Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 314-332.doi: 10.3864/j.issn.0578-1752.2023.02.009
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
CHEN XiaoWei(),WANG XiaoLong(
)
[1] |
MATUŠTÍK J, KOČÍ V. What is a footprint? A conceptual analysis of environmental footprint indicators. Journal of Cleaner Production, 2021, 285: 124833. doi:10.1016/j.jclepro.2020.124833.
doi: 10.1016/j.jclepro.2020.124833 |
[2] |
ESTEVES E M M, ESTEVES V P P, BUNGENSTAB D J, DE QUEIROZ FERNANDES ARAÚJO O, MORGADO C D R V. Greenhouse gas emissions related to biodiesel from traditional soybean farming compared to integrated crop-livestock systems. Journal of Cleaner Production, 2018, 179: 81-92. doi:10.1016/j.jclepro.2017.12.262.
doi: 10.1016/j.jclepro.2017.12.262 |
[3] |
ORTIZ-GONZALO D, VAAST P, OELOFSE M, DE NEERGAARD A, ALBRECHT A, ROSENSTOCK T S. Farm-scale greenhouse gas balances, hotspots and uncertainties in smallholder crop-livestock systems in Central Kenya. Agriculture, Ecosystems & Environment, 2017, 248: 58-70. doi:10.1016/j.agee.2017.06.002.
doi: 10.1016/j.agee.2017.06.002 |
[4] |
PARAJULI R, DALGAARD T, BIRKVED M. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of the Total Environment, 2018, 619/620: 127-143. doi:10.1016/j.scitotenv.2017.11.082.
doi: 10.1016/j.scitotenv.2017.11.082 |
[5] |
DE FIGUEIREDO E B, JAYASUNDARA S, DE OLIVEIRA BORDONAL R, BERCHIELLI T T, REIS R A, WAGNER-RIDDLE C, LA SCALA JR N. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, 2017, 142: 420-431. doi:10.1016/j.jclepro.2016.03.132.
doi: 10.1016/j.jclepro.2016.03.132 |
[6] |
BULLER L S, BERGIER I, ORTEGA E, MORAES A, BAYMA-SILVA G, ZANETTI M R. Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: case study assessment in the Pantanal savanna highland, Brazil. Agricultural Systems, 2015, 137: 206-219. doi:10.1016/j.agsy.2014.11.004.
doi: 10.1016/j.agsy.2014.11.004 |
[7] |
LI Z J, SUI P, WANG X L, YANG X L, LONG P, CUI J X, YAN L L, CHEN Y Q. Comparison of net GHG emissions between separated system and crop-swine integrated system in the North China Plain. Journal of Cleaner Production, 2017, 149: 653-664. doi:10.1016/j.jclepro.2017.02.113.
doi: 10.1016/j.jclepro.2017.02.113 |
[8] |
MALCOLM G M, CAMARGO G G T, ISHLER V A, RICHARD T L, KARSTEN H D. Energy and greenhouse gas analysis of northeast US dairy cropping systems. Agriculture, Ecosystems & Environment, 2015, 199: 407-417. doi:10.1016/j.agee.2014.10.007.
doi: 10.1016/j.agee.2014.10.007 |
[9] |
DE SOUZA FILHO W, DE ALBUQUERQUE NUNES P A, BARRO R S, KUNRATH T R, DE ALMEIDA G M, GENRO T C M, BAYER C, DE FACCIO CARVALHO P C. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, 2019, 213: 968-975. doi:10.1016/j.jclepro.2018.12.245.
doi: 10.1016/j.jclepro.2018.12.245 |
[10] |
HUANG X L, SHI B Y, WANG S, YIN C B, FANG L N. Mitigating environmental impacts of milk production via integrated maize silage planting and dairy cow breeding system: a case study in China. Journal of Cleaner Production, 2021, 309: 127343. doi:10.1016/j.jclepro.2021.127343.
doi: 10.1016/j.jclepro.2021.127343 |
[11] |
VEYSSET P, LHERM M, BÉBIN D, ROULENC M. Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives. Animal, 2014, 8(8): 1218-1228. doi:10.1017/S1751731114000378.
doi: 10.1017/S1751731114000378 pmid: 24589421 |
[12] |
VEYSSET P, LHERM M, BÉBIN D. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: model-based analysis and forecasts. Agricultural Systems, 2010, 103(1): 41-50. doi:10.1016/j.agsy.2009.08.005.
doi: 10.1016/j.agsy.2009.08.005 |
[13] |
RODRÍGUEZ-ORTEGA T, BERNUÉS A, OLAIZOLA A M, BROWN M T. Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 2017, 144: 171-179. doi:10.1016/j.jclepro.2016.12.089.
doi: 10.1016/j.jclepro.2016.12.089 |
[14] | Environmental management-Life cycle assessment-Principles and framework: ISO 14040: 2006 Geneva, Switzerland: International Organization for Standardization, 2006. |
[15] | IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Rome: Intergovernmental Panel on Climate Change, 2019. |
[16] | MYHRE G, SHINDELL D T, PONGRATZ J. Anthropogenic and Natural Radiative Forcing Climate Change 2013:The Physical Science Basis. Contribution of Working I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014. |
[17] |
陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算. 生态学报, 2015, 35(19): 6371-6383. doi:10.5846/stxb201402210304.
doi: 10.5846/stxb201402210304 |
CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China's nitrogen, phosphate, and potash fertilizers. Acta Ecologica Sinica, 2015, 35(19): 6371-6383. doi:10.5846/stxb201402210304. (in Chinese)
doi: 10.5846/stxb201402210304 |
|
[18] |
张国, 逯非, 黄志刚, 陈舜, 王效科. 我国主粮作物的化学农药用量及其温室气体排放估算. 应用生态学报, 2016, 27(9): 2875-2883. doi:10.13287/j.1001-9332.201609.031.
doi: 10.13287/j.1001-9332.201609.031 |
ZHANG G, LU F, HUANG Z G, CHEN S, WANG X K. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China. Chinese Journal of Applied Ecology, 2016, 27(9): 2875-2883. doi:10.13287/j.1001-9332.201609.031. (in Chinese)
doi: 10.13287/j.1001-9332.201609.031 |
|
[19] | 刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率. 中国农业资源与区划, 2013, 34(6): 1-11. |
LIU X H, XU W X, LI Z J, CHU Q Q, YANG X L, CHEN F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1-11. (in Chinese) | |
[20] | 中华人民共和国国家统计局. 中国第三产业统计年鉴-2017. 北京: 中国统计出版社, 2017. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook of the Tertiary Industry-2017. Beijing: China Statistics Press, 2017. (in Chinese) | |
[21] | 国家发展和改革委员会. 2011 年和2012 年中国区域电网平均二氧化碳排放因子. 北京: 国家发展和改革委员会应对气候变化司组织国家应对气候变化战略研究和国际合作中心研究, 2012. |
NATIONAL DEVELOPMENT & REFORM COMMISSION OF CHINA. Emission factors of regional power grids in China in 2011 and 2012 on average. Beijing: National Development and Reform Commission Department of Climate Change Response organized the National Center for Strategic Research and International Cooperation on Climate Change Research, 2012. | |
[22] | 中华人民共和国国家统计局. 中国环境统计年鉴-2020. 北京: 中国统计出版社, 2021. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook on Environment-2020. Beijing: China Statistics Press, 2021. (in Chinese) | |
[23] |
FRIEDLINGSTEIN P, JONES M W, O'SULLIVAN M, ANDREW R M, HAUCK J, PETERS G P, PETERS W, PONGRATZ J, SITCH S, LE QUÉRÉ C, BAKKER D C E, CANADELL J G, CIAIS P, JACKSON R B, ANTHONI P, BARBERO L, BASTOS A, BASTRIKOV V, BECKER M, BOPP L, BUITENHUIS E, CHANDRA N, CHEVALLIER F, CHINI L P, CURRIE K I, FEELY R A, GEHLEN M, GILFILLAN D, GKRITZALIS T, GOLL D S, et al. Global carbon budget 2019. Earth System Science Data, 2019, 11(4): 1783-1838. doi:10.5194/essd-11-1783-2019.
doi: 10.5194/essd-11-1783-2019 |
[24] | IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Rome: Intergovernmental Panel on Climate Change, 2006. |
[25] | 王晓玉, 薛帅, 谢光辉. 大田作物秸秆量评估中秸秆系数取值研究. 中国农业大学学报, 2012, 17(1): 1-8. |
WANG X Y, XUE S, XIE G H. Value-taking for residue factor as a parameter to assess the field residue of field crops. Journal of China Agricultural University, 2012, 17(1): 1-8. (in Chinese) | |
[26] |
丛建辉, 朱婧, 陈楠, 刘学敏. 中国城市能源消费碳排放核算方法比较及案例分析: 基于“排放因子”与“活动水平数据”选取的视角. 城市问题, 2014(3): 5-11. doi:10.13239/j.bjsshkxy.cswt.140302.
doi: 10.13239/j.bjsshkxy.cswt.140302 |
CONG J H, ZHU J, CHEN N, LIU X M. Comparison and cases analysis to the accounting methods for carbon emission of China's urban energy consumption: from the perspectives of emission factors and activity-level data. Urban Problems, 2014(3): 5-11. doi:10.13239/j.bjsshkxy.cswt.140302. (in Chinese)
doi: 10.13239/j.bjsshkxy.cswt.140302 |
|
[27] | 国家发展改革委应对气候变化司. 省级温室气体清单编制指南. 2011. |
Department of Climate Change, National Development & Reform Commission of China. Guidelines for the preparation of provincial greenhouse gas inventories. 2011. (in Chinese) | |
[28] | 陈丽能, 林鸿, 徐展峰, 王飞. 农村运输机械耗油量数学模型的研究. 浙江大学学报(农业与生命科学版), 2003, 29(2): 185-187. |
CHEN L N, LIN H, XU Z F, WANG F. Research on the math models of the combustion oil consumption of the farm transport machineries. Journal of Zhejiang University (Agriculture and Life Sciences), 2003, 29(2): 185-187. (in Chinese) | |
[29] | 周元清. 中国规模化生猪养殖碳足迹评估方法与案例研究[D]. 北京: 中国农业科学院, 2018. |
ZHOU Y Q. Carbon footprint assessment method and case study of intensive pig production system in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[30] | VASEASHTA A. Life Cycle Analysis of Nanoparticles - Risk, Assessment, and Sustainability. Pennsylvania: DEStech Publications, Inc, 2015. |
[31] |
WILFART A, GAC A, SALAÜN Y, AUBIN J, ESPAGNOL S. Allocation in the LCA of meat products: is agreement possible? Cleaner Environmental Systems, 2021, 2: 100028. doi:10.1016/j.cesys.2021.100028.
doi: 10.1016/j.cesys.2021.100028 |
[32] |
ØSTERGAARD S, SØRENSEN J T, HOUE H. A stochastic model simulating milk fever in a dairy herd. Preventive Veterinary Medicine, 2003, 58(3/4): 125-143. doi:10.1016/S0167-5877(03)00049-7.
doi: 10.1016/S0167-5877(03)00049-7 |
[33] | SJAUNJA L O, BAEVRE L, JUNKKARINEN L, PEDERSEN J. A Nordic proposal for an energy corrected milk (ECM) formula. Paris:27th Session International Committee for Recording and Productivity of Milk Animals. Performance Recording of Animals-State of the Art, 1990, EAAP Publication 156-157. |
[34] | 杨奎花, 刘娜娜, 王锡波, 马永仁. 牛群结构模型的建立及不同因素对奶牛生产经济效益的影响. 中国奶牛, 2014(15): 37-41. |
YANG K H, LIU N N, WANG X B, MA Y R. Establishment of the herd structural model and the effect of different factors on the economic benefits of dairy cows production. China Dairy Cattle, 2014(15): 37-41. (in Chinese) | |
[35] | 廉德平, 黄兰兰, 杨景丽, 黄林林, 葛玉华. 规模化奶牛场的牛群结构及周转计划. 中国草食动物, 2005, 25(5): 55-56. |
LIAN D P, HUANG L L, YANG J L, HUANG L L, GE Y H. Cattle structure and turnover plan of large-scale dairy farm. China Herbivore, 2005, 25(5): 55-56. (in Chinese) | |
[36] | 郭军, 杨月欣. 食物能量换算系数的现状. 国外医学(卫生学分册), 2006(1): 28-33. |
GUO J, YANG Y X. Current statution of food energy conversion coefficient. Foreign Medical Sciences (Section Hygiene), 2006(1): 28-33. (in Chinese) | |
[37] | 王刚, 穆秋玲, 张黎黎, 李元浩. 规模化奶牛场牛群结构与周转探讨. 中国奶牛, 2011(3): 57-58. |
WANG G, MU Q L, ZHANG L L, LI Y H. Discussion on cattle structure and turnover in large-scale dairy farm. China Dairy Cattle, 2011(3): 57-58. (in Chinese) | |
[38] | 付云宝. 奶牛场标准化管理手册. 北京: 中国农业出版社, 2015. |
FU Y B. Handbook of Standardized Management of Dairy Farms. Beijing: China Agriculture Press, 2015. (in Chinese) | |
[39] |
杨前平, 李晓锋, 熊琪, 索效军, 张年, 陶虎, 陈明新. 奶牛场粪污产生量及性能参数测定. 湖北农业科学, 2019, 58(24): 106-108, 119. doi:10.14088/j.cnki.issn0439-8114.2019.24.025.
doi: 10.14088/j.cnki.issn0439-8114.2019.24.025 |
YANG Q P, LI X F, XIONG Q, SUO X J, ZHANG N, TAO H, CHEN M X. Determination of feces production and performance parameters in dairy farm. Hubei Agricultural Sciences, 2019, 58(24): 106-108, 119. doi:10.14088/j.cnki.issn0439-8114.2019.24.025. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2019.24.025 |
|
[40] | 中国农业科学院农业环境与可持续发展研究所, 环境保护部南京科学研究所. 第一次全国污染源普查畜禽养殖业源产排污系数手册. 北京: 农业部科技教育司, 2009. |
Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection. First National Pollution Census Bulletin of China. Beijing: Department of Science and Technology Education, Ministry of Agriculture, 2009. (in Chinese) | |
[41] |
吴宏达, 王嘉博, 亓美玉, 杨洁, 赵晓川, 孙芳. 奶公犊肉用性能及肉质变化规律分析. 东北农业大学学报, 2014, 45(8): 55-64. doi:10.19720/j.cnki.issn.1005-9369.2014.08.009.
doi: 10.19720/j.cnki.issn.1005-9369.2014.08.009 |
WU H D, WANG J B, QI M Y, YANG J, ZHAO X C, SUN F. Analysis of beef performance and quality changes of dairy bull calves. Journal of Northeast Agricultural University, 2014, 45(8): 55-64. doi:10.19720/j.cnki.issn.1005-9369.2014.08.009. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2014.08.009 |
|
[42] | 黄文明, 张勇, 郭海明, 叶均安. 荷斯坦后备奶牛生长发育规律的研究进展. 畜牧与兽医, 2016, 48(5): 131-135. |
HUANG W M, ZHANG Y, GUO H M, YE J A. Research progress on growth and development law of Holstein reserve cows. Animal Husbandry & Veterinary Medicine, 2016, 48(5): 131-135. (in Chinese) | |
[43] |
岳康宁, 李秋凤, 曹玉凤, 吴磊, 于春起, 杜柳柳, 王晓玲, 高艳霞, 李建国. 不同能量水平日粮对淘汰荷斯坦育成母牛生长性能和屠宰性能的影响. 中国畜牧兽医, 2018, 45(2): 392-399. doi:10.16431/j.cnki.1671-7236.2018.02.013.
doi: 10.16431/j.cnki.1671-7236.2018.02.013 |
YUE K N, LI Q F, CAO Y F, WU L, YU C Q, DU L L, WANG X L, GAO Y X, LI J G. Influence of different dietary energy levels on growth performance and slaughter performance of culling Holstein heifers. China Animal Husbandry & Veterinary Medicine, 2018, 45(2): 392-399. doi:10.16431/j.cnki.1671-7236.2018.02.013. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2018.02.013 |
|
[44] | 岳康宁. 日粮能量水平对淘汰荷斯坦母牛育肥性能的影响及机理研究[D]. 保定: 河北农业大学, 2018. |
YUE K N. Influence of dietary energy levels on fattening performance and mechanism of culling Holstein cows[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese) | |
[45] | 胡东伟, 孙芳, 吴民, 苗树君, 王嘉厚, 李红宇. 奶公牛犊屠宰试验及肉品质研究. 中国牛业科学, 2011, 37(4): 10-14, 29. |
HU D W, SUN F, WU M, MIAO S J, WANG J H, LI H Y. Slaughter test and study on the beef meat quality of dairy bull calves. China Cattle Science, 2011, 37(4): 10-14, 29. (in Chinese) | |
[46] | 张美琦, 李妍, 李树静, 高艳霞, 李建国, 曹玉凤, 李秋凤. 饲粮能量水平对13-18月龄荷斯坦阉牛生产性能和屠宰指标的影响. 畜牧兽医学报, 2020, 51(6): 1295-1305. |
ZHANG M Q, LI Y, LI S J, GAO Y X, LI J G, CAO Y F, LI Q F. Effects of dietary energy level on production performance and slaughter indicators of 13-18 months old Holstein steers. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(6): 1295-1305. (in Chinese) | |
[47] | 李秋凤, 李春芳, 曹玉凤, 李建国, 殷元虎, 李伟. 不同营养水平对淘汰荷斯坦奶牛消化代谢、肉品质的影响. 草业学报, 2014, 23(6): 126-135. |
LI Q F, LI C F, CAO Y F, LI J G, YIN Y H, LI W. Influence of different nutrition levels on the digestion metabolism and beef quality of Holstein culling cows. Acta Prataculturae Sinica, 2014, 23(6): 126-135. (in Chinese) | |
[48] |
MA Y F, HOU Y, DONG P B, VELTHOF G L, LONG W T, MA L, MA W Q, JIANG R F, OENEMA O. Cooperation between specialized livestock and crop farms can reduce environmental footprints and increase net profits in livestock production. Journal of Environmental Management, 2022, 302: 113960. doi:10.1016/j.jenvman.2021.113960.
doi: 10.1016/j.jenvman.2021.113960 |
[49] |
WU X H, WU F Q, TONG X G, WU J, SUN L, PENG X Y. Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: analysis of the ecological recycle of wastes. Resources, Conservation and Recycling, 2015, 96: 40-50. doi:10.1016/j.resconrec.2015.01.010.
doi: 10.1016/j.resconrec.2015.01.010 |
[50] |
FAN W G, DONG X B, WEI H J, WENG B Q, LIANG L, XU Z H, WANG X C, WU F L, CHEN Z D, JIN Y, SONG C Q. Is it true that the longer the extended industrial chain, the better the circular agriculture? A case study of circular agriculture industry company in Fuqing, Fujian. Journal of Cleaner Production, 2018, 189: 718-728. doi:10.1016/j.jclepro.2018.04.119.
doi: 10.1016/j.jclepro.2018.04.119 |
[51] |
VIGNE M, PEYRAUD J L, LECOMTE P, CORSON M S, WILFART A. Emergy evaluation of contrasting dairy systems at multiple levels. Journal of Environmental Management, 2013, 129: 44-53. doi:10.1016/j.jenvman.2013.05.015.
doi: 10.1016/j.jenvman.2013.05.015 pmid: 23792889 |
[52] |
YAN Z G, LI W, YAN T H, CHANG S H, HOU F J. Evaluation of energy balances and greenhouse gas emissions from different agricultural production systems in Minqin Oasis, China. PeerJ, 2019, 7: e6890. doi:10.7717/peerj.6890.
doi: 10.7717/peerj.6890 |
[53] |
HUANG Y W, REN W, WANG L X, HUI D F, GROVE J H, YANG X J, TAO B, GOFF B. Greenhouse gas emissions and crop yield in no-tillage systems: a meta-analysis. Agriculture, Ecosystems & Environment, 2018, 268: 144-153. doi:10.1016/j.agee.2018.09.002.
doi: 10.1016/j.agee.2018.09.002 |
[54] |
ALSKAF K, MOONEY S J, SPARKES D L, WILSON P, SJÖGERSTEN S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil and Tillage Research, 2021, 206: 104803. doi:10.1016/j.still.2020.104803.
doi: 10.1016/j.still.2020.104803 |
[55] |
TAN Y C, WU D, BOL R, WU W L, MENG F Q. Conservation farming practices in winter wheat-summer maize cropping reduce GHG emissions and maintain high yields. Agriculture, Ecosystems & Environment, 2019, 272: 266-275. doi:10.1016/j.agee.2018.12.001.
doi: 10.1016/j.agee.2018.12.001 |
[56] |
ALMEIDA A K, HEGARTY R S, COWIE A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Animal Nutrition, 2021, 7(4): 1219-1230. doi:10.1016/j.aninu.2021.09.005.
doi: 10.1016/j.aninu.2021.09.005 pmid: 34754963 |
[57] |
DE SOUZA CONGIO G F, BANNINK A, MAYORGA MOGOLLÓN O. LEnteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. Journal of Cleaner Production, 2021, 312: 127693. doi:10.1016/j.jclepro.2021.127693.
doi: 10.1016/j.jclepro.2021.127693 |
[58] |
HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Global Change Biology, 2015, 21(3): 1293-1312. doi:10.1111/gcb.12767.
doi: 10.1111/gcb.12767 pmid: 25330119 |
[59] |
SOUSSANA J F, LEMAIRE G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 2014, 190: 9-17. doi:10.1016/j.agee.2013.10.012.
doi: 10.1016/j.agee.2013.10.012 |
[60] |
SALTON J C, MERCANTE F M, TOMAZI M, ZANATTA J A, CONCENÇO G, SILVA W M, RETORE M. Integrated crop-livestock system in tropical Brazil: toward a sustainable production system. Agriculture, Ecosystems & Environment, 2014, 190: 70-79. doi:10.1016/j.agee.2013.09.023.
doi: 10.1016/j.agee.2013.09.023 |
[61] |
REGAN J T, MARTON S, BARRANTES O, RUANE E, HANEGRAAF M, BERLAND J, KOREVAAR H, PELLERIN S, NESME T. Does the recoupling of dairy and crop production via cooperation between farms generate environmental benefits? A case-study approach in Europe. European Journal of Agronomy, 2017, 82: 342-356. doi:10.1016/j.eja.2016.08.005.
doi: 10.1016/j.eja.2016.08.005 |
[62] |
BREWER K M, GAUDIN A C M. Potential of crop-livestock integration to enhance carbon sequestration and agroecosystem functioning in semi-arid croplands. Soil Biology and Biochemistry, 2020, 149: 107936. doi:10.1016/j.soilbio.2020.107936.
doi: 10.1016/j.soilbio.2020.107936 |
[1] | LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961. |
[2] | QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976. |
[3] | CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184. |
[4] | LIU XinChao,WANG LuLu,WU RuQun,XIN XiaoPing,SUN HaiLian,JIANG MingHong,LI XiaoShuang,WANG Miao,LIU Yun,SHAO ChangLiang. LCA-Based Assessment of Hulunber Ecological Grassland Technology Integration Demonstration [J]. Scientia Agricultura Sinica, 2020, 53(13): 2703-2714. |
[5] | JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry [J]. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645. |
[6] | LIU Song, WANG XiaoQin, HU JiPing, LI Qiang, CUI LiLi, DUAN XueQin, GUO Liang. Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province [J]. Scientia Agricultura Sinica, 2018, 51(3): 556-565. |
[7] | WANG Zhan-biao, WANG Meng, CHEN Fu. Carbon Footprint Analysis of Crop Production in North China Plain [J]. Scientia Agricultura Sinica, 2015, 48(1): 83-92. |
[8] | HUANG Wen-qiang, DONG Hong-min, ZHU Zhi-ping, LIU Chong, TAO Xiu-ping, WANG Yue. Research Progress and Analysis of Carbon Footprint of Livestock Products [J]. Scientia Agricultura Sinica, 2015, 48(1): 93-111. |
|