Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3779-3790.doi: 10.3864/j.issn.0578-1752.2022.19.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching

WANG ChuHan1(),LIU Fei1,GAO JianYong1,ZHANG HuiFang1,XIE YingHe1,CAO HanBing1,2(),XIE JunYu1,2()   

  1. 1College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Taiyuan 030031
  • Received:2021-08-20 Accepted:2021-12-27 Online:2022-10-01 Published:2022-10-10
  • Contact: HanBing CAO,JunYu XIE E-mail:2437364983@qq.com;caohanbing119@163.com;xjy890621@163.com

Abstract:

【Objective】 The aim of this study was to clarify the effects of long-term optimized fertilization (nitrogen reduction) and nitrogen reduction plus film mulching on the characteristics of soil organic carbon (SOC) and its components content, and their contribution to winter wheat grain yield, so as to provide the theoretical support for dryland fertility and crop productivity in the Loess Plateau. 【Method】 Based on a 7-year location experiment, the undisturbed soil samples from 0-20 cm under different management measures were collected. The variation characteristics of winter wheat grain yield, SOC and its components content were explored, including particulate organic carbon (POC), mineral organic carbon (MOC), light-particulate organic carbon (Light-POC) and heavy-particulate organic carbon (Heavy-POC), and the relationship between SOC and its component content as well as their quantity contribution to the winter wheat grain yield were clarified. The organic carbon components were grouped by continuous physical grouping method, and their contribution for wheat yield was analyzed by redundancy analysis. The experiment set four treatments, including farmer’s practice fertilization (FP), monitoring fertilization (MF), monitoring fertilization plus ridge mulching-furrow planting (RF), and monitoring fertilization plus whole field filming (FH). 【Result】 The average yield of winter wheat was the lowest under FP treatment, which was 3 070 kg·hm-2. Compared with FP, the wheat yield under MF showed no significant difference, while wheat grain yield under RF and FH could achieve a significant increase by 27.0% and 46.4%, respectively; compared with the initial year of the experiment (2012), the SOC content showed a significant increase under different management measures during seven consecutive years, and the increase rate from low to high was 11.8% (MF), 22.4% (RF), 25.5% (FP), and 36.1% (FH), respectively. The improvement of SOC under MF was the slowest in calcareous cinnamon soil, when MF combining with plastic film mulching showed a significant improvement. The observed SOC components under different treatments showed, compared with FP and MF, RF and FH significantly increased the content of POC, Light-POC and the proportion of Light-POC in SOC. Based on the cooperation of the redundancy analysis, sensitivity index analysis and correlation analysis between SOC and its component, POC contributed the most to the improvement of wheat yield (up to 71.0%) and was the most sensitive to SOC content change and different management measures. Therefore, the improvement of crop yield and soil fertility by FH was mainly achieved by increasing POC content in soil organic carbon. 【Conclusion】 The monitoring fertilization plus whole field filming treatment was benefit to increase soil organic carbon and active organic carbon content in the cinnamon soil in the southeastern of the Loess Plateau, and achieve a sustainable increase in winter wheat yield.

Key words: nitrogen reduction plus film mulching, grain yield, soil organic carbon, particulate organic carbon, monitoring fertilization plus whole field filming

Table 1

Basic chemical properties of topsoil before sowing in 2012"

pH 有机质 OM (g·kg-1) 全氮 TN (g·kg-1) 硝态氮 NO3-N (mg·kg-1) 速效磷 AP (mg·kg-1) 速效钾 AK (mg·kg-1)
7.9 14.6 0.9 10.4 10.4 208.2

Table 2

Cultivation pattern and application rate of nutrients under different treatments"

处理
Treatment
种植模式
Cultivation pattern
养分用量
Application rate of nutrients
(N-P2O5-K2O, kg·hm-2)
农户施肥
FP
常规平作,不覆膜,播前浅旋耕深度13 cm,行距20 cm
Conventional flat plough with no film mulching, shallow rotary before sowing at the depth of 13 cm, row spacing of 20 cm
150-60-0
测控施肥
MF
常规平作,不覆膜,播前浅旋耕深度13 cm,行距20 cm
Conventional flat plough with no film mulching, shallow rotary before sowing at the depth of 13 cm, row spacing of 20 cm
100-83-36
垄膜沟播
RF
垄上覆膜,沟内膜侧播种,播种2行,沟内行距20 cm,垄宽35 cm,沟宽30 cm
The furrow was covered with film, and the seed was sown with 2 rows inner furrow side, 20 cm row spacing in the furrow, 35 cm ridge and 30 cm furrow width
100-83-36
平膜穴播
FH
全地面平铺地膜,膜上覆土厚度0.5—1 cm,播种深度3—5 cm,行距15—16 cm,纵向穴距12 cm
The plastic film was mulched on the soil surface covering the thickness of soil of 0.5-1 cm, the sowing depth was 3-5 cm, the row spacing was 15-16 cm, and the longitudinal hole spacing was 12 cm
100-83-36

Fig. 1

Soil organic matter fractionation scheme"

Fig. 2

Average annual wheat grain yield under different treatments from 2012 to 2019 The solid and dotted lines inside the box, the bottom and top edge lines of the box, and the bars outside the box represent the median and mean, the 25% and 75% quartiles, the minimum and maximum values of the data, respectively (n=28). Different lowercase letters mean significant differences between treatments at the 5% probability level. The same as below"

Fig. 3

Soil organic carbon content under different treatments"

Fig. 4

Content of particulate organic carbon (POC) (A), mineral organic carbon (MOC) (B), light particulate organic carbon (light-POC) (C) and heavy particulate organic carbon (Heavy-POC) (D) under different treatments"

Fig. 5

Proportion of soil organic carbon fractions under different treatments Different lowercase letters mean a significant level of 5% for the same organic carbon component between different treatments"

Fig. 6

The contribution of the content of SOC, POC, Light- POC, Heavy-POC and MOC to wheat grain yield"

Fig. 7

The relation between SOC and POC, MOC, light-POC and Heavy-POC under different treatments **Correlations are significant at P<0.05"

Fig. 8

Sensitivity index (%) of SOC, POC, MOC, Light-POC and Heavy-POC under different treatments"

[1] STEWART B A, LIANG W L. Strategies for increasing the capture, storage, and utilization of precipitation in semiarid regions. Journal of Integrative Agriculture, 2015, 14(8): 1500-1510. doi: 10.1016/S2095-3119(15)61096-6.
doi: 10.1016/S2095-3119(15)61096-6
[2] SCHLAEPFER D R, BRADFORD J B, LAUENROTH W K, MUNSON S M, TIETJEN B, HALL S A, WILSON S D, DUNIWAY M C, JIA G S, PYKE D A, LKHAGVA A, JAMIYANSHARAV K. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 2017, 8: 14196. doi: 10.1038/ncomms14196.
doi: 10.1038/ncomms14196 pmid: 28139649
[3] 刘长安. 施肥、覆膜和耕作方式对半干旱黄土高原地区作物产量和土壤质量的影响[D]. 兰州: 兰州大学, 2009.
LIU C A. Effects of fertilization, mulch and tillage on crop yields and soil quality in the semi-arid loess plateau of China[D]. Lanzhou: Lanzhou University, 2009. (in Chinese)
[4] 王朝辉. 粮食作物养分管理与农业绿色发展. 中国农业科学, 2018, 51(14): 2719-2721.
WANG Z H. Nutrient management of grain crops and green agricultural development. Scientia Agricultura Sinica, 2018, 51(14): 2719-2721. (in Chinese)
[5] ROCCI K S, LAVALLEE J M, STEWART C E, COTRUFO M F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. The Science of the Total Environment, 2021, 793: 148569. doi: 10.1016/j.scitotenv.2021.148569.
doi: 10.1016/j.scitotenv.2021.148569
[6] 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54(3): 596-607. doi: 10.3864/j.issn.0578-1752.2021.03.013.
doi: 10.3864/j.issn.0578-1752.2021.03.013
ZHENG F J, WANG X, LI S P, LIU X T, LIU Z P, LU J J, WU X P, XI J L, ZHANG J C, LI Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Scientia Agricultura Sinica, 2021, 54(3): 596-607. doi: 10.3864/j.issn.0578-1752.2021.03.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.03.013
[7] 徐梦, 徐丽君, 程淑兰, 方华军, 卢明珠, 于光夏, 杨艳, 耿静, 曹子铖, 李玉娜. 人工草地土壤有机碳组分与微生物群落对施氮补水的响应. 中国农业科学, 2020, 53(13): 2678-2690.
XU M, XU L J, CHENG S L, FANG H J, LU M Z, YU G X, YANG Y, GENG J, CAO Z C, LI Y N. Responses of soil organic carbon fractionation and microbial community to nitrogen and water addition in artificial grassland. Scientia Agricultura Sinica, 2020, 53(13): 2678-2690. (in Chinese)
[8] 李廷亮, 谢英荷, 高志强, 洪坚平, 孟丽霞, 马红梅, 孟会生, 贾俊香. 黄土高原旱地小麦覆膜增产与氮肥增效分析. 中国农业科学, 2018, 51(14): 2735-2746. doi: 10.3864/j.issn.0578-1752.2018.14.011.
doi: 10.3864/j.issn.0578-1752.2018.14.011
LI T L, XIE Y H, GAO Z Q, HONG J P, MENG L X, MA H M, MENG H S, JIA J X. Analysis on yield increasing and nitrogen efficiency enhancing of winter wheat under film mulching cultivation in the loess plateau. Scientia Agricultura Sinica, 2018, 51(14): 2735-2746. doi: 10.3864/j.issn.0578-1752.2018.14.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.011
[9] 张淑香, 张文菊, 沈仁芳, 徐明岗. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015, 21(6): 1389-1393. doi: 10.11674/zwyf.2015.0602.
doi: 10.11674/zwyf.2015.0602
ZHANG S X, ZHANG W J, SHEN R F, XU M G. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1389-1393. doi: 10.11674/zwyf.2015.0602 (in Chinese)
doi: 10.11674/zwyf.2015.0602
[10] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768. doi: 10.3864/j.issn.0578-1752.2017.14.012.
doi: 10.3864/j.issn.0578-1752.2017.14.012
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. doi: 10.3864/j.issn.0578-1752.2017.14.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.012
[11] 曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011.
doi: 10.3864/j.issn.0578-1752.2014.19.011
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.19.011
[12] 邓丽娟, 焦小强. 氮管理对冬小麦产量和品质影响的整合分析. 中国农业科学, 2021, 54(11): 2355-2365. doi: 10.3864/j.issn.0578-1752.2021.11.009
doi: 10.3864/j.issn.0578-1752.2021.11.009
DENG L J, JIAO X Q. A meta-analysis of effects of nitrogen management on winter wheat yield and quality. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365. doi: 10.3864/j.issn.0578-1752.2021.11.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.11.009
[13] ZHOU J Y, GU B J, SCHLESINGER W H, JU X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6: 25088. doi: 10.1038/srep25088.
doi: 10.1038/srep25088 pmid: 27114032
[14] MO F, HAN J, WEN X X, WANG X K, LI P F, VINAY N, JIA Z K, XIONG Y C, LIAO Y C. Quantifying regional effects of plastic mulch on soil nitrogen pools, cycles, and fluxes in rain-fed agroecosystems of the Loess Plateau. Land Degradation & Development, 2020, 31(13): 1675-1687. doi: 10.1002/ldr.3548.
doi: 10.1002/ldr.3548
[15] LUO L C, WANG Z H, HUANG M, HUI X L, WANG S, ZHAO Y, HE H X, ZHANG X, DIAO C P, CAO H B, MA Q X, LIU J S. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Research, 2018, 218: 69-77. doi: 10.1016/j.fcr.2018.01.005.
doi: 10.1016/j.fcr.2018.01.005
[16] YU Y X, ZHANG Y X, XIAO M, ZHAO C Y, YAO H Y. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes. Catena, 2021, 206: 105483. doi: 10.1016/j.catena.2021.105483.
doi: 10.1016/j.catena.2021.105483
[17] 李小刚, 李凤民. 旱作地膜覆盖农田土壤有机碳平衡及氮循环特征. 中国农业科学, 2015, 48(23): 4630-4638. doi: 10.3864/j.issn.0578-1752.2015.23.004.
doi: 10.3864/j.issn.0578-1752.2015.23.004
LI X G, LI F M. Soil organic carbon balance and nitrogen cycling in plastic film mulched croplands in rainfed farming systems. Scientia Agricultura Sinica, 2015, 48(23): 4630-4638. doi: 10.3864/j.issn.0578-1752.2015.23.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.004
[18] LUO S S, ZHU L, LIU J L, BU L D, YUE S C, SHEN Y F, LI S Q. Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland. European Journal of Soil Biology, 2015, 67: 35-42. doi: 10.1016/j.ejsobi.2015.01.004.
doi: 10.1016/j.ejsobi.2015.01.004
[19] 李利利, 王朝辉, 王西娜, 张文伟, 李小涵, 李生秀. 不同地表覆盖栽培对旱地土壤有机碳、无机碳和轻质有机碳的影响. 植物营养与肥料学报, 2009, 15(2): 478-483. doi: 10.3321/j.issn:1008-505X. 2009.02.034.
doi: 10.3321/j.issn:1008-505X. 2009.02.034
LI L L, WANG Z H, WANG X N, ZHANG W W, LI X H, LI S X. Effects of soil-surface mulching on organic carbon, inorganic carbon and light fraction organic carbon in dryland soil. Plant Nutrition and Fertilizer Science, 2009, 15(2): 478-483. doi: 10.3321/j.issn:1008-505X.2009.02.034. (in Chinese)
doi: 10.3321/j.issn:1008-505X. 2009.02.034
[20] 刘凯, 谢英荷, 李廷亮, 马红梅, 张奇茹, 姜丽伟, 曹静, 邵靖琳. 减氮覆膜对黄土旱塬小麦产量及养分吸收利用的影响. 中国农业科学, 2021, 54(12): 2595-2607. doi: 10.3864/j.issn.0578-1752.2021.12.010.
doi: 10.3864/j.issn.0578-1752.2021.12.010
LIU K, XIE Y H, LI T L, MA H M, ZHANG Q R, JIANG L W, CAO J, SHAO J L. Effects of nitrogen reduction and film mulching on wheat yield and nutrient absorption and utilization in loess plateau. Scientia Agricultura Sinica, 2021, 54(12): 2595-2607. doi: 10.3864/j.issn.0578-1752.2021.12.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.12.010
[21] DEGRYZE S, SIX J, PAUSTIAN K, MORRIS S J, PAUL E A, MERCKX R. Soil organic carbon pool changes following land-use conversions. Global Change Biology, 2004, 10(7): 1120-1132. doi: 10.1111/j.1529-8817.2003.00786.x.
doi: 10.1111/j.1529-8817.2003.00786.x
[22] LAN J C. Responses of soil organic carbon components and their sensitivity to Karst rocky desertification control measures in Southwest China. Journal of Soils and Sediments, 2021, 21(2): 978-989. doi: 10.1007/s11368-020-02840-8.
doi: 10.1007/s11368-020-02840-8
[23] LI Z Q, LI D D, MA L, YU Y Y, ZHAO B Z, ZHANG J B. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. Journal of Soils and Sediments, 2019, 19(2): 618-628. doi: 10.1007/s11368-018-2102-4.
doi: 10.1007/s11368-018-2102-4
[24] 孟磊, 丁维新, 蔡祖聪, 钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响. 地球科学进展, 2005, 20(6): 687-692. doi: 10.3321/j.issn:1001-8166.2005.06.013.
doi: 10.11867/j.issn.1001-8166.2005.06.0687
MENG L, DING W X, CAI Z C, QIN S W. Storage of soil organic c and soil respiration as effected by long-term quantitative fertilization. Advances in Earth Science, 2005, 20(6): 687-692. doi: 10.3321/j.issn:1001-8166.2005.06.013. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2005.06.0687
[25] 王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.
doi: 10.3864/j.issn.0578-1752.2021.02.010
WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.02.010
[26] 付鑫, 王俊, 刘全全, 李蓉蓉. 秸秆和地膜覆盖对旱作玉米田土壤团聚体及有机碳的影响. 土壤通报, 2016, 47(2): 405-413. doi: 10.19336/j.cnki.trtb.2016.02.23.
doi: 10.19336/j.cnki.trtb.2016.02.23
FU X, WANG J, LIU Q Q, LI R R. Effect of straw and plastic film mulching on aggregate size distribution and organic carbon contents in a rainfed corn field. Chinese Journal of Soil Science, 2016, 47(2): 405-413. doi: 10.19336/j.cnki.trtb.2016.02.23. (in Chinese)
doi: 10.19336/j.cnki.trtb.2016.02.23
[27] 李顺, 李廷亮, 方玲, 何冰, 焦欢, 李彦. 施肥覆膜对旱地小麦产量形成及土壤有机碳组分的影响. 应用与环境生物学报, 2019, 25(3): 603-610. doi: 10.19675/j.cnki.1006-687x.2019.01045.
doi: 10.19675/j.cnki.1006-687x.2019.01045
LI S, LI T L, FANG L, HE B, JIAO H, LI Y. Effects of fertilization and plastic film mulching on yield formation and soil carbon pool of dry land wheat. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 603-610. doi: 10.19675/j.cnki.1006-687x.2019.01045. (in Chinese)
doi: 10.19675/j.cnki.1006-687x.2019.01045
[28] CHEN Y, LIU X, HOU Y H, ZHOU S R, ZHU B. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 2021, 458(1): 93-103. doi: 10.1007/s11104-019-04279-4.
doi: 10.1007/s11104-019-04279-4
[29] 付鑫, 王俊, 赵丹丹. 地膜覆盖对黄土高原旱作春玉米田土壤碳氮组分的影响. 水土保持学报, 2017, 31(3): 239-243. doi: 10.13870/j.cnki.stbcxb.2017.03.040.
doi: 10.13870/j.cnki.stbcxb.2017.03.040
FU X, WANG J, ZHAO D D. Effects of plastic film mulching on soil carbon and nitrogen fractions in a dryland spring maize field on the loess plateau. Journal of Soil and Water Conservation, 2017, 31(3): 239-243. doi: 10.13870/j.cnki.stbcxb.2017.03.040. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2017.03.040
[30] 佟小刚. 长期施肥下我国典型农田土壤有机碳库变化特征[D]. 北京: 中国农业科学院, 2008.
TONG X G. Change characteristics of soil organic carbon pools in typical cropland of China under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[31] 戴伊莎, 贾会娟, 熊瑛, 刘帮艳, 成欣, 王龙昌. 保护性耕作措施对西南旱地玉米田土壤有机碳、氮组分及玉米产量的影响. 干旱地区农业研究, 2021, 39(3): 82-90. doi: 10.7606/j.issn.1000-7601.2021.03.10.
doi: 10.7606/j.issn.1000-7601.2021.03.10
DAI Y S, JIA H J, XIONG Y, LIU B Y, CHENG X, WANG L C. Impact of conservation tillage measures on maize yield, soil organic carbon and nitrogen components of maize field in rain-fed region in southwest China. Agricultural Research in the Arid Areas, 2021, 39(3): 82-90. doi: 10.7606/j.issn.1000-7601.2021.03.10. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2021.03.10
[32] RAZA S, MIAO N, WANG P Z, JU X T, CHEN Z J, ZHOU J B, KUZYAKOV Y. Dramatic loss of inorganic carbon by nitrogen- induced soil acidification in Chinese croplands. Global Change Biology, 2020, 26(6): 3738-3751. doi: 10.1111/gcb.15101.
doi: 10.1111/gcb.15101
[33] 刘杰, 李玲玲, 谢军红, 邓超超, 彭正凯, Yeboah Stephen, Lamptey Shirley. 连续14年保护性耕作对土壤总有机碳和轻组有机碳的影响. 干旱地区农业研究, 2017, 35(1): 8-13. doi: 10.7606/j.issn.1000-7601.2017.01.02
doi: 10.7606/j.issn.1000-7601.2017.01.02
LIU J, LI L L, XIE J H, DENG C C, PENG Z K, STEPHEN Y, SHIRLEY L. Soil total organic carbon and its light fractions in response to 14 years of conservation tillage. Agricultural Research in the Arid Areas, 2017, 35(1): 8-13. doi: 10.7606/j.issn.1000-7601.2017.01.02. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2017.01.02
[34] 张倩. 长期地膜覆盖和秸秆还田对土壤有机碳周转的影响[D]. 兰州: 兰州大学, 2019.
ZHANG Q. Effects of long-term plastic film mulching and straw incorporation on soil organic carbon turnover[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
[35] 蔡岸冬, 张文菊, 杨品品, 韩天富, 徐明岗. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响. 中国农业科学, 2015, 48(15): 2995-3004.
CAI A D, ZHANG W J, YANG P P, HAN T F, XU M G. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China-based on meta-analysis. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004. (in Chinese)
[36] 张世汉, 武均, 张仁陟, 蔡立群, 齐鹏, 张军. 施氮对陇中黄土高原旱作农田土壤颗粒态有机碳的影响. 水土保持研究, 2019, 26(6): 7-11. doi: 10.13869/j.cnki.rswc.2019.06.002.
doi: 10.13869/j.cnki.rswc.2019.06.002
ZHANG S H, WU J, ZHANG R Z, CAI L Q, QI P, ZHANG J. Effects of different nitrogen addition levels on soil particulate organic carbon in dry farmland of central Gansu Province on the loess plateau. Research of Soil and Water Conservation, 2019, 26(6): 7-11. doi: 10.13869/j.cnki.rswc.2019.06.002. (in Chinese)
doi: 10.13869/j.cnki.rswc.2019.06.002
[37] JANSSENS I A, LUYSSAERT S. Nitrogen’s carbon bonus. Nature Geoscience, 2009, 2(5): 318-319. doi: 10.1038/ngeo505.
doi: 10.1038/ngeo505
[38] 樊廷录, 王淑英, 周广业, 丁宁平. 长期施肥下黑垆土有机碳变化特征及碳库组分差异. 中国农业科学, 2013, 46(2): 300-309.
FAN T L, WANG S Y, ZHOU G Y, DING N P. Effects of long-term fertilizer application on soil organic carbon change and fraction in cumulic haplustoll of loess plateau in China. Scientia Agricultura Sinica, 2013, 46(2): 300-309. (in Chinese)
[39] 魏云敏. 火干扰对兴安落叶松林土壤理化性质和有机碳组分的影响[D]. 哈尔滨: 东北林业大学, 2015.
WEI Y M. Effects of fire disturbance on soil properies and soil organic carbon components in a Larix gmelinii forest[D]. Harbin: Northeast Forestry University, 2015. (in Chinese)
[40] MA Q J, ZHANG Q, NIU J B, XIAO G L. Plastic-film mulch cropping increases mineral-associated organic carbon accumulation in maize cropped soils as revealed by natural 13C/12C ratio signature. Geoderma, 2020, 370: 114350. doi: 10.1016/j.geoderma.2020.114350.
doi: 10.1016/j.geoderma.2020.114350
[41] WANG Y P, LI X G, FU T T, WANG L, TURNER N C, SIDDIQUE K H M, LI F M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 2016, 228/229: 42-51. doi: 10.1016/j.agrformet.2016.06.016.
doi: 10.1016/j.agrformet.2016.06.016
[42] 丁雪丽, 韩晓增, 乔云发, 李禄军, 李娜, 宋显军. 农田土壤有机碳固存的主要影响因子及其稳定机制. 土壤通报, 2012, 43(3): 737-744. doi: 10.19336/j.cnki.trtb.2012.03.039.
doi: 10.19336/j.cnki.trtb.2012.03.039
DING X L, HAN X Z, QIAO Y F, LI L J, LI N, SONG X J. Sequestration of organic carbon in cultivated soils: Main factors and their stabilization mechanisms. Chinese Journal of Soil Science, 2012, 43(3): 737-744. doi: 10.19336/j.cnki.trtb.2012.03.039. (in Chinese)
doi: 10.19336/j.cnki.trtb.2012.03.039
[43] 曹寒冰, 谢钧宇, 刘菲, 高健永, 王楚涵, 王仁杰, 谢英荷, 李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性. 中国农业科学, 2021, 54(21): 4611-4622.
CAO H B, XIE J Y, LIU F, GAO J Y, WANG C H, WANG R J, XIE Y H, LI T L. Mineralization characteristics of soil organic carbon and its temperature sensitivity in wheat field under film mulching. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622. (in Chinese)
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[8] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[9] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[10] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[11] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[12] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[13] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[14] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[15] MA Yue,TIAN Yi,YUAN AiJing,WANG HaoLin,LI YongHua,HUANG TingMiao,HUANG Ning,LI Chao,DANG HaiYan,QIU WeiHong,HE Gang,WANG ZhaoHui,SHI Mei. Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!