Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 314-332.doi: 10.3864/j.issn.0578-1752.2023.02.009


Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model

CHEN XiaoWei(),WANG XiaoLong()   

  1. College of Agriculture, South China Agricultural University, Guangzhou 510642
  • Received:2021-12-08 Accepted:2022-01-29 Online:2023-01-16 Published:2023-02-07


【Objective】Based on scientific agricultural carbon assessment method, the comprehensive assessment of the carbon sequestration and emission reduction effect of the whole life cycle of complex integrated cropping-breeding farming system is the basis for the design and optimization of low-carbon farming system in China from the perspective of the whole industry chain. This study compared five system scenarios and their corresponding carbon footprint assessment frameworks for crop-livestock cycle industry chain, intending to provide the scientific, reasonable and usable methodological references for the creation of low-carbon farming systems. 【Method】A carbon footprint accounting based on life cycle assessment published by ISO 14040 and greenhouse gas accounting provided by IPCC were combined to construct a carbon footprint evaluation framework for the integrated cropping-breeding farming systems under the different system boundaries. The Maize-Cow-Recycling Manure model in tropical crop areas of South China was used as case to validate the effect of the proposed accounting framework. 【Result】 The assessment framework clarified that the whole chain of the integrated and separated crop-livestock models both had six accounting links, including agricultural inputs, crop cultivation, animal breeding, manure management, transportation, and soil carbon sink. Furthermore, the carbon measurement logic of each link and its carbon footprint accounting method were analyzed. The case results showed that the whole-life carbon footprint of the integrated crop-livestock model was 34.44% lower than that of the separated model, showing better carbon sequestration and emission reduction effect. The assessment framework could fully reflect the "indirect emissions" of upstream agricultural production and transportation, as well as the "alternative emissions reduction" of downstream feed substitution and waste recycling after "coupling" or "decoupling" of farming. In addition, the evaluation results were more closely related to the actual production of the farming system in the integrated cropping-breeding farming system by combing the field measurement data and research data, as well as the model evaluation parameters of the background system. 【Conclusion】The carbon footprint assessment framework of farming systems in the integrated cropping-breeding farming system constructed was able to conduct a comprehensive carbon sequestration and emission reduction effects of the industrial chain in integrated and separated systems under the whole life cycle perspective and reasonable system boundary, which provided directions for optimization.

Key words: carbon footprint, life cycle assessment, crop-livestock integrated system, low-carbon farming system, system boundary, accounting framework

Table 1

System boundary setting and corresponding accounting method under different planting and breeding scenarios"

系统类型System category 单一种植系统
Single planting system
Single breeding system
Separated crop-livestock system
Integrated crop-livestock system
Integrated crop-livestock optimization system
System characteristic
农场单一经营种植业Farm monoculture operation 农场单一经营养殖业Single livestock breeding farm 农场包括SPS和SBS两部分产业,但分离经营,尚未合理的物能代谢过程实现种养循环
The farm includes both SPS and SBS industries operated separately in the SLCS system. Besides, it has not yet been rationalized to realize the physical and energy metabolism cycle
农场包括SPS和SBS两部分产业,且通过种植业产品部分替代养殖业外源饲料和养殖废弃物部分替代农田化肥2种途径形成了种养循环The farm includes both SPS and SBS industries, and the farming cycle is formed through two ways: partial substitution of farming products for off-farm feed and partial substitution of farming waste for cropland fertilizer 按照现有废弃物还田量,假定农场养殖业产生的粪污能够通过增加农田面积而被种植业完全消纳,在此条件下构成的“零排放”种养循环模式
Based on the existing amount of waste returned to the farm, this scenario assumes that the manure generated from livestock farming can be completely absorbed by the farming industry by increasing the area of farmland, which constitutes a "zero-emission" farming cycle model
System boundary
From the upstream production of agricultural materials to the straw completed treatment after crop harvest
From all upstream processes of all agricultural inputs production of the animal farm, up to the manure management process
从农田种植和养殖场农资投入的生产上游到作物种植和养殖业的废弃物管理环节From the upstream production of agricultural inputs to the waste management chain of planting and breeding farms 从农田种植和养殖场农资投入的生产上游到养殖业废弃物管理环节
From the production upstream of agricultural inputs in planting and breeding to the farming waste management chain
核算环节 Accounting section 农田所需农资投入、农田种植、运输环节及土壤有机碳变化
The whole life cycle of upstream production of materials and energy required for crop cultivation to farm waste management after crop harvest, includes the following process: agriculture inputs in farmland, greenhouse gas emissions on the field, soil carbon pool variation and transportation process
The whole life cycle is from the “off-farm” upstream production of feeds and other materials to the “on-farm” animal manure management, containing the following process: feed production and processing, materials and energy production and consumption in farming, enteric fermentation, manure management, and transportation process
The separated crop-livestock model is directly constituted by planting and farming, containing all the processes of both SPS and SBS systems (SCLS = SPS + SBS), with spatial separation and no material exchange between systems
The farm contains both the planting and the farming, which is consistent with the production process accounted by the ICLS system. The difference between these two systems is that there is the material exchange between the two production systems, while the alternative (increase) reduction emission effect is taken into account when accounting for the carbon footprint of the integrated crop-livestock model
The ICLOS system is an optimal regulation scenario simulation based on the ICLS system. This integrated crop livestock model is reconstructed by considering the planting area required for complete consume manure

Fig. 1

System boundary diagrams for separated and integrated systems The red dashed line and box in the figure indicate the main links of the change in carbon sequestration and emission reduction characteristics triggered by the integrated crop-livestock model compared to the separated crop-livestock model"

Table 2

Carbon footprint accounting frameworks under different planting and breeding scenarios"

System scenario
Assessment framework
SPS $C{{F}_{\text{Total,SPS}}}=(C{{F}_{\text{AI,1}}}+C{{F}_{\text{AC,1}}})\times {{S}_{1}}+C{{F}_{\text{VT,1}}}-(C{{F}_{\text{dSOC,}1}}\times {{S}_{1}})$
SBS $C{{F}_{\text{Total,SBS}}}=C{{F}_{\text{LB,1}}}+C{{F}_{\text{MM,1}}}+C{{F}_{\text{VT,}2}}$
SCLS $SC{{F}_{\text{Total,SCLS}}}=(C{{F}_{\text{AI,1}}}+C{{F}_{\text{AC,1}}})\times {{S}_{1}}+C{{F}_{\text{LB,1}}}+C{{F}_{\text{MM,1}}}+C{{F}_{\text{VT,}3}}-(C{{F}_{\text{dSOC,}1}}\times {{S}_{1}})$
ICLS $C{{F}_{\text{Total,ICLS}}}=(C{{F}_{\text{AI},1}}+C{{F}_{\text{AC},1}})\times {{S}_{1}}+C{{F}_{\text{LB,2}}}+C{{F}_{\text{MM},2}}+C{{F}_{\text{VT,}4}}-(C{{F}_{\text{dSOC,}1}}\times {{S}_{1}})$
ICLOS $C{{F}_{\text{Total,ICLOS}}}=(C{{F}_{\text{AI,}2}}+C{{F}_{\text{AC,}2}})\times {{S}_{2}}+C{{F}_{\text{LB},2}}+C{{F}_{\text{MM},3}}+C{{F}_{\text{VT,5}}}-(C{{F}_{\text{dSOC},2}}\times {{S}_{2}})$
Code description
CFTotal是系统全产业链温室气体总和(kg CO2-eq·a-1);CFAI指农田生产中农资投入所引发的田间温室气体排放(kg CO2-eq·hm-2·a-1);CFAC指种植过程和秸秆处理的田间温室气体排放(kg CO2-eq·hm-2·a-1);CFLB是养殖环节温室气体排放(kg CO2-eq·a-1);CFMM是粪便管理环节温室气体排放(kg CO2-eq·a-1);CFVT是运输环节温室气体排放(kg CO2-eq·a-1);CFdSOC是土壤有机碳变化量 (kg CO2-eq·hm-2·a-1)。数字下标表示同一环节在不同系统中的数量变化;S1指农场实际种植面积,S2指ICLOS情景中的假设种植面积
CFTotal is the total GHG emissions generated the system (kg CO2-eq·a-1); CFAI is on-field GHG emissions from agricultural inputs (kg CO2-eq·hm-2·a-1); CFAC is the on-field GHG emissions from crop cultivation and straw treatment (kg CO2-eq·hm-2·a-1); CFLB is GHG emissions from animal rearing (kg CO2-eq·a-1); CFMM is GHG emissions from manure management (kg CO2-eq·a-1); CFVT is GHG emissions from transportation (kg CO2-eq·a-1); CFdSOC is the change in soil organic carbon storage (kg CO2-eq·hm-2·a-1). The numbers subscript indicated quantity change of the same link in different systems; S1 is the actual area of planting area in farm in the case, S2 is the assumed planting area in the ICLOS scenario

Table 3

The greenhouse gas emission coefficients of agricultural inputs"

Emission factors for agricultural inputs
氮肥 Nitrogenous fertilizer (kg CO2-eq·kg-1) 2.12[17]
磷肥 Phosphate fertilizer (kg CO2-eq·kg-1) 0.64[17]
钾肥 Potassium fertilizer (kg CO2-eq·kg-1) 0.18[17]
杀虫剂 Insecticide (kg CO2-eq·kg-1) 23.90[18]
除草剂 Herbicide (kg CO2-eq·kg-1) 14.40[18]
杀菌剂 Bactericide (kg CO2-eq·kg-1) 21.00[18]
玉米种子 Maize seeds (kg CO2-eq·kg-1) 1.22[19]
柴油 Diesel (kg CO2-eq·kg-1) 3.16[20]
电力 Electricity (kg CO2-eq·kWh-1) 0.55[21]
疫苗 Vaccine (kg CO2-eq·kg-1) 6.58[7]
兽药 Veterinary medicines (kg CO2-eq/yuan) 0.011)

Table 4

Parameters for calculating greenhouse gas emission in transportation process"

项目Item 符号Symbol 数值Value
车辆载重量Vehicle capacity (t) M 5.00[28]
满载耗油量Full load fuel consumption (t·kWh-1) g1 0.000382[28]
满载速率Full load speed (km·h-1) V1 45.00[29]
空载的耗油量No-load fuel consumption (t·kWh-1) g0 0.00031[28]
空载速率No-load speed (km·h-1) V0 60.00[29]
车辆的比功率Specific power of vehicle (kW·t-1) VSP 7.20[28]
农资单次运输距离Single transport distance for nitrogen fertilizer (km) Lt 根据案例实际确定
Determined by actual case study

Table 5

Agricultural inputs and yields of cropping systems"

系统类型 System category
农资投入 Agricultural inputs
总氮投入量Total N application rate (kg·hm-2) 300.00 300.00 300.00 300.00
牛粪的全氮含量 Total nitrogen content of dairy manure (g·kg-1) 7.04 7.04 7.04 7.04
牛粪施用量 Dairy manure application rate (kg·hm-2) 0.00 0.00 21321.96 21321.96
氮肥 Nitrogen fertilizer (kg·hm-2) 300.00 300.00 150.00 150.00
磷肥 Phosphate fertilizer (kg·hm-2) 150.00 150.00 150.00 150.00
钾肥 Potassium fertilizer (kg·hm-2) 300.00 300.00 300.00 300.00
杀虫剂 Insecticide (kg·hm-2) 1.19 1.19 1.19 1.19
除草剂 Herbicide (kg·hm-2) 15.71 15.71 15.71 15.71
杀菌剂 Bactericide (kg·hm-2) 0.69 0.69 0.69 0.69
玉米种子 Maize seeds (kg·hm-2) 7.50 7.50 7.50 7.50
柴油 Diseal (kg·hm-2) 11.03 11.03 11.03 11.03
电力 Electricity (kWh·hm-2) 417.44 417.44 417.44 417.44
种植年限Planting period (a) 0.25 0.25 0.25 0.25
种植面积Planting area1) (hm2) 13.33 13.33 13.33 355.18
系统产出 System output
玉米的单位面积产量 Maize yield per unit area (kg·hm-2) 10975.00 10975.00 9946.33 9946.33
玉米秸秆的单位产量 Maize straw yield per unit area (kg·hm-2) 13938.25 13938.25 12631.84 12631.84
玉米总产量 Total maize yield (t·a-1) 439.00 439.00 397.85 10598.14
玉米秸秆总产量Total maize straw yield (t·a-1) 557.53 557.53 505.27 13459.63

Table 6

Basic information of dairy farming system"

Finishing cow
Young cow
Dry cow
Lactating cow
饲养周期Period of feeding[38] (d) 183 183 210 60 280
日存栏量 Head per day (head) 216 432 312 140 1300
牛群结构Proportion of dairy structure (%) 9.00 18.00 13.00 6.00 54.00
日产粪便量 Daily fecal volume[39-40] (kg·head-1·d-1) 10.89 16.61 16.61 33.01 33.01
粪便总量Total manure production1) (t·a-1) 858.57 2338.39 1688.84 2302.83 15831.95
青粗饲料用量Green fodder dosage (kg·head-1·a-1) 1149.75 2613.40 2978.40 2430.90 8030.00
精饲料用量Concentrate feed dosage (kg·head-1·a-1) 492.75 821.25 981.85 1310.35 3285.00
淘汰奶牛数量Number of eliminated cow (head) 265.80 99.36 71.76 32.20 299.00
淘汰奶牛平均体重Average weight of eliminated cow (kg·head-1) 82.76[41] 350.00[42] 460.00[42] 650.00[38] 650.00[38]
淘汰奶牛净肉率Net meat rate of cow 2) (%) 25.30[41] 49.00[43] 40.00[43] 47.00[44] 47.00[44]
牛肉的脂肪质量分数 Fat mass fraction of beef 2) (%) 2.69[45] 4.69[46] 4.08[47] 9.38[44] 9.38[44]
牛肉蛋白质质量分数 Protein mass fraction of beef 2) (%) 19.64[45] 21.00[24] 24.70[47] 20.73[44] 20.73[44]

Table 7

Parameters related to main products of breeding system"

指标类型 Type of indicator 符号Symbol 数值 Value
原奶年产量 Annual production of raw milk (t·a-1) MRM 10660.00
原奶脂肪质量分数 Mass fraction of fat in raw milk (%) CTF 4.001)
原奶蛋白质质量分数 Protein content of raw milk (%) CTP 3.301)
原奶乳糖质量分数 Lactose content of raw milk (%) CTL 5.001)
脂肪的能量系数 Energy coefficient of fat (MJ·kg-1) eTF 36.70[36]
蛋白质的能量系数Energy coefficient of protein (MJ·kg-1) eTP 16.70[36]
乳糖的能量系数Energy coefficient of lactose (MJ·kg-1) eTL 16.70[36]
按脂肪和蛋白质矫正后的牛奶年产量 Annual milk production corrected by fat and protein (t·a-1) MECM 2761.05

Table 8

Carbon footprints results of each system"

系统类型 System category
田间农资投入环节 Agricultural inputs in farmland (t CO2-eq·a-1) 53.17 - 53.17 52.08
田间温室气体排放GHG emissions on field (t CO2-eq·a-1) 903.94 - 903.94 115.16
奶牛场饲养环节 Dairy cow breeding process (t CO2-eq·a-1) - 16307.71 16307.71 15954.96
粪便管理环节 Manure management (t CO2-eq·a-1) - 1681.36 1681.36 1639.28
运输环节 Transportation process (t CO2-eq·a-1) 0.14 0.00 0.14 0.11
土壤碳库变化 Soil carbon pool variation (t CO2-eq·a-1) -5432.06 - -5432.06 1780.20
系统碳足迹 Carbon footprint of system (t CO2-eq·a-1) 6389.30 17989.07 24378.37 15981.39
系统能量总产出Total energy output of system (×106 MJ·a-1) 7.16 31.19 38.34 31.40
单位能量产出碳足迹 Carbon footprint of unit output (kg CO2-eq·MJ-1) 0.89 0.58 0.64 0.51

Fig. 2

Comparison of carbon footprint per unit energy output (a) and carbon footprint for each production process (b) for the ICLOS system and ICLS system The change in soil carbon pool represents the amount of carbon sequestration in agricultural soils, which acts as an offsetting effect relative to the GHG emissions from other production process"

Fig. 3

The contribution analysis of carbon footprint for each production process in each system"

[1] MATUŠTÍK J, KOČÍ V. What is a footprint? A conceptual analysis of environmental footprint indicators. Journal of Cleaner Production, 2021, 285: 124833. doi:10.1016/j.jclepro.2020.124833.
doi: 10.1016/j.jclepro.2020.124833
[2] ESTEVES E M M, ESTEVES V P P, BUNGENSTAB D J, DE QUEIROZ FERNANDES ARAÚJO O, MORGADO C D R V. Greenhouse gas emissions related to biodiesel from traditional soybean farming compared to integrated crop-livestock systems. Journal of Cleaner Production, 2018, 179: 81-92. doi:10.1016/j.jclepro.2017.12.262.
doi: 10.1016/j.jclepro.2017.12.262
[3] ORTIZ-GONZALO D, VAAST P, OELOFSE M, DE NEERGAARD A, ALBRECHT A, ROSENSTOCK T S. Farm-scale greenhouse gas balances, hotspots and uncertainties in smallholder crop-livestock systems in Central Kenya. Agriculture, Ecosystems & Environment, 2017, 248: 58-70. doi:10.1016/j.agee.2017.06.002.
doi: 10.1016/j.agee.2017.06.002
[4] PARAJULI R, DALGAARD T, BIRKVED M. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of the Total Environment, 2018, 619/620: 127-143. doi:10.1016/j.scitotenv.2017.11.082.
doi: 10.1016/j.scitotenv.2017.11.082
[5] DE FIGUEIREDO E B, JAYASUNDARA S, DE OLIVEIRA BORDONAL R, BERCHIELLI T T, REIS R A, WAGNER-RIDDLE C, LA SCALA JR N. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, 2017, 142: 420-431. doi:10.1016/j.jclepro.2016.03.132.
doi: 10.1016/j.jclepro.2016.03.132
[6] BULLER L S, BERGIER I, ORTEGA E, MORAES A, BAYMA-SILVA G, ZANETTI M R. Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: case study assessment in the Pantanal savanna highland, Brazil. Agricultural Systems, 2015, 137: 206-219. doi:10.1016/j.agsy.2014.11.004.
doi: 10.1016/j.agsy.2014.11.004
[7] LI Z J, SUI P, WANG X L, YANG X L, LONG P, CUI J X, YAN L L, CHEN Y Q. Comparison of net GHG emissions between separated system and crop-swine integrated system in the North China Plain. Journal of Cleaner Production, 2017, 149: 653-664. doi:10.1016/j.jclepro.2017.02.113.
doi: 10.1016/j.jclepro.2017.02.113
[8] MALCOLM G M, CAMARGO G G T, ISHLER V A, RICHARD T L, KARSTEN H D. Energy and greenhouse gas analysis of northeast US dairy cropping systems. Agriculture, Ecosystems & Environment, 2015, 199: 407-417. doi:10.1016/j.agee.2014.10.007.
doi: 10.1016/j.agee.2014.10.007
[9] DE SOUZA FILHO W, DE ALBUQUERQUE NUNES P A, BARRO R S, KUNRATH T R, DE ALMEIDA G M, GENRO T C M, BAYER C, DE FACCIO CARVALHO P C. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, 2019, 213: 968-975. doi:10.1016/j.jclepro.2018.12.245.
doi: 10.1016/j.jclepro.2018.12.245
[10] HUANG X L, SHI B Y, WANG S, YIN C B, FANG L N. Mitigating environmental impacts of milk production via integrated maize silage planting and dairy cow breeding system: a case study in China. Journal of Cleaner Production, 2021, 309: 127343. doi:10.1016/j.jclepro.2021.127343.
doi: 10.1016/j.jclepro.2021.127343
[11] VEYSSET P, LHERM M, BÉBIN D, ROULENC M. Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives. Animal, 2014, 8(8): 1218-1228. doi:10.1017/S1751731114000378.
doi: 10.1017/S1751731114000378 pmid: 24589421
[12] VEYSSET P, LHERM M, BÉBIN D. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: model-based analysis and forecasts. Agricultural Systems, 2010, 103(1): 41-50. doi:10.1016/j.agsy.2009.08.005.
doi: 10.1016/j.agsy.2009.08.005
[13] RODRÍGUEZ-ORTEGA T, BERNUÉS A, OLAIZOLA A M, BROWN M T. Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 2017, 144: 171-179. doi:10.1016/j.jclepro.2016.12.089.
doi: 10.1016/j.jclepro.2016.12.089
[14] Environmental management-Life cycle assessment-Principles and framework: ISO 14040: 2006 Geneva, Switzerland: International Organization for Standardization, 2006.
[15] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Rome: Intergovernmental Panel on Climate Change, 2019.
[16] MYHRE G, SHINDELL D T, PONGRATZ J. Anthropogenic and Natural Radiative Forcing Climate Change 2013:The Physical Science Basis. Contribution of Working I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.
[17] 陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算. 生态学报, 2015, 35(19): 6371-6383. doi:10.5846/stxb201402210304.
doi: 10.5846/stxb201402210304
CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China's nitrogen, phosphate, and potash fertilizers. Acta Ecologica Sinica, 2015, 35(19): 6371-6383. doi:10.5846/stxb201402210304. (in Chinese)
doi: 10.5846/stxb201402210304
[18] 张国, 逯非, 黄志刚, 陈舜, 王效科. 我国主粮作物的化学农药用量及其温室气体排放估算. 应用生态学报, 2016, 27(9): 2875-2883. doi:10.13287/j.1001-9332.201609.031.
doi: 10.13287/j.1001-9332.201609.031
ZHANG G, LU F, HUANG Z G, CHEN S, WANG X K. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China. Chinese Journal of Applied Ecology, 2016, 27(9): 2875-2883. doi:10.13287/j.1001-9332.201609.031. (in Chinese)
doi: 10.13287/j.1001-9332.201609.031
[19] 刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率. 中国农业资源与区划, 2013, 34(6): 1-11.
LIU X H, XU W X, LI Z J, CHU Q Q, YANG X L, CHEN F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1-11. (in Chinese)
[20] 中华人民共和国国家统计局. 中国第三产业统计年鉴-2017. 北京: 中国统计出版社, 2017.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook of the Tertiary Industry-2017. Beijing: China Statistics Press, 2017. (in Chinese)
[21] 国家发展和改革委员会. 2011 年和2012 年中国区域电网平均二氧化碳排放因子. 北京: 国家发展和改革委员会应对气候变化司组织国家应对气候变化战略研究和国际合作中心研究, 2012.
NATIONAL DEVELOPMENT & REFORM COMMISSION OF CHINA. Emission factors of regional power grids in China in 2011 and 2012 on average. Beijing: National Development and Reform Commission Department of Climate Change Response organized the National Center for Strategic Research and International Cooperation on Climate Change Research, 2012.
[22] 中华人民共和国国家统计局. 中国环境统计年鉴-2020. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook on Environment-2020. Beijing: China Statistics Press, 2021. (in Chinese)
doi: 10.5194/essd-11-1783-2019
[24] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Rome: Intergovernmental Panel on Climate Change, 2006.
[25] 王晓玉, 薛帅, 谢光辉. 大田作物秸秆量评估中秸秆系数取值研究. 中国农业大学学报, 2012, 17(1): 1-8.
WANG X Y, XUE S, XIE G H. Value-taking for residue factor as a parameter to assess the field residue of field crops. Journal of China Agricultural University, 2012, 17(1): 1-8. (in Chinese)
[26] 丛建辉, 朱婧, 陈楠, 刘学敏. 中国城市能源消费碳排放核算方法比较及案例分析: 基于“排放因子”与“活动水平数据”选取的视角. 城市问题, 2014(3): 5-11. doi:10.13239/j.bjsshkxy.cswt.140302.
doi: 10.13239/j.bjsshkxy.cswt.140302
CONG J H, ZHU J, CHEN N, LIU X M. Comparison and cases analysis to the accounting methods for carbon emission of China's urban energy consumption: from the perspectives of emission factors and activity-level data. Urban Problems, 2014(3): 5-11. doi:10.13239/j.bjsshkxy.cswt.140302. (in Chinese)
doi: 10.13239/j.bjsshkxy.cswt.140302
[27] 国家发展改革委应对气候变化司. 省级温室气体清单编制指南. 2011.
Department of Climate Change, National Development & Reform Commission of China. Guidelines for the preparation of provincial greenhouse gas inventories. 2011. (in Chinese)
[28] 陈丽能, 林鸿, 徐展峰, 王飞. 农村运输机械耗油量数学模型的研究. 浙江大学学报(农业与生命科学版), 2003, 29(2): 185-187.
CHEN L N, LIN H, XU Z F, WANG F. Research on the math models of the combustion oil consumption of the farm transport machineries. Journal of Zhejiang University (Agriculture and Life Sciences), 2003, 29(2): 185-187. (in Chinese)
[29] 周元清. 中国规模化生猪养殖碳足迹评估方法与案例研究[D]. 北京: 中国农业科学院, 2018.
ZHOU Y Q. Carbon footprint assessment method and case study of intensive pig production system in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[30] VASEASHTA A. Life Cycle Analysis of Nanoparticles - Risk, Assessment, and Sustainability. Pennsylvania: DEStech Publications, Inc, 2015.
[31] WILFART A, GAC A, SALAÜN Y, AUBIN J, ESPAGNOL S. Allocation in the LCA of meat products: is agreement possible? Cleaner Environmental Systems, 2021, 2: 100028. doi:10.1016/j.cesys.2021.100028.
doi: 10.1016/j.cesys.2021.100028
[32] ØSTERGAARD S, SØRENSEN J T, HOUE H. A stochastic model simulating milk fever in a dairy herd. Preventive Veterinary Medicine, 2003, 58(3/4): 125-143. doi:10.1016/S0167-5877(03)00049-7.
doi: 10.1016/S0167-5877(03)00049-7
[33] SJAUNJA L O, BAEVRE L, JUNKKARINEN L, PEDERSEN J. A Nordic proposal for an energy corrected milk (ECM) formula. Paris:27th Session International Committee for Recording and Productivity of Milk Animals. Performance Recording of Animals-State of the Art, 1990, EAAP Publication 156-157.
[34] 杨奎花, 刘娜娜, 王锡波, 马永仁. 牛群结构模型的建立及不同因素对奶牛生产经济效益的影响. 中国奶牛, 2014(15): 37-41.
YANG K H, LIU N N, WANG X B, MA Y R. Establishment of the herd structural model and the effect of different factors on the economic benefits of dairy cows production. China Dairy Cattle, 2014(15): 37-41. (in Chinese)
[35] 廉德平, 黄兰兰, 杨景丽, 黄林林, 葛玉华. 规模化奶牛场的牛群结构及周转计划. 中国草食动物, 2005, 25(5): 55-56.
LIAN D P, HUANG L L, YANG J L, HUANG L L, GE Y H. Cattle structure and turnover plan of large-scale dairy farm. China Herbivore, 2005, 25(5): 55-56. (in Chinese)
[36] 郭军, 杨月欣. 食物能量换算系数的现状. 国外医学(卫生学分册), 2006(1): 28-33.
GUO J, YANG Y X. Current statution of food energy conversion coefficient. Foreign Medical Sciences (Section Hygiene), 2006(1): 28-33. (in Chinese)
[37] 王刚, 穆秋玲, 张黎黎, 李元浩. 规模化奶牛场牛群结构与周转探讨. 中国奶牛, 2011(3): 57-58.
WANG G, MU Q L, ZHANG L L, LI Y H. Discussion on cattle structure and turnover in large-scale dairy farm. China Dairy Cattle, 2011(3): 57-58. (in Chinese)
[38] 付云宝. 奶牛场标准化管理手册. 北京: 中国农业出版社, 2015.
FU Y B. Handbook of Standardized Management of Dairy Farms. Beijing: China Agriculture Press, 2015. (in Chinese)
[39] 杨前平, 李晓锋, 熊琪, 索效军, 张年, 陶虎, 陈明新. 奶牛场粪污产生量及性能参数测定. 湖北农业科学, 2019, 58(24): 106-108, 119. doi:10.14088/j.cnki.issn0439-8114.2019.24.025.
doi: 10.14088/j.cnki.issn0439-8114.2019.24.025
YANG Q P, LI X F, XIONG Q, SUO X J, ZHANG N, TAO H, CHEN M X. Determination of feces production and performance parameters in dairy farm. Hubei Agricultural Sciences, 2019, 58(24): 106-108, 119. doi:10.14088/j.cnki.issn0439-8114.2019.24.025. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2019.24.025
[40] 中国农业科学院农业环境与可持续发展研究所, 环境保护部南京科学研究所. 第一次全国污染源普查畜禽养殖业源产排污系数手册. 北京: 农业部科技教育司, 2009.
Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection. First National Pollution Census Bulletin of China. Beijing: Department of Science and Technology Education, Ministry of Agriculture, 2009. (in Chinese)
[41] 吴宏达, 王嘉博, 亓美玉, 杨洁, 赵晓川, 孙芳. 奶公犊肉用性能及肉质变化规律分析. 东北农业大学学报, 2014, 45(8): 55-64. doi:10.19720/j.cnki.issn.1005-9369.2014.08.009.
doi: 10.19720/j.cnki.issn.1005-9369.2014.08.009
WU H D, WANG J B, QI M Y, YANG J, ZHAO X C, SUN F. Analysis of beef performance and quality changes of dairy bull calves. Journal of Northeast Agricultural University, 2014, 45(8): 55-64. doi:10.19720/j.cnki.issn.1005-9369.2014.08.009. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2014.08.009
[42] 黄文明, 张勇, 郭海明, 叶均安. 荷斯坦后备奶牛生长发育规律的研究进展. 畜牧与兽医, 2016, 48(5): 131-135.
HUANG W M, ZHANG Y, GUO H M, YE J A. Research progress on growth and development law of Holstein reserve cows. Animal Husbandry & Veterinary Medicine, 2016, 48(5): 131-135. (in Chinese)
[43] 岳康宁, 李秋凤, 曹玉凤, 吴磊, 于春起, 杜柳柳, 王晓玲, 高艳霞, 李建国. 不同能量水平日粮对淘汰荷斯坦育成母牛生长性能和屠宰性能的影响. 中国畜牧兽医, 2018, 45(2): 392-399. doi:10.16431/j.cnki.1671-7236.2018.02.013.
doi: 10.16431/j.cnki.1671-7236.2018.02.013
YUE K N, LI Q F, CAO Y F, WU L, YU C Q, DU L L, WANG X L, GAO Y X, LI J G. Influence of different dietary energy levels on growth performance and slaughter performance of culling Holstein heifers. China Animal Husbandry & Veterinary Medicine, 2018, 45(2): 392-399. doi:10.16431/j.cnki.1671-7236.2018.02.013. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2018.02.013
[44] 岳康宁. 日粮能量水平对淘汰荷斯坦母牛育肥性能的影响及机理研究[D]. 保定: 河北农业大学, 2018.
YUE K N. Influence of dietary energy levels on fattening performance and mechanism of culling Holstein cows[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese)
[45] 胡东伟, 孙芳, 吴民, 苗树君, 王嘉厚, 李红宇. 奶公牛犊屠宰试验及肉品质研究. 中国牛业科学, 2011, 37(4): 10-14, 29.
HU D W, SUN F, WU M, MIAO S J, WANG J H, LI H Y. Slaughter test and study on the beef meat quality of dairy bull calves. China Cattle Science, 2011, 37(4): 10-14, 29. (in Chinese)
[46] 张美琦, 李妍, 李树静, 高艳霞, 李建国, 曹玉凤, 李秋凤. 饲粮能量水平对13-18月龄荷斯坦阉牛生产性能和屠宰指标的影响. 畜牧兽医学报, 2020, 51(6): 1295-1305.
ZHANG M Q, LI Y, LI S J, GAO Y X, LI J G, CAO Y F, LI Q F. Effects of dietary energy level on production performance and slaughter indicators of 13-18 months old Holstein steers. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(6): 1295-1305. (in Chinese)
[47] 李秋凤, 李春芳, 曹玉凤, 李建国, 殷元虎, 李伟. 不同营养水平对淘汰荷斯坦奶牛消化代谢、肉品质的影响. 草业学报, 2014, 23(6): 126-135.
LI Q F, LI C F, CAO Y F, LI J G, YIN Y H, LI W. Influence of different nutrition levels on the digestion metabolism and beef quality of Holstein culling cows. Acta Prataculturae Sinica, 2014, 23(6): 126-135. (in Chinese)
[48] MA Y F, HOU Y, DONG P B, VELTHOF G L, LONG W T, MA L, MA W Q, JIANG R F, OENEMA O. Cooperation between specialized livestock and crop farms can reduce environmental footprints and increase net profits in livestock production. Journal of Environmental Management, 2022, 302: 113960. doi:10.1016/j.jenvman.2021.113960.
doi: 10.1016/j.jenvman.2021.113960
[49] WU X H, WU F Q, TONG X G, WU J, SUN L, PENG X Y. Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: analysis of the ecological recycle of wastes. Resources, Conservation and Recycling, 2015, 96: 40-50. doi:10.1016/j.resconrec.2015.01.010.
doi: 10.1016/j.resconrec.2015.01.010
[50] FAN W G, DONG X B, WEI H J, WENG B Q, LIANG L, XU Z H, WANG X C, WU F L, CHEN Z D, JIN Y, SONG C Q. Is it true that the longer the extended industrial chain, the better the circular agriculture? A case study of circular agriculture industry company in Fuqing, Fujian. Journal of Cleaner Production, 2018, 189: 718-728. doi:10.1016/j.jclepro.2018.04.119.
doi: 10.1016/j.jclepro.2018.04.119
[51] VIGNE M, PEYRAUD J L, LECOMTE P, CORSON M S, WILFART A. Emergy evaluation of contrasting dairy systems at multiple levels. Journal of Environmental Management, 2013, 129: 44-53. doi:10.1016/j.jenvman.2013.05.015.
doi: 10.1016/j.jenvman.2013.05.015 pmid: 23792889
[52] YAN Z G, LI W, YAN T H, CHANG S H, HOU F J. Evaluation of energy balances and greenhouse gas emissions from different agricultural production systems in Minqin Oasis, China. PeerJ, 2019, 7: e6890. doi:10.7717/peerj.6890.
doi: 10.7717/peerj.6890
[53] HUANG Y W, REN W, WANG L X, HUI D F, GROVE J H, YANG X J, TAO B, GOFF B. Greenhouse gas emissions and crop yield in no-tillage systems: a meta-analysis. Agriculture, Ecosystems & Environment, 2018, 268: 144-153. doi:10.1016/j.agee.2018.09.002.
doi: 10.1016/j.agee.2018.09.002
[54] ALSKAF K, MOONEY S J, SPARKES D L, WILSON P, SJÖGERSTEN S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil and Tillage Research, 2021, 206: 104803. doi:10.1016/j.still.2020.104803.
doi: 10.1016/j.still.2020.104803
[55] TAN Y C, WU D, BOL R, WU W L, MENG F Q. Conservation farming practices in winter wheat-summer maize cropping reduce GHG emissions and maintain high yields. Agriculture, Ecosystems & Environment, 2019, 272: 266-275. doi:10.1016/j.agee.2018.12.001.
doi: 10.1016/j.agee.2018.12.001
[56] ALMEIDA A K, HEGARTY R S, COWIE A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Animal Nutrition, 2021, 7(4): 1219-1230. doi:10.1016/j.aninu.2021.09.005.
doi: 10.1016/j.aninu.2021.09.005 pmid: 34754963
[57] DE SOUZA CONGIO G F, BANNINK A, MAYORGA MOGOLLÓN O. LEnteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. Journal of Cleaner Production, 2021, 312: 127693. doi:10.1016/j.jclepro.2021.127693.
doi: 10.1016/j.jclepro.2021.127693
[58] HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Global Change Biology, 2015, 21(3): 1293-1312. doi:10.1111/gcb.12767.
doi: 10.1111/gcb.12767 pmid: 25330119
[59] SOUSSANA J F, LEMAIRE G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 2014, 190: 9-17. doi:10.1016/j.agee.2013.10.012.
doi: 10.1016/j.agee.2013.10.012
[60] SALTON J C, MERCANTE F M, TOMAZI M, ZANATTA J A, CONCENÇO G, SILVA W M, RETORE M. Integrated crop-livestock system in tropical Brazil: toward a sustainable production system. Agriculture, Ecosystems & Environment, 2014, 190: 70-79. doi:10.1016/j.agee.2013.09.023.
doi: 10.1016/j.agee.2013.09.023
[61] REGAN J T, MARTON S, BARRANTES O, RUANE E, HANEGRAAF M, BERLAND J, KOREVAAR H, PELLERIN S, NESME T. Does the recoupling of dairy and crop production via cooperation between farms generate environmental benefits? A case-study approach in Europe. European Journal of Agronomy, 2017, 82: 342-356. doi:10.1016/j.eja.2016.08.005.
doi: 10.1016/j.eja.2016.08.005
[62] BREWER K M, GAUDIN A C M. Potential of crop-livestock integration to enhance carbon sequestration and agroecosystem functioning in semi-arid croplands. Soil Biology and Biochemistry, 2020, 149: 107936. doi:10.1016/j.soilbio.2020.107936.
doi: 10.1016/j.soilbio.2020.107936
[1] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[2] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[3] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[4] LIU XinChao,WANG LuLu,WU RuQun,XIN XiaoPing,SUN HaiLian,JIANG MingHong,LI XiaoShuang,WANG Miao,LIU Yun,SHAO ChangLiang. LCA-Based Assessment of Hulunber Ecological Grassland Technology Integration Demonstration [J]. Scientia Agricultura Sinica, 2020, 53(13): 2703-2714.
[5] JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry [J]. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645.
[6] LIU Song, WANG XiaoQin, HU JiPing, LI Qiang, CUI LiLi, DUAN XueQin, GUO Liang. Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province [J]. Scientia Agricultura Sinica, 2018, 51(3): 556-565.
[7] WANG Zhan-biao, WANG Meng, CHEN Fu. Carbon Footprint Analysis of Crop Production in North China Plain [J]. Scientia Agricultura Sinica, 2015, 48(1): 83-92.
[8] HUANG Wen-qiang, DONG Hong-min, ZHU Zhi-ping, LIU Chong, TAO Xiu-ping, WANG Yue. Research Progress and Analysis of Carbon Footprint of Livestock Products [J]. Scientia Agricultura Sinica, 2015, 48(1): 93-111.
Full text



No Suggested Reading articles found!