Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4445-4457.doi: 10.3864/j.issn.0578-1752.2022.22.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry

WAN HuaQin1,2(),GU Xu1,HE HongMei3,TANG YiFan1,SHEN JianHua4,HAN JianGang1,2(),ZHU YongLi1,2()   

  1. 1College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037
    2Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037
    3Huanghai Seed Stock Farm, Dongtai 224200, Jiangsu
    4COFCO Jiajiakang (Jiangsu) Co., Ltd., Dongtai 224200, Jiangsu
  • Received:2021-09-22 Accepted:2021-12-16 Online:2022-11-16 Published:2022-12-14
  • Contact: JianGang HAN,YongLi ZHU E-mail:wanhuaki@163.com;hjg@njfu.edu.cn;lyly1262011@126.com

Abstract:

【Objective】 Biogas slurry is rich in nitrogen (N), which is the basis of its farmland utilization. However, it also contains a large amount of HCO3-. In this study, the conversion of HCO3- in biogas slurry and its effect on rice growth were investigated, in order to provide a new theoretical basis for replacing chemical fertilizer with biogas slurry, reducing the amount of chemical fertilizer, and whether biogas slurry could be utilized as resources. 【Method】Four treatments, including biogas slurry (BS), biogas slurry (BS-B), deionized water plus HCO3- (W+B) and deionized water (W), were set up in this paper. Using 13C labeling technology, the characteristics of CO2 release were observed through pot experiment at Rice Seedling Stage, and the photosynthetic rate, intercellular CO2 concentration, dry and fresh weight, plant height, overlying water and soil pH, and HCO3- and NH4+ contents were analyzed. 【Result】(1) Under BS treatment, CO2 release rates ranged from 9.55 to 38.07 mg·kg-1·h-1, with a net cumulative release of 4 654.06 mg·kg-1. Under BS-B treatment, the CO2 release rates ranged from 4.55 to 17.25 mg·kg-1·h-1, and the net cumulative release was 780.68 mg·kg-1. Under W+B treatment, the CO2 release rate was 3.93-26.33 mg·kg-1·h-1, and the net cumulative release was 1 274.07 mg·kg-1. Under W treatment, the CO2 release rate was 3.22-11.90 mg·kg-1·h-1, and the cumulative release amount was 2 265.20 mg·kg-1. Under BS treatment, the average CO2 release rate was 4.18 times and 2.44 times of BS?B and W+B, respectively, and the net cumulative CO2 release was 5.96 times and 3.65 times of BS-B and W+B, respectively, which were significantly higher than those under BS?B and W+B treatments. At the same time, the net cumulative release under BS treatment was greater than the sum of the two treatments (BS-B) + (W+B), and HCO3- had a synergistic effect with other components in biogas slurry on CO2 release. (2) The net cumulative release of 13CO2 under BS treatment was 32.87 mg·kg-1, accounted for 0.71% of the net cumulative release of CO2 in soil-rice system. The net cumulative release of 13CO2 under W+B treatment was 13.18 mg·kg-1. In comparison, the net cumulative release amount of 13CO2 under BS treatment was significantly higher than that under W+B treatment (P<0.05), indicated that other components in biogas slurry promoted the conversion of HCO3- to CO2. (3) The net photosynthetic rate of BS and BS?B treatments in the first 12 h was significantly higher than that under W+B and W treatments. After the addition of culture medium, the net photosynthetic rate under BS treatment was significantly higher than that under BS?B treatment at 2-7 d, and was significantly higher than that under W+B treatment during the whole culture period (P<0.05). HCO3- in biogas slurry significantly improved the photosynthesis of rice leaves. In comparison, the intercellular CO2 concentration was significantly lower than that of the other three treatments 5 days before BS treatment. Rice plant height and fresh weight under BS and BS-B treatments were significantly higher than those under W+B and W treatments (P<0.05), and there was no significant difference in dry weight among the four treatments. (4) The fixed 13CO2 content of rice seedlings treated by BS was 4.05 g·kg-1, and the utilization rate of marker HCO3- was 18.54%. The fixed amount of 13CO2 in W+B treatment was 3.29 g·kg-1 and the H13CO3- utilization rate was 14.20%. The 13CO2 of H13CO3- promoted the photosynthesis of rice and was beneficial to the growth of rice. (5) The release rates of CO2 and 13CO2 under BS and W+B treatments were significantly correlated with overlying water and soil HCO3- content and pH. At the same time, the photosynthetic rate of rice under BS and W+B treatments was significantly positively correlated with HCO3- content in soil. 【Conclusion】 When biogas slurry was returned to the field, a large amount of HCO3- transformation significantly promoted the release of CO2, which was beneficial to rice photosynthesis. Soil HCO3- content and soil pH value were important factors for affecting CO2 release and rice photosynthesis. At the same time, the rice had a higher utilization rate of HCO3- in biogas slurry, and HCO3- in biogas slurry had obvious CO2-like fertilization effect.

Key words: biogas slurry, HCO3-, 13C marking, rice, CO2 fertilization effect, photosynthesis

Table 1

Soil physical and chemical properties"

pH 电导率
EC
(mS·cm-1)
总有机碳
TOC
(g·kg-1)
全氮
TN
(g·kg-1)
全磷
TP
(g·kg-1)
土壤颗粒组成 Soil particle composition (%)
黏粒Clay
(<0.002 mm)
粉砂粒Silt
(0.002-0.02 mm)
砂粒Sand
(0.02-2.0 mm)
8.14 1.28 7.68 0.76 0.80 0.8 85.5 13.7

Table 2

Physical and chemical properties of the biogas slurry"

pH 电导率
EC (mS·cm-1)
总有机碳
TOC (g·L-1)
总氮
TN (g·L-1)
铵态氮
NH4+-N (g·L-1)
总磷
TP (mg·L-1)
碳酸氢根
HCO3-(g·L-1)
8.19 10.21 1.55 1.31 1.20 39.00 7.01

Fig. 1

CO2 release rate and cumulative amount in soil-rice system"

Table 3

Immediate 13CO2 concentration, release rate and release amount of H13CO3- conversion"

“*”表示相同时间BS与W+B处理13CO2释放量具有显著差异(P<0.05)

“*” Indicates that there is significant difference in 13CO2 release quantity between BS and W+B treatment at the same time (P<0.05)

时间
Time
BS W+B
13CO2即时浓度
Immediate of
13CO2 (μmol·mol-1)
13CO2净释放速率
Net release rate of 13CO2 (mg·kg-1·h-1)
13CO2净释放量
Net emission of
13CO2 (mg·kg-1)
13CO2即时浓度
Immediate of
13CO2 (μmol·mol-1)
13CO2净释放速率
Net release rate of 13CO2 (mg·kg-1·h-1)
13CO2净释放量
Net emission of 13CO2 (mg·kg-1)
2 h 14.22±6.83 0.54±0.16 0.54±0.16 16.67±5.18 0.34±0.15 0.34±0.15
6 h 13.33±6.33 0.18±0.03 1.44±0.37 13.02±4.20 0.13±0.06 0.94±0.59
12 h 24.00±6.29 0.21±0.09 1.19±0.61 18.06±9.24 0.06±0.03 0.56±0.08
18 h 8.48±2.11 0.21±0.04 1.25±0.57* 8.69±1.37 0.01±0.00 0.19±0.12
2 d 6.04±0.48 0.11±0.02 3.75±0.57* 3.18±2.73 0.07±0.02 0.85±0.22
3 d 5.83±0.20 0.10±0.03 2.49±0.18* 5.53±1.13 0.03±0.01 0.87±0.29
5 d 5.65±0.21 0.10±0.08 4.91±1.42* 3.59±2.54 0.06±0.03 1.41±0.76
7 d 5.93±0.66 0.10±0.09 4.84±0.57* 3.46±2.48 0.06±0.02 2.72±0.99
10 d 5.33±0.21 0.08±0.04 6.25±2.21* 4.86±0.59 0.02±0.01 2.88±0.52
15 d 4.75±1.25 0.03±0.01 6.21±2.26* 5.56±0.13 0.02±0.01 2.42±0.33
13CO2净累计释放量
Net cumulative emission of 13CO2 (mg·kg-1)
32.87±2.18* 13.18±1.00

Fig. 2

Effects of different mediums on photosynthetic characteristics of rice"

Fig. 3

Average plant height (A), fresh weight (B) and dry weight (C) per plant of rice under different mediums"

Table 4

The fixed amount of 13CO2 converted by H13CO3- and the utilization rate of H13CO3- in rice"

不同小写英文字母代表BS与W+B处理间具有显著差异(P<0.05)

Different lowercase letters represent significant difference between BS and W+B treatment (P<0.05)

处理
Treatment
全碳
TC (g·kg-1)
植株δ13C
Plant the δ13C (%)
13CO2固定量
Fixed amount of 13CO2 (g·kg-1)
对H13CO3-的利用率
Utilization of H13CO3- (%)
BS 433.00 1.35 4.05 ± 0.02 a 18.54
W+B 396.00 1.32 3.29 ± 0.02 b 14.20

Table 5

Correlation between CO2 release rate and overlying water and soil character factors"

*: P<0.05;**: P<0.01. (w)HCO3-:上覆水HCO3-浓度;(w)NH4+-N:上覆水NH4+-N浓度;(w)pH:上覆水pH;(s)HCO3-:土壤HCO3-含量;(s)NH4+-N:土壤NH4+-N含量;(s)pH:土壤pH。下同

(w)HCO3-: HCO3- concentration of overlying water; (w)NH4+-N: NH4+-N concentration of overlying water; (w)pH: pH of overlying water; (s)HCO3-: HCO3- content of soil; (s)NH4+-N: NH4+-N content of soil; (s)pH: soil pH. The same as below

BS BS-B W+B W
(w)HCO3- 0.927** -0.752** 0.836** 0.617**
(w)NH4+-N 0.959** 0.900** 0.137 0.675**
(w)pH -0.645** 0.147 0.393* 0.277
(s)HCO3- -0.895** 0.713** -0.714** 0.261
(s)NH4+-N -0.206 0.095 0.461* 0.139
(s)pH 0.854** 0.610** -0.840** 0.349

Table 6

Correlation between 13CO2 release rate and overlying water and soil character factors under BS and W+B treatment"

*: P<0.05;**: P<0.01

(w)HCO3- (w)NH4+-N (w)pH (s)HCO3- (s)NH4+-N (s)pH
BS 0.786** 0.807** -0.696** -0.689** -0.316 0.756**
W+B 0.757** -0.296 0.179 -0.645** 0.332 -0.669**

Table 7

Correlation between photosynthetic traits of rice and environmental factors in pot experiment"

*:P<0.05;**:P<0.01

处理
Treatment
净光合速率 Net photosynthetic rate 胞间CO2浓度 Intercellular CO2 concentration
BS BS-B W+B W BS BS-B W+B W
(w)HCO3- 0.362* -0.456* 0.570** -0.438* -0.103 0.032 0.098 0.332
(w)NH4+-N 0.250 0.586** -0.348 -0.120 -0.088 0.040 0.172 0.181
(w)pH -0.025 0.163 -0.045 0.092 0.305 0.246 0.183 0.059
(s)HCO3- -0.159 0.279 -0.244 -0.270 0.222 0.183 0.076 0.098
(s)NH4+-N -0.017 -0.118 0.027 -0.258 0.055 0.118 0.072 0.274
(s)pH 0.296 0.580** -0.365* -0.428* -0.123 0.023 0.014 0.131
CO2释放速率 CO2 release rate 0.224 0.639** 0.338 -0.426* -0.051 0.160 0.121 0.117
13CO2释放速率 13CO2 release rate 0.121 0.634** -0.126 0.121

Fig. 4

Analysis on the pathway and mechanism of CO2 release from soil treated by BS"

[1] 汤逸帆, 汪玲玉, 吴旦, 戴成, 韩建刚. 农田施用沼液的重金属污染评价及承载力估算: 以江苏滨海稻麦轮作田为例. 中国环境科学, 2019, 39(4): 1687-1695. doi:10.19674/j.cnki.issn1000-6923.2019.0204.
doi: 10.19674/j.cnki.issn1000-6923.2019.0204.
TANG Y F, WANG L Y, WU D, DAI C, HAN J G. Assessment of heavy metal pollution and bearing capacity estimation of continuous biogas slurry application on cropland: a case study of the coastal rice-wheat rotated farmland in Jiangsu, China. China Environmental Science, 2019, 39(4): 1687-1695. doi:10.19674/j.cnki.issn1000-6923.2019.0204. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2019.0204.
[2] TANG Y F, WANG L Y, CARSWELL A, MISSELBROOK T, SHEN J H, HAN J G. Fate and transfer of heavy metals following repeated biogas slurry application in a rice-wheat crop rotation. Journal of Environmental Management, 2020, 270: 110938. doi:10.1016/j.jenvman.2020.110938.
doi: 10.1016/j.jenvman.2020.110938.
[3] 王伟, 周珺楠, 汤逸帆, 申建华, 韩建刚. 沼液秸秆联用对滨海围垦田土壤重金属迁移及形态变化的影响. 环境科学, 2021, 42(4): 1979-1988. doi:10.13227/j.hjkx.202007207.
doi: 10.13227/j.hjkx.202007207.
WANG W, ZHOU J N, TANG Y F, SHEN J H, HAN J G. Effects of combined application of biogas slurry and straw on the migration and fractions of soil heavy metals in rice-wheat rotation system in coastal reclamation areas. Environmental Science, 2021, 42(4): 1979-1988. doi:10.13227/j.hjkx.202007207. (in Chinese)
doi: 10.13227/j.hjkx.202007207.
[4] RIUNGU J, RONTELTAP M, VAN LIER J B. Anaerobic stabilisation of urine diverting dehydrating toilet faeces (UDDT-F) in urban poor settlements: biochemical energy recovery. Journal of Water, Sanitation and Hygiene for Development, 2019, 9(2): 289-299. doi:10.2166/washdev.2019.099.
doi: 10.2166/washdev.2019.099.
[5] WEST T O, MCBRIDE A C. The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems & Environment, 2005, 108(2): 145-154. doi:10.1016/j.agee.2005.01.002.
doi: 10.1016/j.agee.2005.01.002.
[6] HANNAM K D, MIDWOOD A J, NEILSEN D, FORGE T A, JONES M D. Bicarbonates dissolved in irrigation water contribute to soil CO2 efflux. Geoderma, 2019, 337: 1097-1104. doi:10.1016/j.geoderma.2018.10.040.
doi: 10.1016/j.geoderma.2018.10.040.
[7] 周娟, 舒小伟, 许高平, 赖上坤, 杨连新, 王余龙, 董桂春. 大气CO2浓度升高对不同类型水稻品种磷素吸收利用的影响. 农业环境科学学报, 2020, 39(12): 2726-2734. doi:10.11654/jaes.2020-0679.
doi: 10.11654/jaes.2020-0679.
ZHOU J, SHU X W, XU G P, LAI S K, YANG L X, WANG Y L, DONG G C. Effects of elevated CO2 on phosphorus absorption and utilization in different rice varieties. Journal of Agro-Environment Science, 2020, 39(12): 2726-2734. doi:10.11654/jaes.2020-0679. (in Chinese)
doi: 10.11654/jaes.2020-0679.
[8] 袁嫚嫚, 朱建国, 孙义祥, 王伟露, 刘钢. 大气CO2浓度和温度升高对水稻籽粒充实度的影响. 农业环境科学学报, 2019, 38(10): 2251-2262. doi:10.11654/jaes.2019-0164.
doi: 10.11654/jaes.2019-0164.
YUAN M M, ZHU J G, SUN Y X, WANG W L, LIU G. Influence of elevated atmospheric CO2 concentration and temperature on grain plumpness in rice. Journal of Agro-Environment Science, 2019, 38(10): 2251-2262. doi:10.11654/jaes.2019-0164. (in Chinese)
doi: 10.11654/jaes.2019-0164.
[9] 牛玺朝, 户少武, 杨阳, 童楷程, 景立权, 朱建国, 王余龙, 杨连新, 王云霞. 大气CO2浓度增高对不同水稻品种稻米品质的影响. 中国生态农业学报(中英文), 2021(3): 509-519.
NIU X C, HU S W, YANG Y, TONG K C, JING L Q, ZHU J G, WANG Y L, YANG L X, WANG Y X. Effects of CO2 concentration enrichment on the grain quality of different rice varieties. Chinese Journal of Eco-Agriculture, 2021(3): 509-519. (in Chinese)
[10] 刘洋, 孙胜, 邢国明, 李靖, 张振花, 袁红霞, 郑金英. 不同浓度CO2施肥对温室黄瓜生长与产量的影响. 山西农业大学学报(自然科学版), 2018, 38(2): 53-58. doi:10.13842/j.cnki.issn1671-8151.201710022.
doi: 10.13842/j.cnki.issn1671-8151.201710022.
LIU Y, SUN S, XING G M, LI J, ZHANG Z H, YUAN H X, ZHENG J Y.Effects of different concentrations of CO2 on the growth and yield of greenhouse cucumber Cucumis sativus L. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(2): 53-58. doi:10.13842/j.cnki.issn1671-8151.201710022. (in Chinese)
doi: 10.13842/j.cnki.issn1671-8151.201710022.
[11] 高文瑞, 李德翠, 徐刚, 孙艳军, 韩冰, 史珑燕. CO2施肥对大白菜生长及光合的影响. 江苏农业科学, 2016, 44(9): 228-230. doi:10.15889/j.issn.1002-1302.2016.09.065.
doi: 10.15889/j.issn.1002-1302.2016.09.065.
GAO W R, LI D C, XU G, SUN Y J, HAN B, SHI L Y.Effects of CO2 fertilization on growth and photosynthesis of Chinese Cabbage. Jiangsu Agricultural Sciences, 2016, 44(9): 228-230. doi:10.15889/j.issn.1002-1302.2016.09.065. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2016.09.065.
[12] 林伟宏. 植物光合作用对大气CO2浓度升高的反应. 生态学报, 1998, 18(5): 529-538. doi:10.3321/j.issn:1000-0933.1998.05.013.
doi: 10.3321/j.issn:1000-0933.1998.05.013.
LIN W H. Response of photosynthesis to elevated atmospheric CO2. Acta Ecologica Sinica, 1998, 18(5): 529-538. doi:10.3321/j.issn:1000-0933.1998.05.013. (in Chinese)
doi: 10.3321/j.issn:1000-0933.1998.05.013.
[13] 张凯, 张勃, 王润元, 王鹤龄, 赵鸿, 赵福年, 齐月, 陈斐. CO2浓度升高对半干旱区春小麦光合作用及水分生理生态特性的影响. 生态环境学报, 2021, 30(2): 223-232. doi:10.16258/j.cnki.1674-5906.2021.02.001.
doi: 10.16258/j.cnki.1674-5906.2021.02.001.
ZHANG K, ZHANG B, WANG R Y, WANG H L, ZHAO H, ZHAO F N, QI Y, CHEN F. Effects of elevated CO2 concentration on the characteristics of photosynthesis and water physiological-ecological of spring wheat in semi-arid area in China. Ecology and Environmental Sciences, 2021, 30(2): 223-232. doi:10.16258/j.cnki.1674-5906.2021.02.001. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2021.02.001.
[14] 景立权, 赵新勇, 周宁, 钱晓晴, 王云霞, 朱建国, 王余龙, 杨连新. 高CO2浓度对杂交水稻光合作用日变化的影响: FACE研究. 生态学报, 2017, 37(6): 2033-2044. doi:10.5846/stxb201509261974.
doi: 10.5846/stxb201509261974.
JING L Q, ZHAO X Y, ZHOU N, QIAN X Q, WANG Y X, ZHU J G, WANG Y L, YANG L X. Effect of increasing atmospheric CO2 concentration on photosynthetic diurnal variation characteristics of hybrid rice: a FACE study. Acta Ecologica Sinica, 2017, 37(6): 2033-2044. doi:10.5846/stxb201509261974. (in Chinese)
doi: 10.5846/stxb201509261974.
[15] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008.
YANG J H, WANG C L, DAI H L. Soil Agrochemical Analysis and Environmental Monitoring. Beijing: China Land Press, 2008. (in Chinese)
[16] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[17] SONG C, LIU C L, HAN G L. Impact of fertilization with irrigation on carbonate weathering in an agricultural soil in Northern China: a column experiment. Geochemical Journal, 2017, 51(2): 143-155. doi:10.2343/geochemj.2.0447.
doi: 10.2343/geochemj.2.0447.
[18] AHMAD W, SINGH B, DALAL R C, DIJKSTRA F A. Carbon dynamics from carbonate dissolution in Australian agricultural soils. Soil Research, 2015, 53(2): 144. doi:10.1071/sr14060.
doi: 10.1071/sr14060.
[19] 徐珊珊, 侯朋福, 范立慧, 薛利红, 杨林章, 王绍华, 李刚华. 生活污水灌溉对麦秸还田稻田氨挥发排放的影响. 环境科学, 2016, 37(10): 3963-3970. doi:10.13227/j.hjkx.2016.10.039.
doi: 10.13227/j.hjkx.2016.10.039.
XU S S, HOU P F, FAN L H, XUE L H, YANG L Z, WANG S H, LI G H. Effect of straw incorporation and domestic sewage irrigation on ammonia volatilization from paddy fields. Environmental Science, 2016, 37(10): 3963-3970. doi:10.13227/j.hjkx.2016.10.039. (in Chinese)
doi: 10.13227/j.hjkx.2016.10.039.
[20] 王火焰, 周健民. 根区施肥: 提高肥料养分利用率和减少面源污染的关键和必需措施. 土壤, 2013, 45(5): 785-790. doi:10.13758/j.cnki.tr.2013.05.004.
doi: 10.13758/j.cnki.tr.2013.05.004.
WANG H Y, ZHOU J M. Root-zone fertilization—A key and necessary approach to improve fertilizer use efficiency and reduce non-point source pollution from the cropland. Soils, 2013, 45(5): 785-790. doi:10.13758/j.cnki.tr.2013.05.004. (in Chinese)
doi: 10.13758/j.cnki.tr.2013.05.004.
[21] 高会议, 郭胜利, 刘文兆, 车升国. 黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态. 生态学报, 2009, 29(5): 2551-2559. doi:10.3321/j.issn:1000-0933.2009.05.044.
doi: 10.3321/j.issn:1000-0933.2009.05.044.
GAO H Y, GUO S L, LIU W Z, CHE S G. Soil respiration and carbon fractions in winter wheat cropping system under fertilization practices in arid-highland of the Loess Plateau. Acta Ecologica Sinica, 2009, 29(5): 2551-2559. doi:10.3321/j.issn:1000-0933.2009.05.044. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2009.05.044.
[22] ZENG S B, LIU Z H, GOLDSCHEIDER N, FRANK S, GOEPPERT N, KAUFMANN G, ZENG C, ZENG Q R, SUN H L. Comparisons on the effects of temperature, runoff, and land-cover on carbonate weathering in different Karst catchments: insights into the future global carbon cycle. Hydrogeology Journal, 2021, 29(1): 331-345. doi:10.1007/s10040-020-02252-5.
doi: 10.1007/s10040-020-02252-5.
[23] UEYAMA M, ICHII K, KOBAYASHI H, KUMAGAI T, BERINGER J, MERBOLD L, EUSKIRCHEN E S, HIRANO T, MARCHESINI L B, BALDOCCHI D, SAITOH T M, MIZOGUCHI Y, ONO K, KIM J, VARLAGIN A, KANG M, SHIMIZU T, KOSUGI Y, BRET-HARTE M S, MACHIMURA T, MATSUURA Y, OHTA T, TAKAGI K, TAKANASHI S, YASUDA Y. Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environmental Research Letters, 2020, 15(8): 084009. doi:10.1088/1748-9326/ab79e5.
doi: 10.1088/1748-9326/ab79e5.
[24] XU M, XIAN Y, WU J, GU Y F, YANG G, ZHANG X H, PENG H, YU X Y, XIAO Y L, LI L. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years. Journal of Soils and Sediments, 2019, 19(5): 2534-2542. doi:10.1007/s11368-019-02258-x.
doi: 10.1007/s11368-019-02258-x.
[25] 侯福银, 陈应江, 杨智青, 金崇富, 时凯, 陈长宽, 封功能, 李洪山. 猪粪沼液对籼稻农艺性状、产量和饲用品质的影响. 浙江大学学报(农业与生命科学版), 2019, 45(3): 325-331. doi:10.3785/j.issn.1008-9209.2018.07.261.
doi: 10.3785/j.issn.1008-9209.2018.07.261.
HOU F Y, CHEN Y J, YANG Z Q, JIN C F, SHI K, CHEN C K, FENG G N, LI H S. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indicarice. Journal of Zhejiang University (Agriculture & Life Sciences), 2019, 45(3): 325-331. doi:10.3785/j.issn.1008-9209.2018.07.261. (in Chinese)
doi: 10.3785/j.issn.1008-9209.2018.07.261.
[26] 贺江. 水稻苗期对高浓度CO2响应的品种间差异及其生理机制[D]. 扬州: 扬州大学, 2021.
HE J. Difference in response to high CO2 concentration between rice cultivars at the seedling stage and its physiological mechanism[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
[27] 邵在胜, 赵轶鹏, 宋琪玲, 贾一磊, 王云霞, 杨连新, 王余龙. 大气CO2和O3浓度升高对水稻‘汕优63’叶片光合作用的影响. 中国生态农业学报, 2014, 22(4): 422-429. doi:10.3724/SP.J.1011.2014.31083.
doi: 10.3724/SP.J.1011.2014.31083.
SHAO Z S, ZHAO Y P, SONG Q L, JIA Y L, WANG Y X, YANG L X, WANG Y L. Impact of elevated atmospheric carbon dioxide and ozone concentrations on leaf photosynthesis of ‘Shanyou 63' hybrid rice. Chinese Journal of Eco-Agriculture, 2014, 22(4): 422-429. doi:10.3724/SP.J.1011.2014.31083. (in Chinese)
doi: 10.3724/SP.J.1011.2014.31083.
[28] ADACHI M, HASEGAWA T, FUKAYAMA H, TOKIDA T, SAKAI H, MATSUNAMI T, NAKAMURA H, SAMESHIMA R, OKADA M.Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE). Plant & Cell Physiology, 2014, 55(2): 370-380. doi:10.1093/pcp/pcu005.
doi: 10.1093/pcp/pcu005.
[29] 刘晓萌, 于凌飞, 黄耀, 孙文娟, 刘超, 陈健, 胡正华. CO2浓度升高下粳稻叶片光合作用对光强变化的响应. 生态学杂志, 2018, 37(4): 1051-1057. doi:10.13292/j.1000-4890.201804.002.
doi: 10.13292/j.1000-4890.201804.002.
LIU X M, YU L F, HUANG Y, SUN W J, LIU C, CHEN J, HU Z H. Responses of photosynthesis in leaves of Japonica rice to light intensity at elevated CO2 concentration. Chinese Journal of Ecology, 2018, 37(4): 1051-1057. doi:10.13292/j.1000-4890.201804.002. (in Chinese)
doi: 10.13292/j.1000-4890.201804.002.
[30] CHENG Y D, YING Y P, ZHAI L Z, LIU G L, DONG J Q, WANG Y X, CHRISTOPHER M P, LONG S C, WANG Y X, ZHAO D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573: 97-106. doi:10.1016/j.memsci.2018.11.060.
doi: 10.1016/j.memsci.2018.11.060.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!