Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3321-3333.doi: 10.3864/j.issn.0578-1752.2022.17.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions

ZHAO XiaoHui1(),ZHANG YanYan1,RONG YaSi1,DUAN JianZhao1,HE Li1,2,LIU WanDai1(),GUO TianCai1,FENG Wei1,2()   

  1. 1College of Agronomy, Henan Agricultural University, Zhengzhou 450046
    2Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, Zhengzhou 450046
  • Received:2021-11-23 Accepted:2022-01-28 Online:2022-09-01 Published:2022-09-07
  • Contact: WanDai LIU,Wei FENG E-mail:zhaoxiaohui6610@163.com;hnndlwd@126.com;fengwei78@126.com

Abstract:

【Objective】 The spike organ becomes the growth center after anthesis in wheat, so ensuring sufficient nitrogen nutrition in spike organ is the basis of grain yield and protein quality formation. The accurate diagnosis of spike nitrogen nutrition is of great significance for predicting wheat yield and quality. 【Method】 Zhoumai 27 and Yumai 49-198 were used as wheat materials, and three irrigation treatments under field conditions (W0: rain-fed, W1: single irrigation at jointing, W2: irrigation at jointing and anthesis) and five nitrogen application levels (0 (N0), 90 kg·hm-2 (N6), 180 kg·hm-2 (N12), 270 kg·hm-2 (N18) and 360 kg·hm-2 (N24)) were set in this experiment. The dry matter and nitrogen content data of wheat spike organs at different filling periods were collected for constructing critical nitrogen dilution (Nc) curve of spike organs under different irrigation conditions, and the wheat grain yield and protein content were measured at maturity stage. 【Result】 Under the same irrigation condition, the dry matter and nitrogen content of spike organ both increased with the increase of nitrogen application rate. All the relationships between spike critical nitrogen concentration and spike biomass under different irrigation conditions were power exponent, and the different models showed the difference under different irrigation conditions (W0: Nc=2.58 DM-0.242; W1: Nc=2.92 DM-0.24; W2: Nc=3.10 DM-0.231). Nitrogen nutrition index (NNI) increased with the increase of nitrogen application rate under different irrigation conditions, and the suitable nitrogen application rate varied with the irrigation conditions, with 180-270 kg·hm-2 for rainfed conditions and about 270 kg·hm-2 for irrigation conditions. There was a significant correlation between relative yield (RY) and NNI, which was expressed as linear + platform characteristics. The NNI values of gaining the highest relative yield were different under different irrigation conditions, with 1.01 under rainfed condition and 0.97 under irrigated condition. There was a significant linear quantitative relationship between grain protein content and NNI of wheat, and the irrigation led to a decrease in protein content. 【Conclusion】 The spike organ Nc and NNI models established in this study could effectively indicate the changes in wheat spike nitrogen abundance and deficiency under different water and nitrogen conditions, evaluate the yield status in real time, and accurately predict protein content. These results provided the reference and basis for the field and storage management in the later stage of wheat growth.

Key words: wheat spike, irrigation conditions, critical nitrogen concentration, nitrogen nutrition index, yield, protein content

Fig. 1

Dynamic changes of dry matter in wheat spike organs under different irrigation and nitrogen treatments W0: Rain-fed; W1: Single irrigation at jointing; W2: Irrigation at jointing and anthesis; N0: Applying 0 kg N·hm-2; N6: Applying 90 kg N·hm-2; N12: Applying 180 kg N·hm-2; N18: Applying 270 kg N·hm-2; N24: Applying 360 kg N·hm-2. The same as below"

Fig. 2

Dynamic changes of nitrogen concentrations in wheat spike organs under different irrigation and nitrogen treatments"

Fig. 3

Dilution model of critical nitrogen concentration in wheat spike organs under different irrigation conditions"

Fig. 4

Changes of nitrogen nutrition index in wheat spike organs with nitrogen levels under different irrigation conditions"

Fig. 5

The relationship between nitrogen nutrition index in wheat spike organ and relative yield"

Fig. 6

The relationship between the nitrogen nutrient index in wheat spike organs and grain protein content"

[1] 李欢欢, 黄玉芳, 王玲敏, 张立花, 叶优良. 河南省小麦生产与肥料施用状况. 中国农学通报, 2009, 25(18): 426-430.
LI H H, HUANG Y F, WANG L M, ZHANG L H, YE Y L. Wheat production and fertilizers application in Henan province. Chinese Agricultural Science Bulletin, 2009, 25(18): 426-430. (in Chinese)
[2] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-922.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-922. (in Chinese)
[3] READ J J, REDDY K R, JENKINS J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy, 2006, 24(3): 282-290.
doi: 10.1016/j.eja.2005.10.004
[4] 陆增根, 戴廷波, 姜东, 荆奇, 吴正贵, 周培南, 曹卫星. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响. 作物学报, 2007, 33(4): 590-597.
LU Z G, DAI T B, JIANG D, JING Q, WU Z G, ZHOU P N, CAO W X. Effects of nitrogen strategies on population quality index and grain yield and quality in weak-gluten wheat. Acta Agronomica Sinica, 2007, 33(4): 590-597. (in Chinese)
[5] 田纪春, 张忠义, 梁作勤. 高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异的研究. 作物学报, 1994, 20(1):76-83.
TIAN J C, ZHANG Z Y, LIANG Z Q. Studies on the difference of nitrogen absorption, transportation and distribution in high and low protein wheat cultivars. Acta Agronomica Sinica, 1994, 20(1): 76-83. (in Chinese)
[6] GREENWOOD D J, LEMAIRE G, GOSSE G, CRUZ P, DRAYCOTT A, NEETESON J J. Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany, 1990, 66: 425-436.
doi: 10.1093/oxfordjournals.aob.a088044
[7] PLENET D, LEMAIRE G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil, 2000, 216: 65-82.
doi: 10.1023/A:1004783431055
[8] ULRICH A. Physiological bases for assessing the nutritional requirements of plants. Annual Review of Plant Physiology, 1952, 3(1): 207-228.
doi: 10.1146/annurev.pp.03.060152.001231
[9] LEMAIRE G, GASTAL F, CRUZ P, GREENWOOD D J. Relationships between plant-N, plant mass and relative growth rate for C3 and C4 crops//Proceedings of the First European Society of Agronomy Congress. Paris, France, 1990: 1-5.
[10] JUSTES E, MARY B, MEYNARD J M, MACHET J M, THELIER-HUCHE L. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 1994, 74: 397-407.
doi: 10.1006/anbo.1994.1133
[11] 岳松华, 刘春雨, 黄玉芳, 叶优良. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立. 作物学报, 2016, 42(6): 909-916.
doi: 10.3724/SP.J.1006.2016.00909
YUE S H, LIU C Y, HUANG Y F, YE Y L. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area. Acta Agronomica Sinica, 2016, 42(6): 909-916. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00909
[12] HUANG S Y, MIAO Y X, CAO Q, YAO Y K, ZHAO G M, YU W F, SHEN J N, YU K, GEORN B. A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere, 2018, 28(5): 814-822.
doi: 10.1016/S1002-0160(17)60392-8
[13] GILETTO C M, ECHEVERRIA H E. Critical nitrogen dilution curve for processing potato in Argentinean humid Pampas. American Journal of Potato Research, 2012, 89: 102-110.
doi: 10.1007/s12230-011-9226-z
[14] 马露露, 吕新, 张泽, 马革新, 海兴岩. 基于临界氮浓度的滴灌棉花氮素营养诊断模型研究. 农业机械学报, 2018, 49(2): 277-283.
MA L L, LÜ X, ZHANG Z, MA G X, HAI X Y. Establishment of nitrogen nutrition diagnosis model for drip-irrigation cotton based on critical nitrogen concentration. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 277-283. (in Chinese)
[15] 石小虎, 蔡焕杰. 基于叶片SPAD估算不同水氮处理下温室番茄氮营养指数. 农业工程学报, 2018, 34(17): 124-134.
SHI X H, CAI H J. Estimation of nitrogen nutrition index of greenhouse tomato under different water and nitrogen fertilizer treatments based on leaf SPAD. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 124-134. (in Chinese)
[16] 潘庆民, 于振文, 王月福, 田奇卓. 公顷产9000kg小麦氮素吸收分配的研究. 作物学报, 1999, 5(25): 541-547.
PAN Q M, YU Z W, WANG Y F, TIAN Q Z. Studies on uptake and distribution of nitrogen in wheat at the level of 9000 kg per hectare. Acta Agronomica Sinica, 1999, 5(25): 541-547. (in Chinese)
[17] 王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136-139.
WANG Z M, ZHANG Y H, ZHANG Y P, WU Y C. Review on photosynthetic performance of ear organs in triticeae crops. Journal of Triticeae Crops, 2004, 24(4): 136-139. (in Chinese)
[18] DEMOTES M, JEUFFROY M H. Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research, 2004, 87: 221-233.
doi: 10.1016/j.fcr.2003.11.014
[19] ZHAO B, TAHIR A, YAO X, TIAN Y C, CAO W X, ZHU Y, LIU X J. A new curve of critical nitrogen concentration based on spike dry matter for winter wheat in eastern China. PLoS ONE, 2016, 11(10): e0164545.
doi: 10.1371/journal.pone.0164545
[20] 张亦涛, 王洪媛, 雷秋良, 张继宗, 翟丽梅, 任天志, 刘宏斌. 农田合理施氮量的推荐方法. 中国农业科学, 2018, 51(15): 117-127.
ZHANG Y T, WANG H Y, LEI Q L, ZHANG J Z, ZHAI L M, REN T Z, LIU H B. Recommended methods for optimal nitrogen application rate. Scientia Agricultura Sinica, 2018, 51(15): 117-127. (in Chinese)
[21] ELAZAB A, SERRET M D, ARAUS J L. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes. Planta, 2016, 244(1): 125-144.
doi: 10.1007/s00425-016-2500-z
[22] PANDEY R K, MARANVILLE J W, ADMOU A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. Agricultural Water Management, 2000, 46(1): 1-13.
doi: 10.1016/S0378-3774(00)00073-1
[23] LI S X, WANG Z H, MALHI S S, LI S Q, GAO Y J, TIAN X H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Advances in Agronomy, 2009, 7(102): 223-265.
[24] 杨晓亚, 于振文, 许振柱. 灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响. 生态学报, 2009, 29(2): 846-853.
YANG X Y, YU Z W. XU Z Z. Effects of irrigation regimes on water consumption characteristics and nitrogen accumulation and allocation in wheat. Acta Ecologica Sinica, 2009, 29(2): 846-853. (in Chinese)
[25] CONFALONIERI R, DEBELLINI C, PIRONDINI M, POSSENTI P, BERGAMINI L, BARLASSINA G, BARTOLI A, AGOSTONI E G, APPIANI M, BABAZADEH L, BEDIN E, BIGNOTTI A, BOUCA M, BULGARI R, CANTORE A, DEGRADI D, FACCHINETTI D, FIACCHINO D, FRIALDI M, GALUPPINI L, GORRONI C, GRITTI A, GRITTI P, LONATI S, MARTINAZZI D, MESSA C, MINARDI A, NASCIMBENE L, OLDANI D, PASQUALINI E, PERAZZOLO F, PIROVANO L, POZZI L, ROCCHETTI G, ROSSI S, ROTA L, RUBAGA N, RUSSO G, SALA J, SEREGNI S, SESSA F, SILVESTRI S, SIMONCELLI P, SORESI D, STEMBERGER C, TAGLIABUE P, TETTAMANTI K, VINCI M, VITTADINI G, ZANIMACCHIA M, ZENATO O, ZETTA A, BREGAGLIO S, CHIODINI M E, PEREGO A, ACUTIS M. A new approach for determining rice critical nitrogen concentration. The Journal of Agricultural Science, 2011, 149(65): 633-638.
doi: 10.1017/S0021859611000177
[26] LEMAIRE G, SALETTE M, SIGOGNE J. Relation entre dynamique de croissance et dynamique de prelevement dàzote pour un peuplement de graminees fourrageres. II. Etude de la variabilité entre génotypes. Agronomie, 1984, 4: 423-430.
doi: 10.1051/agro:19840503
[27] 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29(4): 58-66.
YANG J C, WANG Z Q, ZHU Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Scientia Agricultura Sinica, 1996, 29(4): 58-66. (in Chinese)
[28] YUE S C, MENG Q F, ZHAO R F, LI F, CHEN X P, ZHANG F S, CUI Z L. Critical nitrogen dilution curve of optimizing nitrogen management of winter wheat production in the north China plain. Agronomy Journal, 2012, 2(104): 523-529.
[29] LEMAIRE G, AVICE J C, KIM T H, OURRY A. Developmental changes in shoot N dynamics of lucerne (Medicago sativa L.) in relation to leaf growth dynamics as a function of plant density and hierarchical position within the canopy. Journal of Experimental Botany, 2005, 56(415): 935-943.
doi: 10.1093/jxb/eri084
[30] ERRECART P M, AGNUSDEI M G, LATTANZI F A, MARINO M A, BERONE G D. Critical nitrogen concentration declines with soil water availability in tall fescue. Crop Science, 2014, 54(1): 318-330.
doi: 10.2135/cropsci2013.08.0561
[31] AGNUSDEI M G, ASSUERO S G, LATTANZI F A, MARINO M A. Critical N concentration can vary with growth conditions in forage grasses: Implications for plant N status assessment and N deficiency diagnosis. Nutrient Cycling in Agroecosystems, 2010, 88(2): 215-230.
doi: 10.1007/s10705-010-9348-6
[32] 张娟娟, 杜盼, 郭建彪, 曹锐, 张捷, 马新明. 不同氮效率小麦品种临界氮浓度模型与营养诊断研究. 麦类作物学报, 2017, 37(11): 1480-1488.
ZHANG J J, DU P, GUO J B, CAO R, ZHANG J, MA X M. Study of criticai nitrogen concentration model and nitrogen nutrition diagnosis in winter wheat with different N efficiency. Journal of Triticeae Crops, 2017, 37(11): 1480-1488. (in Chinese)
[33] COLLINSON S T, CLAWSON E J, AZAMALI S N, BLACK C R. Effects of soil moisture deficits on the water relations of bambara groundnut (Vigna subterranea L. Verdc.). Journal of Experimental Botany, 1997, 48(309): 877-884.
doi: 10.1093/jxb/48.4.877
[34] 王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响. 中国农业科学, 2004, 37(4) 497-501.
WANG S H, CAO W X, DING Y F, TIAN Y C, JIANG D. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. Scientia Agricultura Sinica, 2004, 37(4): 497-501. (in Chinese)
[35] LI Y, YIN Y P, ZHAO Q, WANG Z L. Changes of glutenin subunits due to water-nitrogen interaction influence size and distribution of glutenin macropolymer particles and flour quality. Crop Science, 2011, 5l(6): 2809-2819.
[36] 吴汉卿, 杜世宇, 高娜, 张玉玲, 邹洪涛, 张玉龙, 虞娜. 水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响. 水土保持学报, 2017, 31(6): 212-219.
WU H Q, DU S Y, GAO N, ZHANG Y L, ZOU H T, ZHANG Y L, YU N. Effects of water and nitrogen regulation on soil organic nitrogen fractions, total nitrogen and mineral nitrogen in greenhouse soil. Journal of Soil and Water Conservation, 2017, 31(6): 212-219. (in Chinese)
[37] LI Y M, SUN Y X, LIAO S Q, ZOU G Y, ZHAO T K, CHEN Y H, YANG J G, ZHANG L. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agricultural Water Management, 2017, 186: 139-146.
doi: 10.1016/j.agwat.2017.02.006
[38] 杨慧, 曹红霞, 柳美玉, 刘世和. 水氮耦合条件下番茄临界氮浓度模型的建立及氮素营养诊断. 植物营养与肥料学报, 2015, 21(5): 1234-1242.
YANG H, CAO H X, LIU M Y, LIU S H. Simulation of critical nitrogen concentration and nitrogen nutrition index of tomato under different water and nitrogen conditions. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1234-1242. (in Chinese)
[39] 向友珍, 张富仓, 范军亮, 强生才, 邹海洋, 闫世程, 吴悠, 田建柯. 基于临界氮浓度模型的日光温室甜椒氮营养诊断. 农业工程学报, 2016, 32(17): 89-97.
XIANG Y Z, ZHANG F C, FAN J L, QIANG S C, ZOU H Y, YAN S C, WU Y, TIAN J K. Nutrition diagnosis for N in bell pepper based on critical nitrogen model in solar greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 89-97. (in Chinese)
[40] 刘朋召, 师祖姣, 宁芳, 王瑞, 王小利, 李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断. 作物学报, 2020, 46(8): 1225-1237.
doi: 10.3724/SP.J.1006.2020.03007
LIU P Z, SHI Z J, NING F, WANG R, WANG X L, LI J. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland. Acta Agronomica Sinica, 2020, 46(8): 1225-1237. (in Chinese)
doi: 10.3724/SP.J.1006.2020.03007
[41] 臧丽青, 于继娥, 宋友彰, 王恒. 氮肥基追比对滴灌冬小麦干物质转运及氮素吸收分配的影响. 中国农学通报, 2019, 35(15): 25-29.
ZANG L Q, YU J E, SONG Y Z, WANG H. Base-topdressing ratio of nitrogen fertilizer under drip irrigation: Effects on dry matter transport and nitrogen absorption and distribution of winter wheat. Chinese Agricultural Science Bulletin, 2019, 35(15): 25-29. (in Chinese)
[42] 王小燕, 于振文. 水氮互作对小麦籽粒蛋白质组分和品质的影响. 麦类作物学报, 2009, 29(4):632-638.
WANG X Y, YU Z W. Effect of interactions between water management and nitrogen fertilizer on wheat processing quality and protein fractions. Journal of Triticeae Crops, 2009, 29(4): 632-638. (in Chinese)
[43] 李秋霞, 王晨阳, 马冬云, 谢迎新, 刘卫星, 朱云集, 郭天财. 灌水及施氮对高产区小麦产量及品质性状的影响. 麦类作物学报, 2014, 34(1):102-107.
LI Q X, WANG C Y, MA D Y, XIE Y X, LIU W X, ZHU Y J, GUO T C. Effects of irrigation and nitrogen application on grain yield, protein content and quality traits of winter wheat in high-yielding area. Journal of Triticeae Crops, 2014, 34(1): 102-107. (in Chinese)
[44] 付江鹏, 贾彪, 杨文伟, 魏雪, 马成, 刘根红, 王锐, 孙权. 基于叶片干物质的滴灌玉米临界氮稀释曲线构建. 应用生态学报, 2020, 31(3): 945-952.
doi: 10.13287/j.1001-9332.202003.030
FU J P, JIA B, YANG W W, WEI X, MA C, LIU G H, WANG R, SUN Q. Development of critical nitrogen dilution curve based on leaf dry matter for maize under drip irrigation. Chinese Journal of Applied Ecology, 2020, 31(3): 945-952. (in Chinese)
doi: 10.13287/j.1001-9332.202003.030
[45] 薛利红, 朱艳, 张宪, 曹卫星. 利用冠层反射光谱预测小麦籽粒品质指标的研究. 作物学报, 2004, 30(10): 1036-1041.
doi: 10.3724/SP.J.1095.2013.20555
XUE L H, ZHU Y, ZHANG X, CAO W X. Predicting wheat grain quality with canopy reflectance spectra. Acta Agronomica Sinica, 2004, 30(10): 1036-1041. (in Chinese)
doi: 10.3724/SP.J.1095.2013.20555
[46] 郭丽琢, 杨波, 高玉红, 牛俊义. 缺氮胁迫阶段及施氮时期对油用亚麻干物质及氮素积累的影响. 干旱地区农业研究, 2021, 39(5): 40-49.
GUO L Z, YANG B, GAO Y H, NIU J Y. Effects of nitrogen deficiency stage and nitrogen application period on dry matter and nitrogen accumulation of oil flax. Agricultural Research in the Arid Areas, 2021, 39(5): 40-49. (in Chinese)
[47] 蔡瑞国, 李亚华, 张敏, 郭良海, 王文颇, 周印富. 雨养与灌溉条件下施氮对小麦花后氮素累积与转运的影响. 麦类作物学报, 2014, 34(3): 351-357.
CAI R G, LI Y H, ZHANG M, GUO L H, WANG W P, ZHOU Y F. Effects of nitrogen fertilizer rates on nitrogen accumulation and translocation after anthesis in wheat under rain-fed and irrigated conditions. Journal of Triticeae Crops, 2014, 34(3): 351-357. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!