Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3697-3709.doi: 10.3864/j.issn.0578-1752.2022.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Functional Analyses of MsCIPK2 in Medicago sativa

SU Qian1,2(),DU WenXuan1,MA Lin1,XIA YaYing1,LI Xue1,QI Zhi2(),PANG YongZhen1()   

  1. 1Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
    2School of Life Sciences, Inner Mongolia University, Hohhot 010021
  • Received:2022-04-21 Accepted:2022-06-02 Online:2022-10-01 Published:2022-10-10
  • Contact: Zhi QI,YongZhen PANG E-mail:2646335315@qq.com;qizhi@imu.edu.cn;pangyongzhen@caas.cn

Abstract:

【Objective】 CIPKs are a group of important protein kinase involved in signaling pathway of plant in response to stress. They can form CBL-CIPK complex with CBL, to activate the expression of related responsive genes to cope with various abiotic stresses in cells. Exploration and study on the molecular mechanism of MsCIPK genes in alfalfa in response to abiotic stress will help to reveal the biological basis of stress resistance in alfalfa, and to provide new gene resources for alfalfa breeding with enhanced stress resistance. 【Method】 The MsCIPK2 gene was cloned by using PCR, the sequence was analyzed by bioinformatics tools, and the expression level of MsCIPK2, MsCBL2, MsCBL6, MsCBL7 and MsCBL10 genes in various tissues were analyzed by using qRT-PCR. The pCAMBIA1302-GFP-MsCIPK2 vector was transiently expressed in tobacco leaf epidermal cells, and the subcellular localization was observed under laser confocal microscope. Yeast two-hybrid assay was used to analyze interaction between MsCIPK2 and four MsCBLs proteins. Agrobacterium rhizogenes was used to generate alfalfa hairy roots over-expressing MsCIPK2. qRT-PCRs were used to analyze the expression levels of related genes in transgenic hairy root lines. 【Result】 The coding sequence of MsCIPK2 gene was obtained by using PCR, and it is 1 230 bp in length, encoding 409 amino acids. The deduced MsCIPK2 protein contained typical ATP binding site, activation loop, NAF motif and PPI motif as for the CIPK family genes. The expression level of MsCIPK2 gene was the highest in roots, and the lowest in the flowers of alfalfa. Subcellular localization results showed that MsCIPK2 protein was localized in the endoplasmic reticulum. Yeast two-hybrid assays showed that MsCIPK2 protein interacted with MsCBL2, MsCBL6, MsCBL7 and MsCBL10 proteins, showing stronger interaction with MsCBL10 than with other MsCBLs. The expression levels of MsCBL2, MsCBL6, and MsCBL10 were the highest in roots of alfalfa, and the expression level of MsCBL7 was the highest in pods. qRT-PCR results showed that the expression levels of abiotic stress-associated genes ATPase, P5CS, CYP705A5, COR47, HAK5 and RD2 were significantly up-regulated in hairy roots over-expressing MsCIPK2. Under the treatment of 200 mmol·L-1 NaCl and 20% PEG, when compared with the control hairy root line, hairy roots over-expressing MsCIPK2 had lower MDA content, and higher POD activity, proline content and soluble sugar content. 【Conclusion】 MsCIPK2 can interact with CBL protein, and responded to salt and drought stress in roots of alfalfa. Over-expression of MsCIPK2 can improve salt and drought stress resistance in alfalfa, and MsCIPK2 can be used as candidate gene for alfalfa breeding with improved abiotic stress resistance.

Key words: Alfalfa, CIPK, CBL, abiotic stress

Table 1

Primer sequence used in this study"

引物名称 Primer name 序列 Sequences (5′-3′)
MsCIPK2-F ATGGGAAGAGTACTAGGTAAAG
MsCIPK2-R TCACTCCCCTTGCCATGACC
MsCIPK2-RT-PCR-F TGCCGTAGATTATTGCCACAGTAG
MsCIPK2-RT-PCR-R ACACCACAAGACCAAGTATCAGC
MsCBL2-RT-PCR-F CGTTGTGGTGATGTCCTTGAG
MsCBL2-RT-PCR-R CGGAGTCTGGTATGAATCTATCG
MsCBL6-RT-PCR-F GTTGCTACGCTTGCTGAATCTG
MsCBL6-RT-PCR-R ATGTTCTTGAGTAATGATGGATGGC
MsCBL7-RT-PCR-F TTTAGAAACAGAAACAAACGCAACC
MsCBL7-RT-PCR-R ATCATCAACACCATATCCTTCAACTC
MsCBL10-RT-PCR-F TCAAGTATCCCATTGTGCTTTGTATC
MsCBL10-RT-PCR-R AGAGAGACCGTGTTTAGTGTAAGTG
MsCIPK2-GFP-F AGAACACGGGGGACTCTTGACCATGGGAAGAGTACTAGGTAAAG
MsCIPK2-GFP-R GTGAAAAGTTCTTCTCCTTTACTAGTCTCCCCTTGCCATGACC
MsCBL2-yBD-F CTGATCTCAGAGGAGGACCTGCATATGATGGAATACAAAGCTTGGG
MsCBL2-yBD-R GCAGGTCGACGGATCCCCGGGAATTCTTAGAGGGATTCAAGTCTTTACTC
MsCBL6-yBD-F CTGATCTCAGAGGAGGACCTGCATATGATGTTGCAGTGCATAGAGGG
MsCBL6-yBD-R GCAGGTCGACGGATCCCCGGGAATTCTCAAGTATCGTCTACTTGTG
MsCBL7-yBD-F CTGATCTCAGAGGAGGACCTGCATATGATGGGTTGCAGTAGCTCAAAAG
MsCBL7-yBD-R GCAGGTCGACGGATCCCCGGGAATTCCTACGATTGTGATTCTTCGGTTTC
MsCBL10-yBD-F CTGATCTCAGAGGAGGACCTGCATATGATGCTTGTTATCGTATTCGCG
MsCBL10-yBD-R GCAGGTCGACGGATCCCCGGGAATTCTCAGGCTGACGCGACATCGAC
MsCIPK2-yAD-F CGACGTACCAGATTACGCTCATATGATGGGAAGAGTACTAGGTAAAG
MsCIPK2-yAD-R CGTATCGATGCCCACCCGGGTGGAATTCTCACTCCCCTTGCCATGACC

Fig. 1

Analysis of MsCIPK2 protein sequence A: Prediction of the hydrophobicity; B: Prediction of the secondary structure; C: Protein sequences alignment of MsCIPK2 with CIPKs of different plant species. TcCIPK25: Theobroma cacao, EOY29347.1; DzCIPK25: Durio zibethinus, XP_022730333.1; HuCIPK25: Herrania umbratica, XP_021276011.1; ApCIPK5: Abrus precatorius, XP_027354272.1; MtCIPK25: Medicago truncatula, XP_003588823.1; TpCIPK25: Trifolium pratense, XP_045823300.1; CaCIPK25: Cicer arietinum, XP_004498818.1"

Fig. 2

Tissue-specific expression of MsCIPK2 gene * indicates significant difference with P<0.05, ** indicates highly significant difference with P<0.01. The same as below"

Fig. 3

Subcellular localization of MsCIPK2 protein"

Fig. 4

Yeast two-hybrid assays for MsCIPK2 and four MsCBLs proteins"

Fig. 5

Tissue-specific expression of four MsCBLs"

Fig. 6

Identification of alfalfa hairy roots over-expressing MsCIPK2 A, B: Transformation of hairy roots over-expressing MsCIPK2; C: Identification of hairy roots over-expressing MsCIPK2 by using PCR; D: Detection of gene expression level in MsCIPK2 over-expression hairy root"

Fig. 7

Expression levels of stress-related genes in hairy roots over-expressing MsCIPK2"

Fig. 8

Effects of physiological indicators in transgenic and the control hairy roots under stress treatments A: MDA content under 200 mmol·L-1 NaCl treatment; B: SOD activity under 200 mmol·L-1 NaCl treatment; C: Proline content under 200 mmol·L-1 NaCl treatment; D: Soluble sugar content under 200 mmol·L-1 NaCl treatment; E: MDA content under 20% PEG treatment; F: SOD activity under 20% PEG treatment; G: Proline content under 20% PEG treatment; H: Soluble sugar content under 20% PEG treatment"

[1] 王洁琼. 11个国外紫花苜蓿新品种的生产适应性比较研究. 湖南农业科学, 2011(15): 18-20.
WANG J Q. A comparative study of the production suitability of 11 new foreign alfalfa varieties. Hunan Agricultural Sciences, 2011(15): 18-20. (in Chinese)
[2] 中华人民共和国农业部. 全国苜蓿产业发展规划(2016-2020). http://www.moa.gov.cn/nybgb/2017/dyiq/201712/t20171227_6129812.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. National Alfalfa Industry Development Plan (2016-2020). http://www.moa.gov.cn/nybgb/2017/dyiq/201712/t20171227_6129812.htm. (in Chinese)
[3] 刘世元, 李新, 李占江, 刘海英. 苜蓿产业发展适宜性评价及布局研究—以内蒙古自治区为列. 黑龙江畜牧兽医, 2017(24): 159-291.
LIU S Y, LI X, LI Z J, LIU H Y. Research on suitability evaluation and layout of alfalfa industry-Take the Inner Mongolia Autonomous Region as an example. Heilongjiang Animal Science and Veterinary, 2017(24): 159-291. (in Chinese)
[4] PECK S, MITTLER R. Plant signaling in biotic and abiotic stress. Journal of Experimental Botany, 2020, 71(5): 1649-1651.
doi: 10.1093/jxb/eraa051 pmid: 32163587
[5] 李硕, 苗丽宏, 聂中南, 李向林, 万里强. 干旱胁迫对不同紫花苜蓿品种生产性能的影响. 草原与草坪, 2020, 40(3): 15-22.
LI S, MIAO L H, NIE Z N, LI X L, WAN L Q. Comparison of production performance yield of 8 alfalfa cultivars under drought stress. Grassland and Turf, 2020, 40(3): 15-22. (in Chinese)
[6] 于浩然, 贾玉山, 贾鹏飞, 连直, 卢强, 李俊峰, 王志军, 任志花. 不同盐碱度对紫花苜蓿产量及品质的影响. 中国草地学报, 2019, 41(4): 143-149.
YU H R, JIA Y S, JIA P F, LIAN Z, LU Q, LI J F, WANG Z J, REN Z H. Comprehensive evaluation of growth, yield and quality of alfalfa in different saline-alkali soil. Chinese Journal of Grassland, 2019, 41(4): 143-149. (in Chinese)
[7] SHI J, KIM K N, RITZ O, ALBRECHT V, GUPTA R, HARTER K, LUAN S, KUDLA J. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. The Plant Cell, 1999, 11(12): 2393-2405.
[8] JOHNSON L N, NOBLE M E, OWEN D J. Active and inactive protein kinases: Structural basis for regulation. Cell, 1996, 85(2): 149-58.
pmid: 8612268
[9] LI R, ZHANG J, WU G, WANG H, CHEN Y, WEI J. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant, Cell and Environment, 2012, 35(9): 1582-1600.
doi: 10.1111/j.1365-3040.2012.02511.x
[10] TRIPATHI V, PARASURAMAN B, LAXMI A, CHATTOPADHYAY D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal, 2009, 58(5): 778-790.
doi: 10.1111/j.1365-313X.2009.03812.x pmid: 19187042
[11] 李洋, 李晓薇, 徐赫韩, 肖红庆, 孙大千, 王南, 李海燕. 非生物胁迫下植物中CBL-CIPK信号通路研究进展. 农业与技术, 2018, 38(11): 7-10.
LI Y, LI X W, XU H H, XIAO H Q, SUN D Q, WANG N, LI H Y. Advances in the study of CBL-CIPK signaling pathway in plants under abiotic stress. Agriculture and Technology, 2018, 38(11): 7-10. (in Chinese)
[12] TAI F, YUAN Z, LI S, WANG Q, LIU F, WANG W. ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. Plant Cell, Tissue, and Organ Culture, 2016, 124: 459-469.
doi: 10.1007/s11240-015-0906-0
[13] 陈小晶, 王冬梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素, 宋燕春, 王天宇, 黎裕, 刘颖慧, 李春辉. 玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究. 植物遗传资源学报, 2022, 23(4): 1064-1075.
CHEN X J, WANG D M, GUAN H H, GUO J, SHA X Q, LI Y X, ZHANG D F, LIU X Y, HE G H, SHI Y S, SONG Y C, WANG T Y, LI Y, LIU Y H, LI C H. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize. Journal of Plant Genetic Resources, 2022, 23(4): 1064-1075. (in Chinese)
[14] YANG W, KONG Z, OMO-IKERODAH E, XU W, LI Q, XUE Y. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). Journal of Genetics and Genomics, 2008, 35(9): 531-543.
doi: 10.1016/S1673-8527(08)60073-9
[15] KIM K N, CHEONG Y H, GRANT J J, PANDEY G K, LUAN S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. The Plant Cell, 2003 15(2): 411-423.
[16] DU W, YANG J, MA L, SU Q, PANG Y Z. Identification and characterization of abiotic Stress responsive CBL-CIPK family genes in Medicago. International Journal of Molecular Science, 2021, 22(9): 4634.
doi: 10.3390/ijms22094634
[17] ZHENG G, FAN C, DI S, WANG X, XIANG C, PANG Y. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2017, 8: 2125.
doi: 10.3389/fpls.2017.02125
[18] TANG R J, LIU H, YANG Y, YANG L, GAO X S, GARCIA V J, LUAN S, ZHANG H X. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Research, 2012, 22(12): 1650-1665.
doi: 10.1038/cr.2012.161
[19] 司春灿, 林英. 毛状根培养技术在获得药用植物次生代谢产物中的应用. 景德镇学院学报, 2021, 36(3): 57-60.
SI C C, LIN Y. Application culture technique of hairy hoots to obtaining secondary metabolites of medicinal plants. Journal of Jingdezhen University, 2021, 36(3): 57-60. (in Chinese)
[20] 赵恩华, 谢建平, 张钰靖, 安渊, 周鹏. 紫花苜蓿毛状根转化体系的建立及应用. 中国草地学报, 2022, 44(1): 1-9.
ZHAO E H, XIE J P, ZHANG Y J, AN Y, ZHOU P. Establishment and application of hairy root transformation system of alfalfa. Chinese Journal of Grassland, 2022, 44(1): 1-9. (in Chinese)
[21] 柴畅. 番茄CIPK8基因在低温、盐和干旱胁迫下功能研究[D]. 哈尔滨: 东北农业大学, 2021.
CHAI C. Function of CIPK8 gene under low temperature, salt and drought stress in tomato[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
[22] 李亚坤, 陈乃钰, 杨晓雪, 安逸民, 陈秀秀, 郭长虹. 紫花苜蓿MsCIPK8基因的克隆与表达分析. 植物遗传资源学报, 2020 21(2): 491-499.
LI Y K, CHEN N Y, YANG X X, AN Y M, CHEN X X, GUO C H. Cloning and expression analysis of MsCIPK8 in Alfalfa. Journal of Plant Genetic Resources, 2020, 21(2): 491-499. (in Chinese)
[23] 未丽, 刘建利. 植物蛋白质亚细胞定位相关研究概述. 植物科学学报, 2021, 39(1): 93-101.
WEI L, LIU J L. Overview of research on protein subcellular localization in plants. Plant Science Journal, 2021, 39(1): 93-101. (in Chinese)
[24] HELD K, PASCAUD F, ECKERT C, GAJDANOWICZ P, HASHIMOTO K, CORRATGE-FAILLIE C, OFFENBORN J N, LACOMBE B, DREYER I, THIBAUD J B, KUDLA J. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 2011, 21(7): 1116-1130.
doi: 10.1038/cr.2011.50
[25] 崔苗苗. 紫花苜蓿油菜素内酯合成酶基因DWF4的克隆和功能解析[D]. 北京: 中国农业科学院, 2020.
CUI M M. Gene expression and salt-tolerance analysis of MsDWF4 gene from alfalfa[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[26] 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性. 草业学报, 2021 30(6): 73-81.
ZANG Z F, BAI J, LIU C, ZAN K Z, LONG M X, HE S B. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress. Acta Prataculturae Sinica, 2021, 30(6): 73-81. (in Chinese)
[27] 张锦锦. MsWRKY33转录因子调控紫花苜蓿耐盐性的功能研究[D]. 北京: 中国农业科学院, 2021.
ZHANG J J. The study on the function of MsWRKY33 transcription factor in regulating salt tolerance of Medicago sativa L.[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[28] CHEN X, HUANG Q, ZHANG F, WANG B, WANG J, ZHENG J. ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2014, 15(8): 14819-14834.
doi: 10.3390/ijms150814819
[29] 戴圣杰, 李慧, 桑款, 李潇, 吕金娇, 胡鈺茹, 崔晓玉. 蛋白激酶GmCIPK24正向调节大豆耐盐性. 分子植物育种, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210909.1310.018.html.
DAI S J, LI H, SANG K, LI X, LÜ J J, HU Y R, CUI X Y. Protein kinase GmCIPK24 positively regulates salt tolerance in soybean. Molecular Plant Breeding, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210909.1310.018.html. (in Chinese)
[30] WANG Y, LI T, JOHN S J, CHEN M, CHANG J, YANG G, HE G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2018, 123: 103-113.
doi: 10.1016/j.plaphy.2017.11.019
[31] DENG X, ZHOU S, HU W, FENG J, ZHANG F, CHEN L, HUANG C, LUO Q, HE Y, YANG G, HE G. Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiologia Plantarum, 2013, 149(3): 367-377.
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[3] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[4] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[5] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[6] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[7] ZeMin LI,Chen ZHANG,ChongYu ZHANG,GuiGuo ZHANG. The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(6): 1269-1277.
[8] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[9] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[10] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[11] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[12] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
[13] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[14] XiaoDong LI,YiShun SHANG,ShiGe LI,GuangJi CHEN,ChengJiang PEI,Fang SUN,XianQin XIONG. The Mechanism of Ectopic Expression of Brassica juncea Multidrug and Toxic Compound Extrusion (BjMATE) to Enhance the Resistance to Acid and Aluminum Stress in Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(1): 18-28.
[15] ZHAO JinFeng,DU YanWei,WANG GaoHong,LI YanFang,ZHAO GenYou,WANG ZhenHua,CHENG Kai,WANG YuWen,YU AiLi. Identification NADP-ME Gene of Foxtail Millet and Its Response to Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 3950-3963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!