikimic acid C7H10O5 174.15 14.808 0.79 0.079 0.05 3.87
总氨基酸Amino acid 0.153 0.06
40 L-天冬氨酸 L-Aspartic acid C4H7NO4 133.1 7.628 0.96 0.118 0.06 2.77
41 L-苯丙氨酸 L-Phenylalanine C10H13NO2 179.22 11.504 0.71 0.036 0.03 5.48
总有机酸Total organic acid 100.000

Fig. 2

Organic acids composition, total organic acids, strong and weak-sour organic acid changing law during its fruits developing period A: Total organic acids content changing figure during its developing period; B: Percentage stacked column diagram of 5 type organic acids during its developing period; C: Strong-sour ingredients content changing figure during its developing period; D: Weak-sour ingredients content changing figure during its developing period"

Table 2

Pearson’s correlation coefficient between each organic acid types during the fruit developing period of C. speciosa (n=8)"

低碳羧酸
Short-chain carboxylic acids
长链脂肪酸
Long-chain fatty acids
芳香族有机酸
Aromatic organic acids
一元酚酸
Monobasic phenol acids
氨基酸
Amino acids
强酸味贡献成分Strong-sour taste contributing components 弱酸味贡献成分Weak-sour taste contributing components 总有机酸
Total organic acids
低碳羧酸
Short-chain carboxylic acids
1.000** 0.947** 0.314 0.732* 0.692 0.999** 0.943** 0.963**
长链脂肪酸
Long-chain fatty acids
0.947** 1.000** 0.395 0.860** 0.690 0.955** 0.999** 0.998**
芳香族有机酸
Aromatic organic acids
0.314 0.395 1.000** 0.441 -0.068 0.325 0.440 0.419
一元酚酸
Monobasic phenol acids
0.732* 0.860** 0.441 1.000** 0.747* 0.755* 0.865** 0.848**
氨基酸
Amino acids
0.692 0.690 -0.068 0.747* 1.000** 0.709* 0.672 0.683
强酸味贡献成分
Strong-sour taste contributing components
0.999** 0.955** 0.325 0.755* 0.703 1.000** 0.951** 0.970**
弱酸味贡献成分
Weak-sour taste contributing components
0.943** 0.999** 0.440 0.865** 0.672 0.951** 1.000** 0.998**
总有机酸
Total organic acids
0.963** 0.998** 0.419 0.848** 0.683 0.970** 0.998** 1.000**

Fig. 3

The component peak area changing laws of the strong-sour organic acid C. speciosa from Qijiang during its fruit developing period A: The organic acids related to the TCA cycle; B: Growth regulator organic acids; C: Phenolic organic acids"

Table 3

The Pearson’s correlation analysis table of strong-sour organic acids during the fruit developing period of C. speciosa (n=8)"

草酸 丙二酸 乙酰丙酸 富马酸 a-酮戊二酸 苹果酸 琥珀酸 反式乌头酸 柠檬酸 异柠檬酸 水杨酸 奎尼酸 莽草酸 强酸味成分
Oxalic Malonic acid Pentanoic acid Fumaric acid 2-oxo- Malic acid Succinic acid Trans-aconitic acid Citric acid Isocitric acid p-Hydroxybenzoic acid Quinic acid Shikimic acid Strong-sour components
acid pentanedioic acid
草酸 1.000** 0.013 -0.22 0.683 0.647 0.537 0.354 0.245 0.185 -0.008 -0.317 0.257 0.192 0.516
Oxalic acid
丙二酸 0.013 1.000** -0.385 -0.001 0.446 0.62 0.2 0.799* 0.935** -0.539 -0.017 0.938** 0.94** 0.686
Malonic acid
乙酰丙酸 -0.22 -0.385 1.000** -0.619 -0.47 -0.606 0.148 -0.048 -0.617 0.838* 0.757* -0.52 -0.63 -0.381
Pentanoic acid
富马酸/延胡索酸 0.683 -0.001 -0.619 1.000** 0.684 0.662 0.372 -0.068 0.268 -0.368 -0.727* 0.179 0.228 0.504
Fumaric acid
α-酮戊二酸 0.647 0.446 -0.47 0.684 1.000** 0.796* 0.213 0.434 0.575 -0.538 -0.598 0.573 0.596 0.757*
2-oxo-pentanedioic acid
苹果酸 0.537 0.62 -0.606 0.662 0.796* 1.000** 0.451 0.629 0.818* -0.462* -0.363 0.772* 0.744* 0.960**
Malic acid
琥珀酸 0.354 0.2 0.148 0.372 0.213 0.451 1.000** 0.452 0.208 0.249 0.152 0.155 0.072 0.554
Succinic acid
反式乌头酸 0.245 0.799* -0.048 -0.068 0.434 0.629 0.452 1.000** 0.731* -0.176 0.226 0.787* 0.688 0.773*
Trans-aconitic acid
柠檬酸 0.185 0.935** -0.617 0.268 0.575 0.818* 0.208 0.731* 1.000** -0.611 -0.19 0.978** 0.98** 0.813*
Citric acid
异柠檬酸 -0.008 -0.539 0.838* -0.368 -0.538 -0.462 0.249 -0.176 -0.611 1.000** 0.785* -0.53 -0.681 -0.292
Isocitric acid
水杨酸 -0.317 -0.017 0.757* -0.727* -0.598 -0.363 0.152 0.226 -0.19 0.785* 1.000** -0.094 -0.25 -0.136
p-Hydroxybenzoic acid
奎尼酸 0.257 0.938** -0.52 0.179 0.573 0.772* 0.155 0.787* 0.978** -0.53 -0.094 1.000** 0.978** 0.800*
Quinic acid
莽草酸 0.192 0.94** -0.63 0.228 0.596 0.744* 0.072 0.688 0.98** -0.681 -0.25 0.978** 1.000** 0.733*
Shikimic acid
强酸性成分 0.516 0.686 -0.381 0.504 0.757* 0.96** 0.554 0.773* 0.813* -0.292 -0.136 0.8 0.733* 1.000**
Stroung sour components

Fig. 4

The weak-sour organic acid component peak area changing law of C. speciosa fruit of Qijiang during developing period OA: 9-Octadecenoic acid; 9,12-OA: 9,12-Octadecadienoic acid; HCA:Hexadecanoic acid; 10-HHA: 10-hydroxy-Hexadecanoic acid; 9,10-DOA: 9,10- dihydroxy-Octadecanoic acid; TA: Tetracosanoic acid; BA: Benzoic acid; NA: Nonadecanoic acid; HSA: Heneicosanoic acid"

Table 4

The Pearson’s correlation analysis table of weak-sour organic acids during the fruit developing period of C. speciosa (n=8)"

9-OA 9,12-OA HCA 10-HHA 9,10-DOA TA BA NA HSA 10,13-EA 7-HOA 总弱酸味有机酸
Total weak-sour organic acids
9-OA 1.00** 0.887** 0.812* 0.751* 0.488 0.262 0.422 0.002 0.696 0.580 0.649 0.936**
9,12-OA 0.887** 1.00** 0.982** 0.889** 0.810* 0.583 0.338 -0.087 0.946** 0.801* 0.901** 0.987**
HCA 0.812* 0.982** 1.00** 0.923** 0.869** 0.700 0.302 -0.149 0.966** 0.783* 0.952** 0.959**
10-HHA 0.751* 0.889** 0.923** 1.00** 0.776* 0.546 0.517 -0.320 0.877** 0.611 0.855** 0.902**
9,10-DOA 0.488 0.810* 0.869** 0.776* 1.00** 0.726* 0.122 -0.114 0.913** 0.828* 0.955** 0.747*
TA 0.262 0.583 0.700 0.546 0.726* 1.00** -0.225 -0.199 0.701 0.551 0.782* 0.490
BA 0.422 0.338 0.302 0.517 0.122 -0.225 1.00** 0.221 0.283 -0.141 0.088 0.432
NA 0.002 -0.087 -0.149 -0.320 -0.114 -0.199 0.221 1.00** -0.141 -0.242 -0.241 -0.067
HSA 0.696 0.946** 0.966** 0.877** 0.913** 0.701 0.283 -0.141 1.00** 0.824* 0.941** 0.896**
10,13-EA 0.580 0.801* 0.783* 0.611 0.828* 0.551 -0.141 -0.242 0.824* 1.00** 0.856** 0.725*
7-HOA 0.649 0.901** 0.952** 0.855** 0.955** 0.782* 0.088 -0.241 0.941** 0.856** 1.00** 0.851**
总弱酸味有机酸
Total weak-sour organic acids
0.936** 0.987** 0.959** 0.902** 0.747* 0.490 0.432 -0.067 0.896** 0.725* 0.851** 1.00**

Fig. 5

PCA analysis based on the common organic acids components of C. speciosa fruit samples during its developing period The numbers represent the compounds 1: Oxalic acid; 2: Malonic acid; 3: Pentanoic acid; 4: Fumaric acid; 5: α-ketoglutaric acid; 6: Malic acid; 7: Succinic acid; 8: 1-Propene-1,2,3-tricarboxylic acid; 9: Citric acid; 10: 1-hydroxy-1,2,3-Propanetricarboxylic acid; 11: p-Hydroxybenzoic acid; 12: Quinic acid; 13: Shikimic acid; 14: Hexadecanoic acid; 15: 9,12-Octadecadienoic acid; 16: 9-Octadecenoic acid; 17: 10,13-Eicosadienoic acid; 18: 10-hydroxy-Hexadecanoic acid; 19: 7-hydroxy-Octadecanoic acid; 20: Nonadecanoic acid; 21: Tetracosanoic acid; 22: 9,10-dihydroxy-Octadecanoic acid; 23: Heneicosanoic acid; 24: Benzoic acid. The coordinate axis values represents the correlation coefficients between the principal components and the original variables"

Fig. 6

The fruit organic acids composition cluster analysis dendrogram during Qijiang C. speciosa during its developing period"

[1] MIAO J, ZHAO C C, LI X, CHEN X T, MAOX H, HUANG H H, WANG T T, GAO W Y . Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. Journal of Food Science, 2016,81(8):2049-2058.
[2] 王明明, 陈化榜, 王建华, 宋振巧, 李圣波 . 木瓜属品种亲缘关系的SRAP分析. 中国农业科学, 2010,43(3):542-551.
doi: 10.3864/j.issn.0578-1752.2010.03.014
WANG M M, CHEN H B, WANG J H, SONG Z Q, LI S B . Genetic relationship of Chaenomeles cultivars revealed by SRAP analysis. Scientia Agricultural Sinica, 2010,43(3):542-551. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.03.014
[3] 白志川, 刘世尧, 周志钦 . 药用木瓜规范化栽培及开发利用. 北京: 中国农业出版社, 2008: 13-17.
BAI Z C, LIU S Y, ZHOU Z Q. Standardized cultivation, development and utilization of medicinal Chaenomeles. Beijing: China Agriculture Press House, 2008: 13-17. (in Chinese)
[4] 王云亮, 张芬, 张华, 白志川 . 药用木瓜综合开发利用. 河北农业科学, 2010,14(6):120-122.
doi: 10.3969/j.issn.1088-1631.2010.06.045
WANG Y L, ZHANG F, ZHANG H, BAI Z C . Comprehensive utilization of medicinal Chaenomeles speciosa fruits. Journal of Hebei Agricultural Sciences, 2010,14(6):120-122.(in Chinese)
doi: 10.3969/j.issn.1088-1631.2010.06.045
[5] 张上隆, 陈昆松 . 果实品质形成与调控的分子生理. 北京: 中国农业出版社, 2007.
ZHANG S L, CHEN K S. Molecular physiology of fruit quality development and regulation. Beijing: China Agriculture Press, 2007. ( in Chinese)
[6] KADER A A . Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 2008,88(11):1863-1868.
doi: 10.1002/jsfa.3293
[7] 张永平, 乔永旭, 喻景权, 赵智中 . 园艺植物果实糖代谢的研究进展. 中国农业科学, 2008,41(4):1151-1157.
ZHANG Y P, QIAO Y X, YU J Q, ZHAO Z Z . Progress of researches of sugar accumulation mechanism of horticultural plant fruits. Scientia Agricultura Sinica, 2008,41(4):1151-1157. (in Chinese)
[8] 李金龙 . 果实内糖的积累与糖代谢相关酶. 中国林副特产, 2015(3):92-93.
doi: 10.13268/j.cnki.fbsic.2015.03.041
LI J L . Sugar accumulation in fruit and enzymes related sugar metabolism. Forest By-Product and Speciality in China, 2015(3):92-93. (in Chinese)
doi: 10.13268/j.cnki.fbsic.2015.03.041
[9] 中国科学院植物研究所编. 中国植物志(第三十六卷, 被子植物门•双子叶植物纲•蔷薇科(一)绣线菊亚科-苹果亚科). 北京: 科学出版社, 1974.
Institute of Botany , the Chinese Academy of Sciences. Chinese Flora (Thirty-sixth volumes, Angiospermae•Dicotyledoneae•Rosaceae (1)Spiratheminaceae-Apple subfamily). Beijing: Science Press, 1974. ( in Chinese)
[10] 刘世尧, 白志川, 李加纳 . 皱皮木瓜与光皮木瓜药材品质多性状指标综合评价研究. 中国中药杂志, 2012,38(5):426-430.
doi: 10.4268/cjcmm20120707
LIU S Y, BAI Z C, LI J N . Comprehensive evaluation of multi-quality characteristic indexes of Chaenomeles speciosa and C. sinensis fruits. China Journal of Chinese Materia Medica, 2012,38(5):426-430.(in Chinese)
doi: 10.4268/cjcmm20120707
[11] 尹震花, 赵晨, 张娟娟, 张勇, 张伟 . 光皮木瓜的化学成分及药理活性研究进展. 中国实验方剂学杂志, 2017,23(9):221-229.
YIN Z H, ZHAO C, ZHANG J J, ZHANG Y, ZHANG W . Research progress on chemical constituents and pharmacological activities of Chaenomeles sinensis. Chinese Journal of Experimental Traditional Medical Formulae, 2017,23(9):221-229. (in Chinese)
[12] 高诚伟, 康勇, 雷泽模, 段志红, 李蕾 . 皱皮木瓜中有机酸的研究. 云南大学学报(自然科学版), 1999,21(4):319-321.
GAO C W, KANG Y, LEI Z M, DUAN Z H, LI L . The studies on the acidic constituents in the fresh-fruit of Chaenomeles spciosa. Journal of Yunnan University, 1999,21(4):319-321.(in Chinese)
[13] 龚复俊, 陈玲, 卢笑丛, 王有为 . 皱皮木瓜果实中有机酸成分的GC-MS分析. 植物资源与环境学报, 2005,14(4):55-56, 58.
doi: 10.3969/j.issn.1674-7895.2005.04.012
GONG F J, CHEN L, LU X C, WANG Y W . GC-MS analyzing of organic acids in Chaenomeles speciosa fruits. Journal of Plant Resources and Environment, 2005,14(4):55-56, 58.(in Chinese)
doi: 10.3969/j.issn.1674-7895.2005.04.012
[14] 于生, 张丽, 单鸣秋, 钱岩, 丁安伟 . UFLC-MS法同时测定木瓜饮片中8种有机酸. 中草药, 2016,47(14):2465-2469.
doi: 10.7501/j.issn.0253-2670.2016.14.012
YU S, ZHANG L, SHAN M Q, QIAN Y, DING A W . Simultaneous determination of eight organic acids in Chaenomeles Fructus by UFLC-MS. Chinese Traditional and Herbal Drugs, 2016,47(14):2465-2469. (in Chinese)
doi: 10.7501/j.issn.0253-2670.2016.14.012
[15] 陈发兴, 刘星辉, 陈立松 . 果实有机酸代谢研究进展. 果树学报, 2005,22(5):526-531.
doi: 10.3969/j.issn.1009-9980.2005.05.020
CHEN F X, LIU X H, CHEN L S . Advances in research on organic acid metabolism in fruits. Journal of Fruit Science, 2005,22(5):526-531. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2005.05.020
[16] 文涛, 熊庆娥, 曾伟光, 刘远鹏 . 脐橙果实发育过程中有机酸合成代谢酶活性的变化. 园艺学报, 2001,28(2):161-163.
doi: 10.3321/j.issn:0513-353X.2001.02.015
WEN T, XIONG Q E, ZENG W G, LIU Y P . Changes of organic acid synthetase activity during fruit development of navel orange ( Citrus sinesis Osbeck). Acta Horticulturae Sinica. 2001,28(2):161-163. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2001.02.015
[17] 李甲明, 杨志军, 张绍铃, 黄小三, 曹玉芬, 吴俊 . 不同梨品种果实有机酸含量变化与相关酶活性的研究. 西北植物学报, 2013,33(10):2024-2030.
LI J M, YANG Z J, ZHANG S L, HUANG X S, CAO Y F, WU J . Change of organic acid contents and related enzyme activities in different pear cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(10):2024-2030. (in Chinese)
[18] 郑惠文, 张秋云, 李文慧, 章世奎, 席万鹏 . 新疆杏果实发育过程中可溶性糖和有机酸的变化. 中国农业科学, 2016,49(20):3981-3992.
doi: 10.3864/j.issn.0578-1752.2016.20.012
ZHENG H W, ZHANG Q Y, LI W H, ZHANG S K, XI W P . Changes in soluble sugars and organic acids of Xinjiang apricot during fruit development and ripening. Scientia Agricultura Sinica, 2016,49(20):3981-3992. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.20.012
[19] 王小红, 陈红, 董晓庆 . ‘蜂糖李’果实发育过程中有机酸含量变化及其与苹果酸代谢相关酶的关系. 果树学报, 2017,34(8):1007-1015.
WANG X H, CHEN H, DONG X Q . Changes of organic acids content during ‘Fengtang plum’ (P. salicina) fruit development and its relationship with malic acid metabolism related enzymes. Journal of Fruit Science, 2017,34(8):1007-1015. (in Chinese)
[20] 周亚菁, 谢晓梅, 岳静怡, 查日维, 杨沫, 张玲 . 应用AQ-C18色谱柱的液相色谱法同时测定木瓜中6种脂肪酸和酚酸. 中药材, 2015,38(10):2117-2119.
doi: 10.13863/j.issn1001-4454.2015.10.025
ZHOU Y J, XIU X M, YUE J Y, ZHA R W, YANG M, ZHANG L . Simultaneous detection of six fatty acids and phenol acids of Chaenomeles spesiosa fruit on AQ-C18 column with HPLC. Journal of Chinese Medicinal Material, 2015,38(10):2117-2119. (in Chinese)
doi: 10.13863/j.issn1001-4454.2015.10.025
[21] 姜华昌, 曾翎, 尹炳龙, 干均江, 刘定鉴 . SO4 2-/FE2O3-Al2O3-SiO2固体超强酸的制备及其催化水解蔗糖生成乙酰丙酸 . 林产化学与工业, 2010,30(6):61-65.
JANG H C, ZENG L, YIN B L, GAN J J, LIU D J . Preparation of SO 2-4/Fe2O3-Al2O3-SiO2 solid super-acid catalyst for producing levulinic acid from hydrolysis of sucrose . Chemistry and Industry of Forest Products, 2010,30(6):61-65. (in Chinese)
[22] CHEN F X, LIU X H, CHEN L S . Developmental changes in pulp organic acid concentration and activities of acid metabolising enzymes during the fruit development of two loquat ( Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry, 2009,114:657-664.
doi: 10.1016/j.foodchem.2008.10.003
[23] 周先艳, 朱春华, 李进学, 高俊燕, 龚琪, 沈正松, 岳建强 . 果实有机酸代谢研究进展. 中国南方果树, 2015,44(1):120-125.
doi: 10.13938/j.issn.1007-1431.2015.44.01.038
ZHOU X Y, ZHU C H, LI J X, GAO J Y, GONG Q, SHEN Z S, YUE J Q . Advances in research on organic acid metabolism in fruits. South China Fruits, 2015,44(1):120-125. (in Chinese)
doi: 10.13938/j.issn.1007-1431.2015.44.01.038
[24] DIAKOU P, SVANELLA L, RAYMOND P, GAUDILLERE J P, MOING A . Phosphoenolpyruvate carboxylase during grape berry development: protein level, enzyme activity and regulation. Australian Journal of Plant Physiology, 2000,27:221-229.
doi: 10.1071/PP99141
[25] 靳李娜, 覃江文, 刘义梅 . 资丘木瓜采收期对商品性状的影响. 中国药师, 2014,17(9):1519-1521.
doi: 10.3969/j.issn.1008-049X.2014.09.027
LE L N, QIN J W, LIU Y M . Influence of harvest time on the characters of Chaenomeles spciosa(Sweet) Nakai. China Pharmacist, 2014,17(9):1519-1521. (in Chinese)
doi: 10.3969/j.issn.1008-049X.2014.09.027
[26] 李娜, 姜洪芳, 金敬宏, 任红荣, 张卫明 . 不同采收期的宣木瓜总黄酮含量分析. 食品研究与开发, 2011,32(2):112-114.
doi: 10.3969/j.issn.1005-6521.2011.02.034
LI N, JIANG H F, JIN J H, REN H R, ZHANG W M . Total flavone content analysis of Chaenomeles speciosa by different harvest times. Food Research and Development, 2011,32(2):112-114. (in Chinese)
doi: 10.3969/j.issn.1005-6521.2011.02.034
[27] 齐红, 王云, 郭庆梅, 周凤琴, 李圣波 . 不同采收期皱皮木瓜质量动态分析. 中国实验方剂学杂志, 2017,23(2):19-22.
QI H, WANG Y, GUO Q M, ZHOU F Q, LI S B . Dynamic quality analysis of Chaenomelis fructus in different harvesting periods. Chinese Journal of Experimental Traditional Medical Formulae, 2017,23(2):19-22.(in Chinese)
[28] 邵文豪, 董汝湘, 刁松锋, 孙洪刚, 姜景民, 李军民, 黄世清 . 皱皮木瓜果实发育后期品质变化及其成熟阶段的划分初探. 西北植物学报, 2015(1):175-181.
doi: 10.7606/j.issn.1000-4025.2015.01.0175
SHAO W H, DONG R X, DIAO S F, SUN H G, JIANG J M, LI J M, HUANG S Q . Changing in fruit qualities during the late stage of fruit development inChaenomeles speciosa and its identification of fruit ripening process. Acta Botanica Boreali-Occidentalia Sinica, 2015(1):175-181. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2015.01.0175
[29] 朱钦士 . 正转和反转的三羧酸循环. 生物学通报, 2015,50(1):16-19.
ZHU Q S . The forward and reverse tricarboxylic acid cycle. Bulletin of Biology, 2015,50(1):16-19. (in Chinese)
[30] 黄家培, 沈兰萍, 任青, 殷敏 . 琥珀酸脱氢酶的竞争性抑制剂. 生理科学, 1984,4(5):105.
HUANG J P, SHEN L P, REN Q, YIN M . Succinate dehydrogenase competitive inhibitor. Physiological Science, 1984,4(5):105. (in Chinese)
[31] 林军, 胡海峰, 胡又佳, 朱宝泉 . 莽草酸及其代谢产物在医药工业中的应用. 医药生物技术, 2011,18(5):461-465.
LIN J, HU H F, HU Y J, ZHU B Q . The applicaition of shikimic acid and its metabolites in the pharmaceutical industry. Pharmaceutical Biotechnology, 2011,18(5):461-465.(in Chinese)
[32] 杨莉莉, 马龙, 李献军, 单燕, 杨玥, 同延安 . 乙酰丙酸对“巨峰”葡萄叶绿素、产量和品质的影响. 北方园艺, 2015(24):5-8.
doi: 10.11937/bfyy.201524002
YANG L L, MA L, LI X J, SHAN Y, YANG Y, TONG Y A . Effect of Levulinic acid on ‘Kyoho’ grape chlorophyll, yield and quality.Northern Horticulture, 2015(24):5-8. (in Chinese)
doi: 10.11937/bfyy.201524002
[33] 曹虎 . 国外学者对水杨酸生理功能的再发现. 植物杂志, 1995,3:43.
CAO H . Rediscovery of physiological function of salicylic acid by foreign scholars. Plant Journal, 1995,3:43. (in Chinese)
[1] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[2] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[3] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[4] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[5] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[6] ZHAO XuSheng,QI YongZhi,YAN CuiMei,ZHEN WenChao. Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System [J]. Scientia Agricultura Sinica, 2020, 53(15): 3095-3107.
[7] Jing WANG, JianMin CAO, DeXin CHEN, Jun QIU, XiaoQiang WANG, Chao FENG, WenJing WANG. Antimicrobial Effect and Components Analysis of Volatile Organic Compounds from Bacillus pumilus AR03 [J]. Scientia Agricultura Sinica, 2018, 51(10): 1908-1919.
[8] CAO Jun, LIU Xin, CHEN WenRuo, DAI BingYe, DONG Wen, CHEN YinJi. The Volatile Compositions from Rice Stored with Dynamic Temperature and Humidity Based on SPME-GC/MS and  Electronic Nose (e-nose) Technics [J]. Scientia Agricultura Sinica, 2017, 50(1): 142-160.
[9] ZHENG Hui-wen, ZHANG Qiu-yun, LI Wen-hui, ZHANG Shi-kui, XI Wan-peng. Changes in Soluble Sugars and Organic Acids of Xinjiang Apricot During Fruit Development and Ripening [J]. Scientia Agricultura Sinica, 2016, 49(20): 3981-3992.
[10] XIE Yue-jie, HE Zhi-fei, LI Hong-jun. The Odor of Rabbit Meat Extracted by Supercritical Carbon Dioxide Fluid Extraction [J]. Scientia Agricultura Sinica, 2016, 49(16): 3208-3218.
[11] WANG Jin-qiu, HE Yi-zhong, XU Kun-yang, LUO Yi, SHENG Ling, LUO Tao, LIU Huan, CHENG Yun-jiang. Characterization of Mature Fruit Surface Waxes of Three Cultivated Citrus Species [J]. Scientia Agricultura Sinica, 2016, 49(10): 1936-1945.
[12] LIU Qian, SUN Guo-feng, ZHANG Jin-zheng, LI Xiao-dong. Study on Floral Scent of the Genus Hosta [J]. Scientia Agricultura Sinica, 2015, 48(21): 4323-4334.
[13] DING Yan-1, LI Li-Qian-1, CAO Rong-2, TANG Gen-Sheng-2, GU Zhen-Xin-1, HAN Yong-Bin-1. Effect of Enzymolysis Conditions on Glucosinolates in Rapeseed Meal and Identification of Their Degradation Products [J]. Scientia Agricultura Sinica, 2014, 47(2): 383-393.
[14] WANG Jin, LI Xiao-Kun, LU Jian-Wei, WANG Zheng, ZHAN Li-Ping. Study on Potassium Release Kinetics of Several K-Bearing Minerals by Sequential Extraction of Different Acid Solution [J]. Scientia Agricultura Sinica, 2012, 45(22): 4643-4650.
[15] LIU Shu-Zhen, HAN Jing-Wen, YUN Ze, WANG Jin-Qiu, XU Juan, ZHANG Hong-Yan, DENG Xiu-Xin, CHENG Yun-Jiang. Changes of Polar Metabolites in Guoqing No.1 Satsuma Mandarine During Fruit Ripening [J]. Scientia Agricultura Sinica, 2012, 45(21): 4437-4446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!