Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (3): 535-555.doi: 10.3864/j.issn.0578-1752.2018.03.012

• Nutrient Management in Soil-Crop-Animal Production System • Previous Articles     Next Articles

Spatial Characteristics of Nitrogen and Phosphorus Flow in Cultivated Grassland of China

WEI ZhiBiao1,2, BAI ZhaoHai2, MA Lin2, ZHANG FuSuo1   

  1. 1College of Resources and Environmental Sciences, China Agricultural University/Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193; 2Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050021
  • Received:2017-07-31 Online:2018-02-01 Published:2018-02-01

Abstract: 【Objective】With the rapid development of animal husbandry in China and the increasing demand for forage, the adjustment of planting structure has become an inevitable trend. The objective of this study is to quantify the nitrogen (N) and phosphorus (P) spatial flow of cultivated forage, and to provide a scientific basis for increasing grassland productivity. 【Method】Taking alfalfa, ryegrass and oat grass as target forage species, the database of N and P input and output was established, the nutrient balance budgets, nutrient use efficiency and environmental emissions were quantified in cultivated grassland of China by using NUFER model. 【Result】 (1) In 2014, the total input (output) of N in alfalfa, ryegrass and oat grassland of China was 1 547, 236 and 67 Gg, respectively. The N input (output) of per unit area in alfalfa, ryegrass and oat grass grassland of China was 326, 427 and 217 kg N·hm-2, respectively. The total input (output) of P in alfalfa, ryegrass and oat grass grassland of China was 323, 44 and 16 Gg and the P input (output) of per unit area was 49, 18 and 35 kg P·hm-2, respectively. N fixation was the largest input item for alfalfa which accounted for 51% of the total N input into alfalfa grassland. N fertilizer was the largest input item for oat grass and ryegrass which accounted for 93% and 84% of the total N input into ryegrass and oat grass grassland, respectively. P fertilizer was the most important input of P in these kinds of forage. (2) In 2014, the nitrogen use efficiency (NUE) of alfalfa, ryegrass and oat grass grassland was 64%, 93% and 69%, respectively. The phosphorus use efficiency (PUE) was 28%, 77% and 34%, respectively. The NUE and pue varied greatly in different regions. (3) In 2014, the N loss of alfalfa, ryegrass and oat grass grassland per unit area was 23, 4.0 and 9.9 kg N·hm-2 and the P loss of them was 2.6, 3.8 and 2.6 kg P·hm-2, respectively. The N and P loss of alfalfa and ryegrass grassland in Southwest China was higher than that in other regions. The N and P loss of oat grass grassland in Western China was higher than that in other regions. (4) In 2014, the N and P accumulation of cultivated grassland were positive except for N accumulation in ryegrass grassland. The accumulation rate of alfalfa grassland in Western China was higher than that in Eastern China. There was no regular regional change of N and P accumulation for ryegrass grassland. The N and P accumulation rate of oat grass grassland in Tibet Plateau was higher than that in other regions. 【Conclusion】In 2014, there was a large gap of N and P input (output) for alfalfa, ryegrass and oat grass grassland in different regions of China. N fixation was the major way for alfalfa to acquire N nutrition, so alfalfa grassland management should reduce the input of N fertilizer. Oat grass and ryegrass mainly get the required nutrients by chemical fertilizer, so it should pay attention to fertilizer application for oat grass and ryegrass grassland. The NUE of target forage species was higher than 60%, but PUE was relatively low. Ryegrass grassland was deficient in N, and it is necessary to apply more nitrogen fertilizer. other cultivated grasslands had surplus of N and P in varying degrees, so the excessive application of fertilizer should be controlled.

Key words: cultivated grassland, nitrogen, phosphorus, nutrient flow, nutrient use efficiency, soil nutrient accumulation

[1]    李凌浩, 路鹏, 顾雪莹, 毛小涛, 高树琴, 张英俊. 人工草地建设原理与生产范式. 科学通报, 2016, 61(2): 193-200.
LI L H, LU P, GU X Y, MAO X T, GAO S Q, ZHANG Y J. Principles and paradigms for developing artificial pastures. Chinese Science Bulletin, 2016, 61(2): 193-200. (in Chinese)
[2]    方精云, 白永飞, 李凌浩, 蒋高明, 黄建辉, 黄振英, 张文浩, 高树琴. 我国草原牧区可持续发展的科学基础与实践. 科学通报, 2016, 61(2): 155-164.
FANG J Y, BAI Y F, LI L H, JIANG G M, HUANG J H, HUANG Z Y, ZHANG W H, GAO S Q. Scientific basis and practical ways for sustainable development of China’s pasture regions. Chinese Science bulletin, 2016, 61(2): 155-164. (in Chinese)
[3]    沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154.
        SHEN H H, ZHU Y K, ZHAO X, GENG X Q, GAO S Q, FANG J Y. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. (in Chinese)
[4]    全国畜牧总站. 中国草业统计. http://www.digitalgrss.cn, 2015.
        National Animal Husbandry Station. China Grass Industry Statistics. http://www.digitalgrss.cn, 2015. (in Chinese)
[5]    中共中央国务院. 中央一号文件. http://www.farmer.com.cn/uzt/ ywj/gea/201601/t20160128_1176612_2.htm, 2016.
        The State Council of China. The central first document. http://www. farmer.com.cn/uzt/ywj/gea/201601/t20160128_1176612_2.htm, 2016. (in Chinese)
[6]    洪绂曾, 王元素. 中国南方人工草地畜牧业回顾与思考. 中国草地学报, 2006, 28(2): 71-75, 78.
        HONG F Z, WANG Y S. The strategical thinking of grassland agriculture in Southern China. Chinese Journal of Grassland, 2006, 28(2): 71-75, 78. (in Chinese)
[7]    张新时, 唐海萍, 董孝斌, 李波, 黄永梅, 龚吉蕊. 中国草原的困境及其转型. 科学通报, 2016, 61(2): 165-177.
        ZHANG X S, TANG H P, DONG X B, LI B, HUANG Y M, GONG J R. The dilemma of steppe and it’s transformation in China. Chinese Science Bulletin, 2016, 61(2): 165-177. (in Chinese)
[8]    O’MARA F P. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110(6): 1263-1270.
[9]    国家牧草产业技术体系. 中国栽培草地. 北京: 科学出版社, 2015.
National Technical System of Grass Industry. Chinese cultivated grassland. Beijing: Science Press, 2015. (in Chinese)
[10]   RIVERO D S, VILLAMIL A M S, MAHECHA O M, TERAN A M, RIVERO M S, NAVARRO A M S. Evaluation of the effect of two types of fertilizer on the growth, development and productivity of hydroponic green forage oat (Avena sativa L.) and ryegrass (Lolium multiflorum Lam.) as a biomass source. Chemical Engineering Transactions, 2016, 50: 385-390.
[11]   李小坤, 鲁剑巍, 刘晓伟, 刘威, 潘福霞, 魏云霞. 配方施肥对一年生黑麦草产草量及品质的影响. 草业科学, 2011, 28(9): 1666-1670.
LI X K, LU J W, LIU X W, LIU W, PAN F X, WEI Y X. Effect of fertilization on the yield and forage quality of annual ryegrass. Pratacultural Science, 2011, 28(9): 1666-1670. (in Chinese)
[12]   张菁, 张于卉, 马力, 周鹏, 安渊. 播期和施肥对冬闲田紫花苜蓿生长和品质的影响. 中国草地学报, 2015, 37(6): 35-41.
ZHANG J, ZHANG Y H, MA L, ZHOU P, AN Y. Effect of sowing data and applying fertilizer on growth and quality of alfalfa in winter fallow land. Chinese Journal of Grassland, 2015, 37(6): 35-41. (in Chinese)
[13]   陶雪, 苏德荣, 寇丹, 乔阳. 西北旱区灌溉方式对苜蓿生长及水分利用率的影响. 草地学报, 2016, 24(1): 114-120.
TAO X, SU D R, KOU D, QIAO Y. Effect of irrigation methods on growth and water use efficiency of alfalfa in arid Northwest China. Acta Agrestia Sinica, 2016, 24(1): 114-120. (in Chinese)
[14]   陈萍, 沈振荣, 迟海峰, 杨东海, 谷传申, 杜婉君, 鲍举文. 不同施肥处理对紫花苜蓿产量和株高的影响. 作物杂志, 2013(1): 91-94.
        CHEN P, SHEN Z R, CHI H F, YANG D H, GU C S, DU W J, BAO J W. Effects of different fertilization on output and plant height of alfalfa.Crops, 2013(1): 91-94. (in Chinese)
[15]   肖相芬, 周川姣, 周顺利, 胡跃高, 任长忠, 郭来春, 王春龙. 燕麦氮吸收利用特性与适宜施氮量的定位研究. 中国农业科学, 2011, 44(22): 4618-4626.
        XIAO X F, ZHOU C J, ZHOU S L, HU Y G, REN C Z, GUO L C, WANG C L. Characteristics of N absorption, utilization and optimum N-fertilizer rate based on a long-term fertilization experiment of oats. Scientia Agricultura Sinica, 2011, 44(22): 4618-4626. (in Chinese)
[16] LI W X, LU J W, CHEN F, LI X K. Effect of NPK application    on yield, nutrients and water utilization under sudangrass and ryegrass rotation regime. Agricultural Sciences in China, 2010, 9(7): 1026-1034.
[17]   顾梦鹤, 王涛, 杜国祯. 施肥对高寒地区多年生人工草地生产力及稳定性的影响. 兰州大学学报(自然科学版), 2010, 46(6): 59-63.
        GU M H, WANG T, DU G Z. Effects of fertilization on productivity and stability of cultivated grassland in an alpine region. Journal of Lanzhou University (Natural Sciences), 2010, 46(6): 59-63. (in Chinese)
[18]   杨曾平, 聂军, 廖育林, 周兴, 谢坚, 鲁艳红, 纪雄辉, 吴家梅, 谢运河. 不同施肥量对稻田一年生黑麦草产量及氮磷钾吸收的影响. 中国农学通报, 2015, 31(30): 173-180.
        YANG Z P, NIE J, LIAO Y L, ZHOU X, XIE J, LU Y H, JI X H, WU J M, XIE Y H. Effect of different fertilizations on biomass yield and N, P, K absorption of annual ryegrass in rice field. Chinese Agricultural Science Bulletin, 2015, 31(30): 173-180. (in Chinese)
[19]   GU B J, JU X T, CHANG S X, GE Y, CHANG J. Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Regional Environmental Change, 2017, 17(4): 1217-1227.
[20]   ZHOU Q K, DARYANTO S, XIN Z M, LIIU Z M, LIU M H, CUI X, WANG L X. Soil phosphorus budget in global grasslands and implications for management. Journal of Arid Environments, 2017, 144: 224-235.
[21]   马林. 中国食物链氮素流动规律及调控策略[D]. 保定: 河北农业大学, 2010.
        MA L. Mechanism and regulatory strategies of nitrogen flow in food chain of China[D]. Baoding: Hebei Agricultural University, 2010. (in Chinese)
[22]   MA L, MA W Q, VELTHOF G L, WANG F H, QIN W, ZHANG F S, OENEMA O. Modeling nutrient flows in the food chain of China. Journal of Environmental Quality, 2010, 39(4): 1279-1289.
[23]   LIU X J, ZHANG Y, HAN W X, TANG A H, SHEN J L, CUI Z L, VITOUSEK P, ERISMAN J W, GOULDING K, CHRISTIE P, FANGMEIER A, ZHANG F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462.
[24]   ZHU J, WANG Q, HE N, SMITH M D, ELSER J J, DU J, YUAN G, YU G, YU Q. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1605-1616.
[25]   陈敏鹏, 陈吉宁. 中国种养系统的氮流动及其环境影响. 环境科学, 2007, 28(10): 2342-2349.
        CHEN M P, CHEN J N. Nitrogen flow in farming-feeding system and its environmental impact in China. Environmental Science, 2007, 28(10): 2342-2349. (in Chinese)
[26]   王激清, 马文奇, 江荣风, 张福锁. 中国农田生态系统氮素平衡模型的建立及其应用. 农业工程学报, 2007, 23(8): 210-215.
        WANG J Q, MA W Q, JIANG R F, ZHANG F S. Development and application of nitrogen balance model of agro-ecosystem in China. Transactions of the CSAE, 2007, 23(8): 210-215. (in Chinese)
[27]   CARLSSON G, HUSS-DANELL K. Nitrogen fixation in perennial forage legumes in the field. Plant and Soil, 2003, 253(2): 353-372.
[28]   国家牧草产业技术体系. 牧草标准化生产管理技术规范. 北京: 科学出版社, 2014.
        National Technical System of Grass Industry. Technical specification standardized production and management of forage. Beijing: Science Press, 2014. (in Chinese)
[29]   任继周, 胥刚, 李向林, 林慧龙, 唐增. 中国草业科学的发展轨迹与展望. 科学通报, 2016, 61(2): 178-192.
        REN J Z, XU G, LI X L, LIN H L, TANG Z. Trajectory and prospect of China’s prataculture. Chinese Science Bulletin, 2016, 61(2): 178-192. (in Chinese)
[30]   罗付香, 林超文, 朱永群, 姚莉, 张建华, 王谦. 氮肥用量对四川紫色丘陵区水稻氮素吸收及土壤氮素表观平衡的影响. 西南农业学报, 2016, 29(8): 1093-1097.
        LUO F X, LIN C W, ZHU Y Q, YAO L, ZHANG J H, WANG Q. Effect of nitrogen fertilizer amount on rice nitrogen uptake and soil nitrogen apparent balance of Sichuan purple hilly region. Southwest China Journal of Agricultural Sciences, 2016, 29(8): 1093-1097. (in Chinese)
[31]   VITOUSEK P M, NAYLOR R, CREWS T, DAVID M B, DRINKWATER L E, HOLLAND E, JOHNES P J, KATZENBERGER J, MARTINELLI L A, MATSON P A, NZIGUHEBA G, OJIMA D, PALM C A, ROBERTSON G P, SANCHEZ P A, TOWNSEND A R, ZHANG F S. Nutrient imbalances in agricultural development. Science, 2009, 324(5934): 1519-1520.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[8] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[10] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[11] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[12] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[13] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[14] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[15] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!