Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4688-4701.doi: 10.3864/j.issn.0578-1752.2022.23.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor

SONG JiangTao1(),SHEN DanDan2,GONG XuChen1,SHANG XiangMing1,LI ChunLong1,CAI YongXi3,YUE JianPing3,WANG ShuaiLing3,ZHANG PuFen3,XIE ZongZhou1,LIU JiHong1,*()   

  1. 1Key Laboratory of Horticulture and Botany, Ministry of Education, Huazhong Agricultural University, Wuhan 430070
    2Yichang Academy of Agricultural Sciences, Yichang 443000, Hubei
    3Service and Extension Centre of Fruit Trees and Tea in Yidu City, Yidu 443300, Hubei
  • Received:2022-02-28 Accepted:2022-06-15 Online:2022-12-01 Published:2022-12-06
  • Contact: JiHong LIU E-mail:912104398@qq.com;liujihong@mail.hzau.edu.cn

Abstract: 【Background】 Beni-Madonna tangor (Citrus nanko × C. amakusa), a hybrid cultivar of citrus, is favored by consumers because of its excellent quality. Fruit thinning is a technique commonly used to improve fruit quality in the process of agricultural production. It can not only significantly increase the fruit volume, but also increase the content of soluble solids in the fruit. However, the specific mechanism of fruit thinning to increase the content of soluble solids in the fruit of Beni-Madonna is still unclear. 【Objective】 In this study, four-year-old Beni-Madonna tangor plants, with trifoliate orange (Poncirus trifoliata) as a base rootstock and Ponkan as an intermediate stock, were used as experimental materials to explore the specific mechanism of fruit thinning on affecting the change of sugar and acid content in fruit. 【Method】Fruit thinning was carried out at the young fruit stage of Beni-Madonna fruit. The horizontal and vertical stems of fruit thinning and non-fruit thinning were measured every half a month or so. The samples were taken back and the single fruit weight and sugar and acid content were measured. The activities of sugar and acid metabolism related enzymes and the relative expression of their corresponding coding genes were measured when the sugar and acid content were significantly different..【Result】 The fruit thinning significantly increased the horizontal and vertical stems and single fruit weight of Beni-Madonna fruit in the middle and late stages of fruit growth, significantly accelerated the degradation rate of citrate content, but did not affect the final citrate content at fruit maturity, significantly increased the fruit glucose and sucrose content, but had no significant effect on fructose content. The fruit thinning significantly increased the activities of sucrose synthase SSⅡ (synthesis direction), sucrose synthase SSⅠ (decomposition direction), sucrose phosphate synthase (SPS) in sucrose metabolism and cytosolic aconitase (Cyt-ACO), cytoplasmic isocitrate dehydrogenase (ICDH) and glutamine synthetase (GS) implicated in citric acid catabolism. In addition, fruit thinning significantly promoted the early relative expression of CitSS3 and the relative expression of CitSPSs at all stages in the process of sucrose metabolism, and the relative expression of CitACO3, CitNADP-IDH1, CitACLα1/β, CitGAD1 and CitGSs in the process of citric acid metabolism in the early and middle stages..【Conclusion】 The artificial fruit thinning mainly promoted the accumulation of soluble sugar in fruit by enhancing the enzyme activity of sucrose phosphate synthase in the process of sucrose anabolism, improved the activity and gene expression level of related enzymes in the process of citric acid catabolism, and accelerated citric acid degradation, thus playing an important role in improving fruit quality.

Key words: fruit thinning, Beni-Madonna, fruit quality, sucrose metabolism, citric acid metabolism

Table 1

Primers used for real-time quantitative PCR analyses"

基因 Gene 上游引物Forward primer (5′ to 3′) 下游引物Reverse primer (3′ to 5′)
CitSS1 ACCAGTAGTTCATGCCACCG GCGAAAAGGACCACCCTGTA
CitSS2 GTTGAAAGGCACTGACACGC CCAATGGAGGGGGTTTTGCT
CitSS3 CTTCAACGGGTTCCTCTGCT TTCCCACAGGTGTTTTCGGT
CitSS4 AGCGTGTGGTAATGCTGGAA TGCCTTAGCCAGCAATCCTT
CitSPS1 TCTCCACCGTTCCTGGGTTA ACGACGTTTCGCCATTCTCT
CitSPS2 TTTCATGGCCTGAGCACTGT CGTTTTTGTCGCCTTCCAGG
CitSPS3 CGCATTTGGCATCTTACCCG CCTTGTTCCCGCTCCAATCT
CitSPS4 ATATGTGCTGGCGCATTTGG CGGCATCATTACGACCTTGC
CitVINV GGTGTTACATGGCGTCCCTA TGGCACCCATGTCACATTCT
CitCINV TGGGAGAAGACTGTGGACTG GCAACACGACCAATGGCTGA
CitPEPC1 GTGCGATCCCGTCTATCTGT AAGGCTCAAGGCCACTTTTT
CitPEPC2 GGCATGCAAAACACTGGTTA CATGTTCATTACGGCTTGGA
CitPEPC3 GAACAATGACGGACACAACG TGGACTCGCTTCCAACTTCT
CitCS1 GGTGCCCCCAATATTAACAA AGAGCTCGGTCCCATATCAA
CitCS2 ACTGGTGTATGGATGCGACA TCTTCGTCTTGTGGCATTTG
CitNADPIDH1 GAAAATTGGGGATTGGGATT CAACAGAGGTGCAGCTCAAA
CitNADPIDH2 CAGCGGACATGTGAACAATC CCGTCCATTTCAACGATAGG
CitNADPIDH3 TACCGGGTTCATCAGAAAGG AGGCTGCTTCCAGTTTCTCA
CitACO1 GGCAAGTCATTCACATGCGTT TGAAGAAGTAGACCCCGGTTGA
CitACO2 GGCAATGATGAAGTGATGGCT GTTGGAACATGGACCGTCTTT
CitACO3 TGCAGCAATGAGGTACAAGGC TCACACCCAGAAGCATTGGAC
CitACLα2 TACAGTGGAGCACCCAACGA CCTTCAGGGCTTGGATTATG
CitACLα1 GATACTGTTGGAGACTTGGG GCTCTCTTACGACCATCAGG
CitACLβ GAGGAGATAACAGAGACAAA AACAAAGAGCCCATTCAGAT
CitGAD1 CACCAAAAAGAATGAGGAGACC CCGTACTTGTGACCACTGACAT
CitGAD2 ACCGCAATGTGATGGAGAA GAATTCATCGTGGCGTTTG
CitGS1 CATCAATGCTATCGCGTGTT TCTGCATTCTTGGCAGGTTA
CitGS2 TTTGGGATGCTCAGTTGTGA CTGAATGGCTCCCAAAAATG

Fig. 1

Effects of fruit thinning on transverse diameter (A), longitudinal diameter (B), fruit shape index (C), single fruit weight (D) and fruit phenotype (E) *Significant difference (P<0.05). The same as below"

Fig. 2

Effects of fruit thinning on sucrose (A), glucose (B), fructose (C) and citric acid (D) contents"

Fig. 3

Effects of fruit thinning on the activities of S-AI (A), SS I (B), SS II (C) and SPS (D)"

Fig. 4

Effects of fuit thinning on the activities of PEPC(A), CS (B), ICDH (C), Cyt-ACO (D), ACL (E),GS (F) and GAD (G)"

Fig. 5

Effects of fruit thinning on the expression of SSs, SPSs and VINV related to sucrose metabolism"

Fig. 5

Effects of fruit thinning on the expression of PEPCs and CSs related to citric acid synthesis"

Fig. 7

Effects of fruit thinning on the expressions of ACOs, NADP-IDHs, ACLs, GSs and GADs related to citric acid degradation"

Table 2

Effects of fruit thinning on the correlation coefficients between sucrose (upper) and citric acid content (lower) and their corresponding metabolic enzymes"


Enzyme
相关系数 Pearson correlation
对照 CK 疏果 Fruit thinning
S-AI 0.213 0.424
SPS 0.829 0.996**
SS I 0.629 -0.032
SS II 0.887 0.961*
CS 0.405 0.539
ACL 0.995** 0.693
ACO -0.891 -0.977*
GAD 0.863 0.827
GS 0.058 -0.556
PEPC 0.928 0.894
NADP-IDH -0.860 -0.787

Table 3

Effects of fruit thinning on the correlation coefficients between sucrose (upper) and citric acid content (lower) and their corresponding metabolic genes"

基因
Gene
相关系数 Pearson correlation
对照 CK 疏果 Fruit thinning
CitSS1 -0.019 0.360
CitSS2 0.329 0.567
CitSS3 0.713 0.943
CitSS4 -0.026 0.972*
CitSPS1 0.596 0.844
CitSPS2 0.541 0.764
CitSPS3 0.602 0.842
CitSPS4 0.449 0.726
CitVINV 0.532 0.692
CitCINV 0.840 0.717
CitPEPC1 0.666 0.746
CitPEPC2 -0.738 -0.626
CitPEPC3 -0.289 0.018
CitCS1 -0.164 -0.652
CitCS2 -0.620 -0.957*
CitNADPIDH1 -0.921 -0.897
CitNADPIDH2 -0.481 -0.672
CitNADPIDH3 -0.870 -0.666
CitACO1 -0.710 -0.690
CitACO2 -0.311 -0.752
CitACO3 -0.761 -0.752
CitACLα2 0.589 -0.145
CitACLα1 -0.502 -0.374
CitACLβ -0.747 -0.992**
CitGAD1 -0.774 0.465
CitGAD2 -0.788 -0.685
CitGS1 -0.856 -0.593
CitGS2 -0.999** -0.132
[1] 陈仕俏, 赵文红, 白卫东. 我国柑橘的发展现状与展望. 农产品加工(学刊), 2008(3): 21-24, 32.
CHEN S Q, ZHAO W H, BAI W D. The current situation and prospect of the development of Citrus in China. Academic Periodical of Farm Products Processing, 2008(3): 21-24, 32. (in Chinese)
[2] 吴晓红, 陈宝宏, 李小华. 柑橘类水果中总酸与总糖的测定. 食品研究与开发, 2012, 33(9): 144-146.
WU X H, CHEN B H, LI X H. Determination of total acids and total sugar in Citrus fruits. Food Research and Development, 2012, 33(9): 144-146. (in Chinese)
[3] 卢美英, 卢红, 卢日林, 潘朝邦, 徐炯志, 黄桂香, 欧世金, 薛进军, 陈香玲, 黄永敬, 何全光. 龙眼疏果方法研究. 广西农业生物科学, 2003, 22(1): 21-24, 31.
LU M Y, LU H, LU R L, PAN C B, XU J Z, HUANG G X, OU S J, XUE J J, CHEN X L, HUANG Y J, HE Q G. A study of the method of longan fruit panicle thinning. Journal of Guangxi Agricultural and Biological Science, 2003, 22(1): 21-24, 31. (in Chinese)
[4] CANO-LAMADRID M, GALINDO A, COLLADO-GONZÁLEZ J, RODRÍGUEZ P, CRUZ Z N, LEGUA P, BURLÓ F, MORALES D, CARBONELL-BARRACHINA Á A, HERNÁNDEZ F. Influence of deficit irrigation and crop load on the yield and fruit quality in wonderful and mollar de Elche pomegranates. Journal of the Science of Food and Agriculture, 2018, 98(8): 3098-3108. doi: 10.1002/jsfa.8810.
doi: 10.1002/jsfa.8810
[5] 李创, 张伟, 陈代全, 马松明, 马辉, 秦燕, 刘军. 不同疏果处理对中国樱桃果实品质的影响. 南方农业, 2020, 14(25): 28-30.
LI C, ZHANG W, CHEN D Q, MA S M, MA H, QIN Y, LIU J. Effects of different fruit thinning treatments on fruit quality of Chinese cherry. South China Agriculture, 2020, 14(25): 28-30. (in Chinese)
[6] 顾建芹. 暗柳橙及其突变体红暗柳橙果实发育过程中糖酸组分的变化[D]. 武汉: 华中农业大学, 2007.
GU J Q. Changing of sugar and acid contents of Anliu sweet orange and its mutant red Anliu sweet orange during fruit development[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese)
[7] 白蓓蓓, 王佳, 叶秀旭, 刘咲頔, 陈华蕊, 陈业渊. 杧果成熟过程中果肉可溶性糖组分分析. 分子植物育种, 2020, 18(13): 4457-4463.
BAI B B, WANG J, YE X X, LIU X D, CHEN H R, CHEN Y Y. Analysis of soluble sugar components in mango flesh during ripening. Molecular Plant Breeding, 2020, 18(13): 4457-4463. (in Chinese)
[8] 房经贵, 朱旭东, 贾海锋, 王晨. 植物蔗糖合酶生理功能研究进展. 南京农业大学学报, 2017, 40(5): 759-768.
FANG J G, ZHU X D, JIA H F, WANG C. Research progress on physiological function of plant sucrose synthase. Journal of Nanjing Agricultural University, 2017, 40(5): 759-768. (in Chinese)
[9] 刘翔宇, 李娟, 黄敏, 梁春辉, 陈杰忠. 柑橘砧木对砂糖橘果实糖积累的影响. 中国农业科学, 2015, 48(11): 2217-2228.
LIU X Y, LI J, HUANG M, LIANG C H, CHEN J Z. Research on influences of rootstock on sugar accumulation in ‘Shatangju’ tangerine fruits. Scientia Agricultura Sinica, 2015, 48(11): 2217-2228. (in Chinese)
[10] LI Y Y, YAO Y, YANG G S, TANG J, AYALA G J, LI X M, ZHANG W L, HAN Q Y, YANG T, WANG H, MAYO K H, SU J Y. Co-crystal structure of Thermosynechococcus elongatus sucrose phosphate synthase with UDP and sucrose-6-phosphate provides insight into its mechanism of action involving an oxocarbenium ion and the glycosidic bond. Front Microbiology, 2020, 11: 1050.
doi: 10.3389/fmicb.2020.01050
[11] 魏清江, 马张正, 勒思, 雷常玉, 马巧利, 辜青青. 柑橘磷酸蔗糖合酶基因CsSPS的鉴定和表达. 园艺学报, 2020, 47(2): 334-344.
WEI Q J, MA Z Z, LE S, LEI C Y, MA Q L, GU Q Q. Identification and expression analysis of sucrose-phosphate synthase(SPS) genes in Citrus. Acta Horticulturae Sinica, 2020, 47(2): 334-344. (in Chinese)
[12] 欧金梅, 杨许, 单春苗, 张声祥, 施圆圆, 吴家文, 黄璐琦, 王瑞. 榔梅果实转录组分析及其柠檬酸生物合成途径关键酶基因结构与功能预测. 中国中药杂志, 2020, 45(19): 4606-4616. doi: 10.19540/j.cnki.cjcmm.20200627.102.
doi: 10.19540/j.cnki.cjcmm.20200627.102
OU J M, YANG X, SHAN C M, ZHANG S X, SHI Y Y, WU J W, HUANG L Q, WANG R. Transcriptome analysis of ‘Langmei’ fruits and key enzyme genes structure and function prediction involved in citric acid biosynthesis. China Journal of Chinese Materia Medica, 2020, 45(19): 4606-4616. doi: 10.19540/j.cnki.cjcmm.20200627.102. (in Chinese)
doi: 10.19540/j.cnki.cjcmm.20200627.102
[13] GUO L X, LIU Y Z, LUO L J, HUSSAIN S B, BAI Y X, ALAM S M. Comparative metabolites and citric acid-degrading enzymes activities in citrus fruits reveal the role of balance between ACL and Cyt-ACO in metabolite conversions. Plants, 2020, 9(3): 350.
doi: 10.3390/plants9030350
[14] LI S J, YIN X R, WANG W L, LIU X F, ZHANG B, CHEN K S. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. Journal of Experimental Botany, 2017, 68(13): 3419-3426. doi: 10.1093/jxb/erx187.
doi: 10.1093/jxb/erx187
[15] FENG C, CHEN M, XU C J, BAI L, YIN X R, LI X, ALLAN A C, FERGUSON I B, CHEN K S. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 2012, 13: 19. doi: 10.1186/1471-2164- 13-19.
doi: 10.1186/1471-2164-13-19 pmid: 22244270
[16] LI S J, WANG W L, MA Y C, LIU S C, GRIERSON D, YIN X R, CHEN K S. Citrus CitERF6 contributes to citric acid degradation via upregulation of CitAclα1, encoding ATP-citrate lyase subunit Α. Journal of Agricultural and Food Chemistry, 2020, 68(37): 10081-10087. doi: 10.1021/acs.jafc.0c03669.
doi: 10.1021/acs.jafc.0c03669
[17] 王志静, 吴黎明, 何利刚, 宋放, 蒋迎春. 湖北柑橘主产区主要病虫害种类及发生期调查. 湖北农业科学, 2019, 58(S2): 295-297.
WANG Z J, WU L M, HE L G, SONG F, JIANG Y C. Investigation on the species and occurrence period of major diseases and pests in the main citrus producing areas in Hubei. Hubei Agricultural Science, 2019, 58 (S2): 295-297. (in Chinese)
[18] 易青, 蔡永喜, 王血红. 湖北省宜都市柑橘产业现状与发展对策. 中国果树, 2009(6): 67-69.
YI Q, CAI Y X, WANG X H. Current situation and development countermeasures of citrus industry in Yidu city, Hubei province. China Fruits, 2009(6): 67-69. (in Chinese)
[19] 姜翔鹤, 杨波, 王登亮, 吴雪珍, 卢志成, 刘春荣. 预防杂柑品种红美人早衰栽培技术. 果树实用技术与信息, 2018(1): 29-32.
JIANG X H, YANG B, WANG D L, WU X Z, LU Z C, LIU C R. Cultivation techniques for preventing premature senescence of hybrid citrus varieties Hongmeiren. Practical Technology and Information of Fruit Trees, 2018(1): 29-32. (in Chinese)
[20] 马监生, 周志虎, 向进, 宋文化, 向舜德. ‘爱媛28’在秭归县的引种表现及栽培技术要点. 中国园艺文摘, 2017(4): 203-204.
MA J S, ZHOU Z H, XIANG J, SONG W H, XIANG S D. Introduction performance and cultivation techniques of ‘Ehime 28’ in Zigui county. Chinese Horticulture Abstracts, 2017(4): 203-204. (in Chinese)
[21] 邓晓东, 焦国柱, 刘聪, 韦同路, 郭大勇, 谢宗周, 刘继红. 亚精胺在椪柑果实留树保鲜中的作用及其对离层形成的影响. 园艺学报, 2018, 45(4): 669-677.
DENG X D, JIAO G Z, LIU C, WEI T L, GUO D Y, XIE Z Z, LIU J H. Role of exogenous spermidine in keeping on-tree ponkan fruits fresh and its effect on formation of abscission zone. Acta Horticulturae Sinica, 2018, 45(4): 669-677. (in Chinese)
[22] GUO L X, SHI C Y, LIU X, NING D Y, JING L F, YANG H, LIU Y Z. Citrate accumulation-related gene expression and/or enzyme activity analysis combined with metabolomics provide a novel insight for an orange mutant. Scientific Reports, 2016, 6: 29343. doi: 10.1038/srep29343.
doi: 10.1038/srep29343
[23] 吴黎明, 蒋迎春, 何利刚, 王志静, 仝铸, 吴述勇, 廖胜才, 王菊平. 疏果对桃叶橙果实品质的影响及效益分析. 中国南方果树, 2015, 44(6): 34-34, 37.
WU L M, JIANG Y C, HE L G, WANG Z J, TONG Z, WU S Y, LIAO S C, WANG J P. Effect of fruit thinning on fruit quality and benefit analysis of ‘Taoye Cheng’. South China Fruits, 2015, 44(6): 34-34, 37. (in Chinese)
[24] 林媚, 吴韶辉. 浙江省12个柑橘品种果实品质分析与评价. 浙江农业科学, 2019, 60(6): 963-966.
LIN M, WU S H. Analysis and evaluation on fruit quality of 12 citrus varieties. Journal of Zhejiang Agricultural Sciences, 20199, 60(6): 963-966. (in Chinese)
[25] 秦伟, 刘立强, 司宏章, 杨新峰, 李建贵. 疏果摘叶对红富士苹果果实发育及其品质的影响. 新疆农业科学, 2015, 52(8): 1419-1431.
QIN W, LIU L Q, SI H Z, YANG X F, LI J G. Effects of fruit thinning and leaves priming on the fruit growth and qualities of red Fuji apple. Xinjiang Agricultural Sciences, 2015, 52(8): 1419-1431. (in Chinese)
[26] LI S J, LIU X J, XIE X L, SUN C D, GRIERSON D, YIN X R, CHEN K S. CrMYB73, a PH-like gene, contributes to citric acid accumulation in citrus fruit. Scientia Horticulturae, 2015, 197: 212-217.
doi: 10.1016/j.scienta.2015.09.037
[27] 龚荣高, 张光伦. 柑橘果实糖代谢的研究进展. 四川农业大学学报, 2003, 21(4): 343-346.
GONG R G, ZHANG G L. Advances in research on sugar metabolism in Citrus fruit. Journal of Sichuan Agricultural University, 2003, 21(4): 343-346. (in Chinese)
[28] KUBO T, HOHJO I, HIRATSUKA S. Sucrose accumulation and its related enzyme activities in the juice sacs of satsuma mandarin fruit from trees with different crop loads. Scientia Horticulturae, 2001, 91(3/4): 215-225.
doi: 10.1016/S0304-4238(01)00262-X
[29] 张长明. 不同施肥处理对秭归脐橙土壤和叶片养分及柠檬酸代谢的影响[D]. 华中农业大学, 2013.
ZHANG C M. The effects of different fertilization treatments on the soil and leaf nutrients and the metabolism of citric acid of navel orange in Zigui[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[30] 文涛, 熊庆娥, 曾伟光, 刘远鹏. 脐橙果实有机酸代谢调控措施的初步研究. 四川农业大学学报, 2001, 19(2): 144-147.
WEN T, XIONG Q E, ZENG W G, LIU Y P. Study on the regulation of organic acid synthesize during fruit development of navel orange (Citrus sinesis osbeck). Journal of Sichuan Agricultural University, 2001, 19(2): 144-147. (in Chinese)
[1] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[2] SHI Ying, CHEN SiYi, ZENG YiKe, TANG Jun, LI DiPing, LI GuoJing, HUANG XianBiao, LI ChunLong, XIE ZongZhou, LIU JiHong. Mechanism Underlying the Improved Quality of Bagged Fruits in Ponkan [J]. Scientia Agricultura Sinica, 2023, 56(14): 2776-2786.
[3] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[4] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[5] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[6] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[7] GU MingHui,LIU YongFeng,SHEN Qian,QIAO ChunYan. Improving Quality and Delaying Oxidation in Goat Meat Refrigeration by Polyphenols from Thinned Young Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(8): 1643-1654.
[8] ZHANG Ji,LI JunJie,WAN LianJie,YANG JiangBo,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange [J]. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286.
[9] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[10] WANG XiaoYue,ZHANG GuoJun,SUN Lei,ZHAO Yin,YAN AiLing,WANG HuiLing,REN JianCheng,XU HaiYing. Effects of Two Trellis Systems on Viticultural Characteristics and Fruit Quality of Three Table Grape Cultivars [J]. Scientia Agricultura Sinica, 2019, 52(7): 1150-1163.
[11] JI XiaoHao,LIU FengZhi,SHI XiangBin,WANG BaoLiang,LIU PeiPei,WANG HaiBo. The Effects of Different Training Systems and Shoot Spacing on the Fruit Quality of ‘Kyoho’ Grape [J]. Scientia Agricultura Sinica, 2019, 52(7): 1164-1172.
[12] JiaHao WANG,YaQian DUAN,LanChun NIE,LiYan SONG,WenSheng ZHAO,SiYu FANG,JiaTeng ZHAO. Factor Analysis and Comprehensive Evaluation of the Fruit Quality of ‘Yangjiaocui’ Melons [J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591.
[13] YAN YiChao, WAN ChunYan, GU XianBin, GUO ChengBao, CHEN YueHong, GAO ZhiHong. Effect of RdreB1BI Gene Overexpression on Fruit Quality and Related Gene Expression in Strawberry [J]. Scientia Agricultura Sinica, 2018, 51(7): 1353-1367.
[14] BAI YongChao, WEI XuFang, CHEN Lu, WAN RuMeng, HOU ZhiXia. Multivariate Analysis of Fruit Leaf Mineral Elements, Soil Fertility Factors and Fruit Quality of Vaccinium uliginosum L. [J]. Scientia Agricultura Sinica, 2018, 51(1): 170-181.
[15] HU DeYu, LIU XueFeng, HE ShaoLan, XIE RangJin, QIAN Chun, Lü Qiang, YI ShiLai, ZHENG YongQiang, DENG Lie. Effect of Plant Canopy Transformation on Chlorophyll Fluorescence Characteristics and Fruit Yield and Quality in Closed Citrus Orchard [J]. Scientia Agricultura Sinica, 2017, 50(9): 1734-1746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!