Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (3): 556-565.doi: 10.3864/j.issn.0578-1752.2018.03.013

• Nutrient Management in Soil-Crop-Animal Production System • Previous Articles     Next Articles

Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province

LIU Song1, WANG XiaoQin1,2, HU JiPing1, LI Qiang1,CUI LiLi1, DUAN XueQin1, GUO Liang1,2       

  1. 1College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi; 2Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi
  • Received:2017-04-26 Online:2018-02-01 Published:2018-02-01

Abstract: 【Objective】The objective of the study is to evaluate the carbon footprint (CF) of alfalfa production in different cropping patterns in Gansu Province, clarify the main process emitting greenhouse gases (GHG), analyze the effects of fertilization and irrigation on the CF, and investigate the potential measures for decreasing CF of alfalfa production in this province. 【Method】Life cycle assessment methodology combined with IPCC (2006) guide for calculating greenhouse gases emission in the field were used to quantify the CF of alfalfa production. Data were collected from farm survey in major regions of alfalfa cultivation in Gansu Province which covered 10 counties in the districts of Longdong, Longzhong and Hexi. Cropping pattern of alfalfa production in Gansu province was classified into four types according to the level of nitrogen application and irrigation, and the irrigation water source. The CF composition characteristics of four cropping patterns and the effect of nitrogen application rate and irrigation on productivity and CF of alfalfa were analyzed based on CF calculation model and input and output data of alfalfa production. Scenario analysis was used to estimate the GHG abatement potential through strategies such as decreasing chemical fertilizer application, improving fertilizer production technique, combining chemical fertilizer and organic fertilizer, and utilizing sprinkle and dripping irrigation. 【Result】CF of alfalfa production was 0.02, 0.19, 0.22 and 0.64 kg CO2 eq·kg-1 DM under four cropping patterns including NFNI (non-fertilization and non-irrigation), SFNI (spreading fertilization and non-irrigation), SFRI (spreading fertilization and river irrigation) and SFWI (spreading fertilization and well irrigation), respectively. The CF of alfalfa production in SFNI cropping pattern was significantly different from other cropping patterns except for SFRI. The main contributors of CF and their proportion to the total GHG emissions varied among different cropping patterns. For NFNI pattern, CF was mainly composed of GHG emissions from crop residues and the use of agricultural machinery. For SFNI and SFRI patterns, the major contributor of CF were chemical fertilizer production and nitrogen fertilizer application, followed by the use of agricultural machinery. The greatest GHG emissions source for SFWI pattern was electricity for irrigation, followed by chemical fertilizer production and nitrogen fertilizer application. Reducing the amount of applied nitrogen, combining chemical fertilizer with manure, and decreasing the GHG emission from nitrogen fertilizer production would decrease CF by 10.0%-18.0%, -3.0%-8.0% and 1.8%-5.8% in SFNI, SFRI and SFWI patterns, respectively. The water-saving irrigation (sprinkler irrigation and drip irrigation) would decrease the CF by 12.7%-38.5%.【Conclusion】 The alfalfa production and CF of four cropping patterns in Gansu province are different. The SFWI pattern got the highest production with high input, while its CF was significantly higher than that of other patterns. With the exception of NFNI pattern, excessive fertilizer was used in other three patterns. Reducing the amount of applied N fertilizer and the GHG emission from N fertilizer production will decrease CF of alfalfa production in Gansu province. The combination of chemical fertilizer and manure will decrease CF in SFNI and SFRI patterns, but also the yield of alfalfa hay. So, the optimal ratio of chemical fertilizer to manure should be investigated further. The water-saving irrigation will be the major mitigation measure in SFWI pattern, while the integrated abatement potential of GHG emission should be evaluated including emissions from the production of pipes used in sprinkler and drip irrigation.

Key words: alfalfa, carbon footprint, fertilization, irrigation, Gansu Province

[1]    王显国, 韩建国, 祝美俊. 美国的苜蓿种子产业. 世界农业, 2004(6): 42-44.
Wang X G, Han J G, Zhu M J. Alfalfa seed industry of the United States. World Agriculture, 2004(6): 42-44. (in Chinese)
[2]    中国奶业年鉴编委会. 中国奶业年鉴2013. 北京: 中国农业出版社, 2013.
Editorial Committee of China dairy yearbook. China Dairy Yearbook 2013. Beijing: China Agriculture Press, 2013. (in Chinese)
[3]    聂迎利, 冯艳秋. 加快实施振兴奶业苜蓿发展行动 为奶业转型升级和现代奶业建设提供有力支撑——全国振兴奶业苜蓿发展行动现场会在辽宁锦州召开. 中国乳业, 2013(138): 4-7.
Nie Y L, Feng Y Q. Accelerate the implementation of the development of the dairy industry to revitalize the dairy industry to upgrade and promote the transformation and upgrading of modern dairy industry to provide a strong support——National dairy alfalfa development initiative to revitalize the field has been held in Jinzhou, Liaoning. China Dairy, 2013(138): 4-7. (in Chinese)
[4]    朱新强, 王晓力, 王春梅, 张茜. 甘肃省苜蓿种植现状及成本收益分析. 中国草食动物科学, 2014, 34(6): 63-67.
Zhu X Q, Wang X L, Wang C M, Zhang Q. Analysis on the status quo and cost benefit of alfalfa in Gansu Province. China Herbivore Science, 2014, 34(6): 63-67. (in Chinese)
[5]    王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析. 中国农业科学, 2015, 48(1): 83-92.
Wang Z B, Wang M, Chen F. Carbon footprint analysis of crop production in North China Plain. Scientia Agricultura Sinica, 2015, 48(1): 83-92. (in Chinese)
[6]    史磊刚, 陈阜, 孔凡磊, 范士超. 华北平原冬小麦-夏玉米种植模式碳足迹研究. 中国人口·资源与环境, 2011, 21(9): 93-98.
Shi L G, Chen F, Kong F L, Fan S C. The carbon footprint of winter wheat-summer maize cropping pattern on North China Plain. China Population, Resources and Environment, 2011, 21(9): 93-98. (in Chinese)
[7]    Gan Y T, Liang C, May W, Malhi S S, Niu J Y, Wang X Y. Carbon footprint of spring barley in relation to preceding oilseeds and N fertilization. The International Journal of Life Cycle Assessment, 2012, 17(5): 635-645.
[8]    Gan Y T, Liang C, Huang G B, Malhi S S, Brandt S A, Katepa-Mupondwa F. Carbon footprint of canola and mustard is a function of the rate of N fertilizer. The International Journal of Life Cycle Assessment, 2012, 17(1): 58-68.
[9]    刘松, 王效琴, 崔利利, 段雪琴, 赵加磊. 关中平原饲料作物生产的碳足迹及影响因素研究. 环境科学学报, 2017, 37(3): 1201-1208.
Liu S, Wang X Q, Cui L L, Duan X Q, Zhao J L. Carbon footprint and its impact factors of feed crops in Guanzhong Plain. Acta Scientiae Circumstantiae, 2017, 37(3): 1201-1208. (in Chinese)
[10]   Baek C Y, Lee K M, Park K H. Quantification and control of the greenhouse gas emissions from a dairy cow system. Journal of Cleaner Production, 2014, 70: 50-60.
[11]   Adom F, Maes A, Workman C, Clayton-Nierderman Z, Thoma G, Shonnard D. Regional carbon footprint analysis of dairy feeds for milk production in the USA. The International Journal of Life Cycle Assessment, 2012, 17(5): 520-534.
[12]   IPCC 2006. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. [2017-04-26]. http://www.ipcc-nggip.iges.or.jp/ public/2006gl/vol4.html.
[13]   韩建民. 甘肃苜蓿草业产业化发展研究. 中国农村经济, 2000(3): 38-42.
Han J M. Study on the development of alfalfa industry in Gansu. Chinese Rural Economy, 2000(3): 38-42. (in Chinese)
[14]   徐广, 刁治民, 肖前青, 王坚. 苜蓿深层次开发现状及前景. 青海草业, 2008, 17(2): 18-20.
Xu G, Diao Z M, Xiao Q Q, Wang J. deep-rooted alfalfa development statue and prospects. Qinghai Prataculture, 2008, 17(2): 18-20. (in Chinese)
[15]   ISO 14040. Environmental management-life cycle assessment- principles and framework[EB/OL]. [2017-04-26]. https://www.iso.org/ standard/37456.html.
[16]   王效琴, 梁东丽, 王旭东, 彭莎, 郑金正. 运用生命周期评价方法评估奶牛养殖系统温室气体排放量. 农业工程学报, 2012, 28(13): 179-184.
Wang X Q, Liang D L, Wang X D, Peng S, Zheng J Z. Estimation of greenhouse gas emissions from dairy farming systems based on LCA. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 179-184. (in Chinese)
[17]   Ecoinvent Centre, 2010. Ecoinveny Data v2.2. Swiss Cebtre for Life Cycle Inventories, Dübendorf, Switzerland[DB/OL]. [2017-04-26]. http://www.ecoinvent.ch.
[18]   张强, 巨晓棠, 张福锁. 应用修正的IPCC2006方法对中国农田N2O排放量重新估算. 中国生态农业学报, 2010, 18(1): 7-13.
Zhang Q, Ju X T, Zhang F S. Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method. Chinese Journal of Eco-Agriculture, 2010, 18(1): 7-13. (in Chinese)
[19]   Larsson L, Ferm M, Kasimir-Klemedtsson A, Klemedtsson L. Ammonia and nitrous oxide emissions from grass and alfalfa mulches. Nutrient cycling in agroecosystems, 1998, 51(1): 41-46.
[20]   赵荣芳, 陈新平, 张福锁. 华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡. 土壤学报, 2009, 46(4): 684-697.
Zhao R F, Chen X P, Zhang F S. Nitrogen cycling and balance in winter wheat-summer maize rotation system in Northern China plain. Acta Pedologica Sinica, 2009, 46(4): 684-697. (in Chinese)
[21]   谢鸿宇. 生态足迹评价模型的改进与应用. 北京: 化学工业出版 社, 2008: 52-53.
Xie H Y. Improvement and application of evaluation model of ecological footprint. Beijing: Chemical Industry Press, 2008: 52-53. (in Chinese)
[22]   国家发展和改革委员会应对气候变化司. 2015中国区域电网基准线排放因子[EB/OL]. (2016-09-11)[2017-04-26]. http://cdm.ccchina. gov. cn/archiver/cdmcn/UpFile/Files/Default/20160606120244478242.pdf.
National Development and Reform Commission secretary for responding to climate change. China regional power grid baseline emission factor in 2015[EB/OL]. (2016-09-11)[2017-04-26]. http:// cdm.ccchina.gov.cn/archiver/cdmcn/UpFile/Files/Default/20160606120244478242.pdf. (in Chinese)
[23]   WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 2002, 91(3): 217-232.
[24]   陈红, 郝维昌, 石凤, 王天民. 几种典型高分子材料的生命周期评价. 环境科学学报, 2004, 24(3): 545-549.
Chen H, Hao W C, Shi F, Wang T M. Life cycle assessment of several typical macromolecular materials. Acta Scientiae Circumstantiae, 2004, 24(3): 545-549. (in Chinese)
[25]   IPCC Working Group I . Climate change 2013: the physical science basis[EB/OL]. [2017-04-26]. http://www.climatechange2013.org/.
[26]   杨园园, 高志岭, 王雪君. 有机、无机氮肥施用对苜蓿产量、土壤硝态氮和温室气体排放的影响. 应用生态学报, 2016, 27(3): 822-828.
Yang Y Y, Gao Z L, Wang X J. Impact of organic and inorganic fertilization on alfalfa yield, soil nitrate and greenhouse gas emissions.Chinese Journal of Applied Ecology, 2016, 27(3): 822-828. (in Chinese)
[27]   Wang X, Kristensen T, Mogensen L, Knudsen M T, Wang X. Greenhouse gas emissions and land use from confinement dairy farms in the Guanzhong plain of China—using a life cycle assessment approach. Journal of Cleaner Production, 2016, 113: 577-586.
[28]   姚素梅, 康跃虎, 刘海军, 冯金朝, 王君. 喷灌与地面灌溉条件下冬小麦光合作用的日变化研究. 农业工程学报, 2005, 21(11): 16-19.
Yao S M, Kang Y H, Liu H J, Feng J C, Wang J. Diurnal changes of photosynthesis of winter wheat under sprinkler irrigation and surface irrigation conditions. Transactions of the CSAE, 2005, 21(11): 16-19. (in Chinese)
[29]   郭学良, 李卫军. 不同灌溉方式对紫花苜蓿产量及灌溉水利用效率的影响. 草地学报, 2014, 22(5): 1086-1090.
Guo X L, Li W J. Effects of different irrigation methods on alfalfa yield and irrigation water use efficiency. Acta Agrestia Sinica, 2014, 22(5): 1086-1090. (in Chinese)
[30]   王东, 曹新成, 李富先, 王小莉. 地下滴灌苜蓿栽培的试验效果分析. 新疆农垦经济, 2004(5): 65-66.
Wang D, Cao X C, Li F X, Wang X L. Experimental result analyses of underground drip irrigation to alfalfa growth. Xinjiang State Farms Economy, 2004(5): 65-66. (in Chinese)
[31]   Ladha J K, Pathak H, Krupnik T J, SIX J, VAN KESSEL G. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 2005, 87: 85-156.
[32]   巨晓棠, 张福锁. 中国北方土壤硝态氮的累积及其对环境的影响. 生态环境, 2003, 12(1): 24-28.
Ju X T, Zhang F S. Nitrate accumulation and its implication to environment in north China. Ecology and Environment, 2003, 12(1): 24-28. (in Chinese)
[33]   张小莉, 孟琳, 王秋君, 罗佳, 黄启为, 徐阳春, 杨兴明, 沈其荣. 不同有机无机复混肥对水稻产量和氮素利用率的影响. 应用生态学报, 2009, 20(3): 624-630.
Zhang X L, Meng L, Wang Q J, Luo J, Huang Q W, Xu Y C, Yang X M, Shen Q R. Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency. Chinese Journal of Applied Ecology, 2009, 20(3): 624-630. (in Chinese)   
[34]   彭佩钦, 仇少君, 侯红波, 李恩尧, 丘亚群. 15N交叉标记有机与无机肥料氮的转化与残留. 生态学报, 2011, 31(3): 858-865.
Peng P Q, Qiu S J, Hou H B, Li E Y, Qiu Y Q. Nitrogen transformation and its residue in pot experiments amended with organic and inorganic 15N cross labeled fertilizers. Acta Ecologica Sinica, 2011, 31(3): 858-865. (in Chinese)
[35]   朱菜红, 董彩霞, 沈其荣, 徐阳春. 配施有机肥提高化肥氮利用效率的微生物作用机制研究. 植物营养与肥料学报, 2010, 16(2): 282-288.
Zhu C H, Dong C X, Shen Q R, Xu Y C. Microbial mechanism on enhancement of inorganic fertilizer-N use efficiency for combined use of inorganic and organic fertilizers. Plant Nutrition and Fertilizer Science, 2010, 16(2): 282-288. (in Chinese)
[36]   韩思训, 王森, 高志岭, 王殿武. 不同施肥条件下苜蓿产量、氮素累积量及肥料氮素利用率研究. 华北农学报, 2014, 29(6): 220-225.
Han S X, Wang S, Gao Z L, Wang D W. Impact of N application on the yield of alfalfa, N accumulation and nitrogen use efficiency. Acta Agriculturae Boreali-Sinica, 2014, 29(6): 220-225. (in Chinese)
[37]   张爱宁, 王玉祥, 隋晓青, 张博. 不同灌溉方式对苜蓿形态及生理的影响. 中国农学通报, 2014, 30(18): 161-165.
Zhang A N, Wang Y X, Sui X Q, Zhang B. Effects of different irrigation methods on morphology and physiology of alfalfa. Chinese Agricultural Science Bulletin, 2014, 30(18): 161-165. (in Chinese)
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[6] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[7] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[8] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[9] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[10] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[11] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[12] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[13] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[14] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[15] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!