Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 948-961.doi: 10.3864/j.issn.0578-1752.2022.05.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland

LI XiaoLi(),HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin()   

  1. Agronomy College, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops for 2011, Zhengzhou 450002
  • Received:2021-01-17 Accepted:2021-04-22 Online:2022-03-01 Published:2022-03-08
  • Contact: XueLin ZHANG E-mail:18647376576@163.com;xuelinzhang1998@163.com

Abstract:

【Objective】 The aim of this study was to investigate the effects of organic fertilizer replacing chemical fertilizer on soil greenhouse gas emission and global warming potential (GWP), so as to provide the theoretical basis for keeping crop yield stable, reducing fertilizer input and nitrogen (N) loss, and improving N use efficiency.【Method】In 2018 and 2019, a field experiment was conducted to study the effects of different organic fertilizers replacing chemical fertilizers rate on soil N2O flux, CO2 flux and GWP and carbon footprint by using static chamber and gas chromatography in maize yield. Four treatments, including control (CK), single application of inorganic fertilizer (NPK), organic fertilizer replacing 30% inorganic fertilizers (inorganic fertilizers 180 kg N·hm-2+ organic fertilizer 90 kg N·hm-2, NPKM30), and organic fertilizer replacing 50% inorganic fertilizers (inorganic fertilizers 135 kg N·hm-2+organic fertilizer 135 kg N·hm-2, NPKM50), were established during maize growth periods.【Result】There was no significant difference of maize grain yield among NPK, NPKM30 and NPKM50 in 2018 and 2019. During the maize growth periods, the N2O emission flux showed temporal variations, and the average fluxes under three fertilizer treatments were higher than that under CK. Compared with NPK, NPKM30 increased the N2O cumulative emission by 5.22%, while reduced by 7.92% for NPKM50 treatment. The N2O cumulative emission over the maize growth periods accounted for 12.91? -18.74? of soil total N. During the maize growth periods, soil CO2 flux showed similar temporal patterns among the four treatments, and the average flux for the two years ranged from 74.53 to 367.04 mg·m-2·h-1. Fertilization input significantly increased the cumulative CO2 emission, and the average CO2 accumulation under NPKM30 and NPKM50 treatments increased by 0.91% and 5.79% than that under NPK treatment, respectively. The average GWP under NPKM30 and NPKM50 treatments was 2.07% and 2.10% higher than that under NPK treatment, respectively. Compared with the NPK treatment, the GHGI and carbon emissions from per unit yield under NPKM30 treatment decreased by 2.46% and 1.43%, respectively, and increased by 3.37% and 1.43% under NPKM50 treatment, respectively. 【Conclusion】 Suitable organic fertilizer rate replacing some chemical fertilizer could keep maize yield stable, increase greenhouse gas emission and global warming potential, while reduce greenhouse gas emission intensity and carbon emissions from per unit yield. Considering the ecological benefits of maize production and greenhouse gas emissions, the organic fertilizer replacing 30% inorganic fertilizers would be a more ideal proportion of organic fertilizer to replace chemical fertilizer.

Key words: organic fertilizer replacing chemical fertilizer, greenhouse gas, global warming potential, greenhouse gas emission intensity, carbon footprint

Fig. 1

Temporal variations of rainfall and climate temperature during maize and wheat growth periods in 2018 and 2019"

Table 1

Application of organic fertilizer N and inorganic fertilizer N rate during maize growth periods"

处理
Treatment
基肥Base fertilizer (kg·hm-2) 追肥Topdressing (kg·hm-2)
有机肥 Organic fertilizer 无机肥 Inorganic fertilizer 拔节期 Jointing period 大喇叭口期Big trumpet period
CK 0 0 0 0
NPK 0 135 67.5 67.5
NPKM30 90 45 67.5 67.5
NPKM50 135 0 67.5 67.5

Table 2

Different production factors input items during maize growth periods"

处理
Treatment
氮肥
N
(kg·hm-2)
磷肥
P2O5
(kg·hm-2)
钾肥
K2O
(kg·hm-2)
杀虫剂 Pesticide
(kg·hm-2)
除草剂Herbicide
(kg·hm-2)
灌溉量 Irrigation
(m3·hm-2)
柴油
Diesel oil
(kg·hm-2)
玉米种子
Maize seed
(kg·hm-2)
CK 0 0 0 0.45 6 975 31.5 22.5
NPK 270 90 120 0.45 6 975 31.5 22.5
NPKM30 270 90 120 0.45 6 975 31.5 22.5
NPKM50 270 90 120 0.45 6 975 31.5 22.5

Table 3

Carbon emission indexes of different input items during maize growth periods"

生产资料 Input items 碳排放系数Index of carbon emission (by CO2)
氮肥 N 1.53 kg·kg-1
磷肥 P2O5 1.63 kg·kg-1
钾肥 K2O 0.65 kg·kg-1
杀虫剂 Pesticide 16.61 kg·kg-1
除草剂Herbicide 10.15 kg·kg-1
灌溉电力Electricity 0.80 kg·kWh-1
柴油Diesel oil 3.10 kg·kg-1
玉米种子Maize seed 1.93 kg·kg-1

Table 4

The difference of maize yield, soil N2O, CO2 emissions and global warming potential among the treatments"

年份
Year
处理Treatment 产量
Yield
(kg·hm-2)
N2O排放
通量
N2O flux
(μg·m-2·h-1)
N2O累积
排放量
N2O cumulative emission (kg·hm-2)
N2O排
放强度
N2O emission intensity (kg·t-1)
N2O排
放系数
N2O emission factor
(%)
N2O累积排放量占土壤全氮比重
Ratio (?)
CO2排放
通量
CO2 flux
(mg·m-2·h-1)
CO2累积
排放量
CO2 cumulative emission
(kg·hm-2)
全球增温潜势
GWP
(kg·hm-2)
温室气体
排放强度
GHGI (kg·kg-1)
2018
CK 6399.10±288.53c 211.72±5.99c 4.52±0.32b 0.67±0.03a 0 14.76±1.04b 177.34±36.30c 3674.15±335.41c 5020.37±263.72c 0.79±0.08a
NPK 8522.88±55.98ab 253.81±1.39b 6.23±0.22a 0.69±0.02a 0.59±0.15a 20.36±0.73a 234.81±11.55b 4333.53±153.99b 6189.98±106.11b 0.73±0.02a
NPKM30 8807.15±329.88a 275.86±18.60a 6.25±0.49a 0.67±0.06a 0.59±0.14a 20.43±1.61a 235.20±16.59b 4393.73±36.33b 6256.85±150.52b 0.71±0.03a
NPKM50 8349.92±122.83b 247.16±14.35b 5.89±0.30a 0.67±0.04a 0.48±0.21a 19.25±0.99a 284.30±6.32a 4808.55±190.86a 6564.02±233.98a 0.79±0.04a
2019
CK 7861.60±417.66b 168.22±5.19c 3.38±0.17d 0.41±0.02a 0 11.05±0.54d 192.64±3.22c 3583.36±82.41b 4590.76±115.45c 0.58±0.02a
NPK 12166.58±1455.93a 269.58±18.25a 4.67±0.17b 0.37±0.03b 0.46±0.11b 15.27±0.57b 227.76±14.48b 4486.64±266.95a 5879.17±241.34ab 0.49±0.05b
NPKM30 12886.34±1178.23a 275.96±12.12a 5.22±0.15a 0.39±0.02ab 0.66±0.07a 17.06±0.50a 237.48±2.14ab 4506.71±70.87a 6062.18±100.08a 0.47±0.03b
NPKM50 12326.96±348.83a 216.09±14.06b 4.15±0.21c 0.33±0.02c 0.28±0.09c 13.56±0.69c 241.87±7.31a 4522.70±61.36a 5758.99±91.02b 0.47±0.02b

Table 5

Effects of different treatments on maize plant biomass, N accumulation and soil nutrient content in 2018 and 2019"

参数 Parameter 时期 Period CK NPK NPKM30 NPKM50
生物量 Biomass (g/plant)
地上部 Aboveground 2018 拔节期 Jointing stage 12.76±1.09b 18.99±2.44a 18.64±0.94a 18.52±1.51a
2018 吐丝期 Silking stage 69.38±16.75b 106.90±4.57a 112.78±3.67a 119.95±1.59a
2018 成熟期 Maturity stage 226.06±10.71b 403.20±60.39a 385.51±51.45a 405.39±41.86a
2019 拔节期 Jointing stage 9.27±2.11b 17.37±1.39a 16.77±2.14a 17.07±0.38a
2019 吐丝期 Silking stage 148.28±4.07c 167.71±9.36b 169.70±4.85b 191.72±6.03a
2019 成熟期 Maturity stage 236.94±22.11b 387.47±23.05a 415.29±21.05a 393.20±7.71a
根 Root 2018 拔节期 Jointing stage 0.57±0.12c 0.90±0.03ab 0.66±0.12bc 1.00±0.23a
2018 吐丝期 Silking stage 8.46±0.95b 11.28±1.08a 10.68±0.20a 10.61±1.50a
2018 成熟期 Maturity stage 5.84±2.00a 6.72±2.14a 7.79±1.70a 8.99±1.37a
2019 拔节期 Jointing stage 0.55±0.12c 0.96±0.03ab 0.80±0.15bc 1.13±0.26a
2019 吐丝期 Silking stage 9.37±1.13b 10.07±1.19b 10.81±1.12a 12.89±1.50ab
2019 成熟期 Maturity stage 5.50±1.84b 9.25±1.88a 11.89±0.70a 12.04±1.00a
氮素积累量 N accumulation (mg N/plant)
籽粒Grain 2018 成熟期 Maturity stage 1062.06±155.77b 1796.03±47.25a 1853.35±65.03a 1891.79±137.66a
2019 成熟期 Maturity stage 1404.98±281.75b 2527.99±85.31a 2776.74±220.55a 2868.92±625.98a
地上部Aboveground 2018 拔节期 Jointing stage 316.20±36.52b 578.95±49.54a 576.95±38.64a 576.21±35.50a
2018 吐丝期 Silking stage 730.92±193.87b 1622.22±108.39a 1877.26±133.01a 1737.69±24.44a
2018 成熟期 Maturity stage 1855.88±381.54b 4545.08±276.53a 4637.18±52.01a 4641.32±432.87a
2019 拔节期 Jointing stage 283.00±72.24b 716.77±36.09a 711.64±68.94a 694.13±10.83a
2019 吐丝期 Silking stage 1879.96±503.84c 2920.41±142.82b 3305.00±247.48ab 3741.69±67.14a
2019 成熟期 Maturity stage 2039.42±328.46b 4836.64±178.49a 4948.44±23.72a 5043.64±374.47a
非根际土壤 Non-rhizosphere soil (mg·kg-1)
铵态氮 NH4+-N (mg·kg-1) 2019 拔节期 Jointing stage 6.75±0.74a 7.26±0.39a 6.80±0.57a 6.99±0.80a
2019 吐丝期 Silking stage 6.98±0.18d 57.78±2.59a 32.35±5.43b 10.16±3.78c
2019 成熟期 Maturity stage 3.34±0.03a 4.05±0.57a 3.24±0.83a 3.27±0.41a
硝态氮 NO3--N (mg·kg-1) 2019 拔节期 Jointing stage 5.89±0.28c 18.45±2.18b 26.11±4.96a 27.82±2.44a
2019 吐丝期 Silking stage 6.75±1.16d 166.70±8.39a 138.92±6.86b 72.11±5.85c
2019 成熟期 Maturity stage 7.81±0.04b 24.82±0.56a 25.98±0.03a 25.35±2.15a
无机氮 INN (mg·kg-1) 2019 拔节期 Jointing stage 12.64±0.94c 25.71±2.00b 32.92±5.99a 35.21±2.04a
2019 吐丝期 Silking stage 13.73±1.08d 224.49±6.01a 171.27±6.58b 82.27±6.15c
2019 成熟期 Maturity stage 11.15±0.06b 29.15±0.27a 28.75±0.13a 28.62±2.51a
根际土壤 Rhizosphere soil (mg·kg-1)
铵态氮 NH4+-N (mg·kg-1) 2019 拔节期 Jointing stage 5.87±0.52a 9.55±5.34a 5.45±0.27a 7.16±2.17a
2019 吐丝期 Silking stage 4.98±0.15a 7.11±2.12a 5.79±0.12a 5.63±0.35a
2019 成熟期 Maturity stage 3.08±0.31ab 5.20±0.77a 4.19±2.40ab 2.62±0.18b
硝态氮NO3--N (mg·kg-1) 2019 拔节期 Jointing stage 6.13±1.68b 12.08±4.19a 8.40±0.13ab 10.36±1.14ab
2019 吐丝期 Silking stage 7.21±0.73c 17.73±0.09a 7.98±1.00c 12.81±3.49b
2019 成熟期 Maturity stage 5.12±0.86b 6.56±0.32b 8.54±1.25a 6.35±1.09b
无机氮INN (mg·kg-1) 2019 拔节期 Jointing stage 12.00±2.16b 21.62±6.84a 13.84±0.37b 17.52±1.06
2019 吐丝期 Silking stage 12.19±0.83c 24.84±2.16a 13.77±0.89c 18.44±3.70b
2019 成熟期 Maturity stage 8.20±0.56c 11.76±0.64ab 12.73±3.25a 8.97±1.00bc

Fig. 2

The difference of maize root length, root surface area and root volume among treatments in 2018 and 2019"

Fig. 3

Temporal variations of soil N2O and CO2 fluxes under different treatments during maize growth periods"

Table 6

Carbon emissions of each input in the production process and carbon footprint of unit yield"

处理Treatment 化肥Fertilizer 杀虫剂
Pesticide
(kg·hm-2)
除草剂
Herbicide
(kg·hm-2)
灌溉电力
Electricity
(kg·hm-2)
柴油
Diesel oil
(kg·hm-2)
玉米种子
Mazie seed
(kg·hm-2)
直接排放
Direct emissions
(kg·hm-2)
总碳排放
Total emission
(kg·hm-2)
单位产量碳排放量
Carbon emissions of unit yield (kg·kg-1)
CK 0 7.47 60.9 360 97.65 43.43 4805.57 5375.02 0.75
NPK 637.8 7.47 60.9 360 97.65 43.43 6034.57 7241.82 0.70
NPKM30 637.8 7.47 60.9 360 97.65 43.43 6159.51 7366.76 0.69
NPKM50 637.8 7.47 60.9 360 97.65 43.43 6161.51 7368.76 0.71
[1] IPCC. Climate Change 2007: Mitigation//Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[2] 肖杰, 刘平静, 孙本华, 高明霞, 张树兰, 杨学云, 冯浩. 长期施用化肥对旱作雨养农田N2O排放特征的影响. 西北农林科技大学学报(自然科学版), 2020, 48(5):108-114, 122. doi: 10.13207/j.cnki.jnwafu.2020.05.013.
doi: 10.13207/j.cnki.jnwafu.2020.05.013
XIAO J, LIU P J, SUN B H, GAO M X, ZHANG S L, YANG X Y, FENG H. Effects of long-term chemical fertilization on N2O emission from rain-fed dry farmland. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(5):108-114, 122. doi: 10.13207/j.cnki.jnwafu.2020.05.013. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2020.05.013
[3] WEST T O, MARLAND G. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses. Environmental Pollution, 2002, 116(3):439-444. doi: 10.1016/S0269-7491(01)00221-4.
doi: 10.1016/S0269-7491(01)00221-4
[4] MORSE J L, BERNHARDT E S. Using 15N tracers to estimate N2O and N2 emissions from nitrification and denitrification in coastal plain wetlands under contrasting land-uses. Soil Biology and Biochemistry, 2013, 57:635-643. doi: 10.1016/j.soilbio.2012.07.025.
doi: 10.1016/j.soilbio.2012.07.025
[5] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20):4207-4229.
LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011, 44(20):4207-4229. (in Chinese)
[6] 苏曼. 主要粮食作物生产中N2O排放强度研究[D]. 北京: 中国农业科学院, 2013.
SU M. Research on greenhouse gas(N2O)emission intensity of main grain crops[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[7] LIU H T, LI J, LI X, ZHENG Y H, FENG S F, JIANG G M. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Science Bulletin, 2015, 60(6):598-606. doi: 10.1007/s11434-014-0679-6.
doi: 10.1007/s11434-014-0679-6
[8] 李虎, 邱建军, 王立刚, 任天志. 中国农田主要温室气体排放特征与控制技术. 生态环境学报, 2012, 21(1):159-165. doi: 10.16258/j.cnki.1674-5906.2012.01.025.
doi: 10.16258/j.cnki.1674-5906.2012.01.025
LI H, QIU J J, WANG L G, REN T Z. The characterization of greenhouse gases fluxes from croplands of China and mitigation technologies. Ecology and Environmental Sciences, 2012, 21(1):159-165. doi: 10.16258/j.cnki.1674-5906.2012.01.025. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2012.01.025
[9] 张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4):966-975. doi: 10.3724/SP.J.1011.2011.00966.
doi: 10.3724/SP.J.1011.2011.00966
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4):966-975. doi: 10.3724/SP.J.1011.2011.00966. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00966
[10] VAN GROENIGEN J W, VELTHOF G L, OENEMA O, VAN GROENIGEN K J, VAN KESSEL C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. European Journal of Soil Science, 2010, 61(6):903-913. doi: 10.1111/j.1365-2389.2009.01217.x.
doi: 10.1111/j.1365-2389.2009.01217.x
[11] 朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎. 农田土壤N2O产生的关键微生物过程及减排措施. 环境科学, 2014, 35(2):792-800. doi: 10.13227/j.hjkx.2014.02.008.
doi: 10.13227/j.hjkx.2014.02.008
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014, 35(2):792-800. doi: 10.13227/j.hjkx.2014.02.008 (in Chinese)
doi: 10.13227/j.hjkx.2014.02.008
[12] DOBBIE K E, SMITH K A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science, 2001, 52(4):667-673. doi: 10.1046/j.1365-2389.2001.00395.x.
doi: 10.1046/j.1365-2389.2001.00395.x
[13] 曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10):1781-1798. doi: 10.11674/zwyf.18441.
doi: 10.11674/zwyf.18441
CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Plant Nutrition and Fertilizer Science, 2019, 25(10):1781-1798. doi: 10.11674/zwyf.18441. (in Chinese)
doi: 10.11674/zwyf.18441
[14] 李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响. 中国农业科学, 2015, 48(21):4381-4389. doi: 10.3864/j.issn.0578-1752.2015.21.018.
doi: 10.3864/j.issn.0578-1752.2015.21.018
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China plain. Scientia Agricultura Sinica, 2015, 48(21):4381-4389. doi: 10.3864/j.issn.0578-1752.2015.21.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.21.018
[15] 翟振, 王立刚, 李虎, 邱建军, 杨军, 董小雨. 有机无机肥料配施对春玉米农田N2O排放及净温室效应的影响. 农业环境科学学报, 2013, 32(12):2502-2510.
ZHAI Z, WANG L G, LI H, QIU J J, YANG J, DONG X Y. Nitrous oxide emissions and net greenhouse effect from spring-maize field as influenced by combined application of manure and inorganic fertilizer. Journal of Agro-Environment Science, 2013, 32(12):2502-2510. (in Chinese)
[16] 毕智超, 张浩轩, 房歌, 郭澍, 熊正琴. 不同配比有机无机肥料对菜地N2O排放的影响. 植物营养与肥料学报, 2017, 23(1):154-161. doi: 10.11674/zwyf.16119.
doi: 10.11674/zwyf.16119
BI Z C, ZHANG H X, FANG G, GUO S, XIONG Z Q. Effects of combined organic and inorganic fertilizers on N2O emissions in intensified vegetable field. Plant Nutrition and Fertilizer Science, 2017, 23(1):154-161. doi: 10.11674/zwyf.16119. (in Chinese)
doi: 10.11674/zwyf.16119
[17] 陈雪双, 刘娟, 姜培坤, 周国模, 李永夫, 吴家森. 施肥对山核桃林地土壤N2O排放的影响. 植物营养与肥料学报, 2014, 20(5):1262-1270. doi: 10.11674/zwyf.2014.0523.
doi: 10.11674/zwyf.2014.0523
CHEN X S, LIU J, JIANG P K, ZHOU G M, LI Y F, WU J S. Effects of fertilization on soil N2O flux in Chinese Carya cathayensis stands. Plant Nutrition and Fertilizer Science, 2014, 20(5):1262-1270. doi: 10.11674/zwyf.2014.0523. (in Chinese)
doi: 10.11674/zwyf.2014.0523
[18] JIA J X, LI B, CHEN Z Z, XIE Z B, XIONG Z Q. Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition, 2012, 58(4):503-509. doi: 10.1080/00380768.2012.686436.
doi: 10.1080/00380768.2012.686436
[19] 臧逸飞, 郝明德, 张丽琼, 张昊青. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5):1445-1451. doi: 10.5846/stxb201305070967.
doi: 10.5846/stxb201305070967
ZANG Y F, HAO M D, ZHANG L Q, ZHANG H Q. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5):1445-1451. doi: 10.5846/stxb201305070967. (in Chinese)
doi: 10.5846/stxb201305070967
[20] 王晓娇, 张仁陟, 齐鹏, 焦亚鹏, 蔡立群, 武均, 谢军红. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响. 农业工程学报, 2019, 35(10):99-107. doi: 10.11975/j.issn.1002-6819.2019.10.013.
doi: 10.11975/j.issn.1002-6819.2019.10.013
WANG X J, ZHANG R Z, QI P, JIAO Y P, CAI L Q, WU J, XIE J H. Meta-analysis on farmland soil CO2 emission in Northern China affected by organic fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10):99-107. doi: 10.11975/j.issn.1002-6819.2019.10.013. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.10.013
[21] IPCC. Climate Change 2013: The physical science basis//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[22] 吕艳杰, 于海燕, 姚凡云, 曹玉军, 魏雯雯, 王立春, 王永军. 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响. 中国生态农业学报, 2016, 24(11):1456-1463. doi: 10.13930/j.cnki.cjea.160405.
doi: 10.13930/j.cnki.cjea.160405
LÜ Y J, YU H Y, YAO F Y, CAO Y J, WEI W W, WANG L C, WANG Y J. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils. Chinese Journal of Eco-Agriculture, 2016, 24(11):1456-1463. doi: 10.13930/j.cnki.cjea.160405. (in Chinese)
doi: 10.13930/j.cnki.cjea.160405
[23] 李春喜, 骆婷婷, 闫广轩, 许双, 宗洁静, 邵云. 河南省不同生态区小麦-玉米两熟制农田碳足迹分析. 生态环境学报, 2020, 29(5):918-925. doi: 10.16258/j.cnki.1674-5906.2020.05.007.
doi: 10.16258/j.cnki.1674-5906.2020.05.007
LI C X, LUO T T, YAN G X, XU S, ZONG J J, SHAO Y. Carbon footprint analysis of wheat-maize double cropping system in different ecological regions of Henan Province. Ecology and Environmental Sciences, 2020, 29(5):918-925. doi: 10.16258/j.cnki.1674-5906.2020.05.007. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2020.05.007
[24] 王钰乔, 濮超, 赵鑫, 王兴, 刘胜利, 张海林. 中国小麦、玉米碳足迹历史动态及未来趋势. 资源科学, 2018, 40(9):1800-1811. doi: 10.18402/resci.2018.09.10.
doi: 10.18402/resci.2018.09.10
WANG Y Q, PU C, ZHAO X, WANG X, LIU S L, ZHANG H L. Historical dynamics and future trends of carbon footprint of wheat and maize in China. Resources Science, 2018, 40(9):1800-1811. doi: 10.18402/resci.2018.09.10. (in Chinese)
doi: 10.18402/resci.2018.09.10
[25] 朱永昶, 李玉娥, 姜德锋, 邹晓霞. 基于生命周期评估的冬小麦-夏玉米种植系统碳足迹核算: 以山东省高密地区为例. 农业资源与环境学报, 2017, 34(5):473-482. doi: 10.13254/j.jare.2017.0180.
doi: 10.13254/j.jare.2017.0180
ZHU Y C, LI Y E, JIANG D F, ZOU X X. Life cycle assessment on carbon footprint of winter wheat-summer maize cropping system based on survey data of Gaomi in Shandong Province, China. Journal of Agricultural Resources and Environment, 2017, 34(5):473-482. doi: 10.13254/j.jare.2017.0180. (in Chinese)
doi: 10.13254/j.jare.2017.0180
[26] HE L Y, ZHANG A, WANG X D, LI J, HUSSAIN Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. Journal of Cleaner Production, 2019, 234:297-305. doi: 10.1016/j.jclepro.2019.06.161.
doi: 10.1016/j.jclepro.2019.06.161
[27] ZHANG Y J, LIN F, JIN Y G, WANG X F, LIU S W, ZOU J W. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China. Scientific Reports, 2016, 6:20700. doi: 10.1038/srep20700.
doi: 10.1038/srep20700
[28] 王立刚, 李虎, 邱建军. 黄淮海平原典型农田土壤N2O的排放特征. 中国农业科学, 2008, 41(4):1248-1254. doi: 10.3864/j.issn.0578-1752.2008.04.040.
doi: 10.3864/j.issn.0578-1752.2008.04.040
WANG L G, LI H, QIU J J. Characterization of emissions of nitrous oxide from soils of typical crop fields in Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2008, 41(4):1248-1254. doi: 10.3864/j.issn.0578-1752.2008.04.040. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.04.040
[29] RICHARDSON D, FELGATE H, WATMOUGH N, THOMSON A, BAGGS E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key? Trends in Biotechnology, 2009, 27(7):388-397. doi: 10.1016/j.tibtech.2009.03.009.
doi: 10.1016/j.tibtech.2009.03.009
[30] 徐玉秀. 中国主要作物农田N2O和CH4排放系数及影响因子分析[D]. 沈阳: 沈阳农业大学, 2016.
XU Y X. Analyses on emission factors and effect factors of N2O and CH4 from main cropland soils in China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese)
[31] 孙赫阳, 万忠梅, 刘德燕, 廖霞, 丁维新. 有机肥与无机肥配施对潮土N2O排放的影响. 环境科学, 2020, 41(3):1474-1481. doi: 10.13227/j.hjkx.201908008.
doi: 10.13227/j.hjkx.201908008
SUN H Y, WAN Z M, LIU D Y, LIAO X, DING W X. Effect of organic fertilizer and inorganic fertilizer application on N2O emissions from fluvo-aquic soil in the North China plain. Environmental Science, 2020, 41(3):1474-1481. doi: 10.13227/j.hjkx.201908008. (in Chinese)
doi: 10.13227/j.hjkx.201908008
[32] JASSAL R S, BLACK T A, ROY R, ETHIER G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and Bole respiration. Geoderma, 2011, 162(1/2):182-186. doi: 10.1016/j.geoderma.2011.02.002.
doi: 10.1016/j.geoderma.2011.02.002
[33] AZAM F, MÜLLER C, WEISKE A, BENCKISER G, OTTOW J. Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and applied nitrogen. Biology and Fertility of Soils, 2002, 35(1):54-61. doi: 10.1007/s00374-001-0441-5.
doi: 10.1007/s00374-001-0441-5
[34] BURNEY J A, DAVIS S J, LOBELL D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26):12052-12057. doi: 10.1073/pnas.0914216107.
doi: 10.1073/pnas.0914216107
[35] 刘运通, 万运帆, 林而达, 李玉娥, 陈德立, 秦晓波, 高清竹, 金琳, 武艳娟. 施肥与灌溉对春玉米土壤N2O排放通量的影响. 农业环境科学学报, 2008, 27(3):997-1002. doi: 10.3321/j.issn:1672-2043.2008.03.029.
doi: 10.3321/j.issn:1672-2043.2008.03.029
LIU Y T, WAN Y F, LIN E D, LI Y E, CHEN D L, QIN X B, GAO Q Z, JIN L, WU Y J. N2O flux variations from spring maize soil under fertilization and irrigation. Journal of Agro-Environment Science, 2008, 27(3):997-1002. doi: 10.3321/j.issn:1672-2043.2008.03.029. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2008.03.029
[36] SCALA N L Jr, MARQUES J Jr, PEREIRA G T, CORÁ J E. Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biology and Biochemistry, 2000, 32(10):1469-1473. doi: 10.1016/S0038-0717(00)00053-5.
doi: 10.1016/S0038-0717(00)00053-5
[37] 董玉红, 欧阳竹, 李鹏, 张磊. 长期定位施肥对农田土壤温室气体排放的影响. 土壤通报, 2007, 38(1):97-100. doi: 10.19336/j.cnki.trtb.2007.01.023
doi: 10.19336/j.cnki.trtb.2007.01.023
DONG Y H, OUYANG Z, LI P, ZHANG L. Influence of long-term frtilization on greenhouse gas fuxes fom agricultural soil. Chinese Journal of Soil Science, 2007, 38(1):97-100. doi: 10.19336/j.cnki.trtb.2007.01.023. (in Chinese)
doi: 10.19336/j.cnki.trtb.2007.01.023
[38] 杨书运, 严平, 马友华, 戴佳伟, 韩辉邦, 汪大林, 方海义. 施肥对冬小麦土壤温室气体排放的影响. 生态环境学报, 2010, 19(7):1642-1645. doi: 10.16258/j.cnki.1674-5906.2010.07.007.
doi: 10.16258/j.cnki.1674-5906.2010.07.007
YANG S Y, YAN P, MA Y H, DAI J W, HAN H B, WANG D L, FANG H Y. Effects on emissions of aoil greenhouse gas by fertilizing to winter wheat. Ecology and Environmental Sciences, 2010, 19(7):1642-1645. doi: 10.16258/j.cnki.1674-5906.2010.07.007. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2010.07.007
[39] 张景源. 长期不同施肥措施下红壤旱地土壤微生物的生物量和多样性[D]. 武汉: 华中农业大学, 2008.
ZHANG J Y. Soil microbial biomass and diversity under long-term different fertilization utilizations[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese)
[40] 乔云发, 苗淑杰, 王树起, 韩晓增, 李海波. 不同施肥处理对黑土土壤呼吸的影响. 土壤学报, 2007, 44(6):1028-1035. doi: 10.3321/j.issn:0564-3929.2007.06.010.
doi: 10.3321/j.issn:0564-3929.2007.06.010
QIAO Y F, MIAO S J, WANG S Q, HAN X Z, LI H B. Soil respiration affected by fertilization in black soil. Acta Pedologica Sinica, 2007, 44(6):1028-1035. doi: 10.3321/j.issn:0564-3929.2007.06.010. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2007.06.010
[41] 汤桂容, 周旋, 田昌, 彭辉辉, 张玉平, 荣湘民. 有机无机氮肥配施对莴苣土壤N2O排放的影响. 土壤, 2019, 51(4):641-647. doi: 10.13758/j.cnki.tr.2019.04.003.
doi: 10.13758/j.cnki.tr.2019.04.003
TANG G R, ZHOU X, TIAN C, PENG H H, ZHANG Y P, RONG X M. Effects of combined application of organic and inorganic nitrogen fertilizers on soil nitrous oxide emission from lettuce (Lactuca sativa L.) fields. Soils, 2019, 51(4):641-647. doi: 10.13758/j.cnki.tr.2019.04.003. (in Chinese)
doi: 10.13758/j.cnki.tr.2019.04.003
[42] IQBAL J, HU R G, LIN S, HATANO R, FENG M L, LU L, AHAMADOU B, DU L J. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agriculture, Ecosystems & Environment, 2009, 131(3/4):292-302. doi: 10.1016/j.agee.2009.02.001.
doi: 10.1016/j.agee.2009.02.001
[43] GINTING D, KESSAVALOU A, EGHBALL B, DORAN J W. Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality, 2003, 32(1):23-32. doi: 10.2134/jeq2003.2300.
doi: 10.2134/jeq2003.2300
[44] DING W X, MENG L, YIN Y F, CAI Z C, ZHENG X H. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biology and Biochemistry, 2007, 39(2):669-679. doi: 10.1016/j.soilbio.2006.09.024.
doi: 10.1016/j.soilbio.2006.09.024
[45] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51(11):2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011.
doi: 10.3864/j.issn.0578-1752.2018.11.011
WEN Y C, ZHANG Y D, YUAN L, LI W, LI Y Q, LIN Z A, ZHAO B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Scientia Agricultura Sinica, 2018, 51(11):2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.11.011
[46] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20):3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008.
doi: 10.3864/j.issn.0578-1752.2016.20.008
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016, 49(20):3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008 (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.20.008
[47] 向秀媛, 刘强, 荣湘民, 谢桂先, 彭建伟, 黄伟明. 有机肥和无机肥配施对双季稻产量及氮肥利用率的影响. 湖南农业大学学报(自然科学版), 2014, 40(1):72-77. doi: 10.13331/j.cnki.jhau.2014.01.016.
doi: 10.13331/j.cnki.jhau.2014.01.016
XIANG X Y, LIU Q, RONG X M, XIE G X, PENG J W, HUANG W M. Effects of different combined application of organic manures and inorganic fertilizer on yield and N use efficiency of double-rice. Journal of Hunan Agricultural University (Natural Sciences), 2014, 40(1):72-77. doi: 10.13331/j.cnki.jhau.2014.01.016. (in Chinese)
doi: 10.13331/j.cnki.jhau.2014.01.016
[48] 李孝良, 胡立涛, 王泓, 张云晴, 吴长昊, 汪建飞. 化肥减量配施有机肥对皖北夏玉米养分吸收及氮素利用效率的影响. 南京农业大学学报, 2019, 42(1):118-123.
LI X L, HU L T, WANG H, ZHANG Y Q, WU C H, WANG J F. Effects of combination of chemical fertilizer reduction with organic manure on nutrient uptake and nitrogen utilization efficiency of summer maize in Northern Anhui Province. Journal of Nanjing Agricultural University, 2019, 42(1):118-123. (in Chinese)
[49] LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming. Nature, 1990, 344(6266):529-531. doi: 10.1038/344529a0.
doi: 10.1038/344529a0
[50] 刘晓雨. 施用有机物料对农田固碳减排及生产力的影响:田间试验及整合研究[D]. 南京: 南京农业大学, 2013.
LIU X Y. Effects of soil organic amendment on productivity and greenhouse gas mitigation of croplands: Field studies and synthetic analysis[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[4] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[5] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[6] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[7] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[8] ZHANG QiRu,XIE YingHe,LI TingLiang,LIU Kai,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Organic Fertilizers Replacing Chemical Fertilizers on Yield, Nutrient Use Efficiency, Economic and Environmental Benefits of Dryland Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4866-4878.
[9] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[10] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[11] LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424.
[12] LIU Song, WANG XiaoQin, HU JiPing, LI Qiang, CUI LiLi, DUAN XueQin, GUO Liang. Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province [J]. Scientia Agricultura Sinica, 2018, 51(3): 556-565.
[13] Rong HUANG,Ming GAO,JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN. Effects of Combined Application of Various Organic Materials and Chemical Fertilizer on Soil Nitrogen Formation and Greenhouse Gas Emission Under Equal Nitrogen Rates from Purple Soil [J]. Scientia Agricultura Sinica, 2018, 51(21): 4087-4101.
[14] Chi XU, HaiKuan XIE, WuHan DING, Zhen DAI, Jing ZHANG, LiGang WANG, Hu LI. The Impacts of CH4 and N2O Net Emission Under One-Off Fertilization of Rape-Paddy Replanting System [J]. Scientia Agricultura Sinica, 2018, 51(20): 3972-3984.
[15] ZHANG Zi-yang, SHEN Tai-yu, YU Hong-jiang, GAO San-si, ZHU Kui-ling, HUANG Bao-yin, XU Chuang, YANG Wei. A Study on the Effect of Subclinical Hypocalcemia in Dairy Cows on Productivity and Manure Emission Characters [J]. Scientia Agricultura Sinica, 2016, 49(21): 4222-4230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!