Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 129-143.doi: 10.3864/j.issn.0578-1752.2023.01.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation

ZHANG KeKun2(),CHEN KeQin2,LI WanPing2,QIAO HaoRong2,ZHANG JunXia2,LIU FengZhi1,FANG YuLin2(),WANG HaiBo1()   

  1. 1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, Liaoning
    2. College of Enology, Northwest A&F University/Heyang Viti-Viniculture Station, Yangling 712100, Shaanxi
  • Received:2022-03-21 Accepted:2022-04-15 Online:2023-01-01 Published:2023-01-17
  • Contact: YuLin FANG,HaiBo WANG;;


【Objective】The effects of different irrigation amounts on grape berry quality, aroma component accumulation, and the expression level of aroma compounds biosynthetic genes were studied to determine the relationship between irrigation patterns and sensory quality of table grapes, so as to provide a reference for choosing the optimal irrigation amount in root-restricted cultivation. 【Method】The table grape cultivar Shine Muscat was used as the test material, the control group (CK), the mild water deficit group (DI-1), and the severe water deficit group (DI-2) were set up to systematically compare the effect of different irrigation amounts on the morphological indicators, appearance color indicators, aroma components, and expression levels of terpene biosynthetic genes of grape berries. 【Result】Irrigation amount could affect the morphological and texture characteristics of grape berries. Comparing with other treatments, the longitudinal diameter of grape berries at harvest time was not significantly affected by irrigation amount, while the horizontal diameter and single berry weight of grape berries in deficit irrigation group were significantly reduced. The firmness of grape pulp also decreased under the influence of deficit irrigation, especially under DI-2 group, of which the pulp firmness was significantly lower than that under other treatment groups. Meanwhile, the glucose content in the grape berries under the deficit irrigation group DI-1 and DI-2 was significantly higher than that under the control treatment, and the fructose content under the severe deficit irrigation group DI-2 was significantly higher than that under other treatments. Mild deficit irrigation of DI-1 exerted little effect on the content of total soluble solids and titratable acid in grape berries. The contents of chlorophyll and carotenoids in grape skins were decreased under the deficit irrigation treatment, and the ratio of the chlorophyll content to carotenoids content in the skins of the DI-2 group was the lowest. Additionally, the amount of irrigation also affected the accumulation of aroma components in grape berries. The terpenes compounds reached the highest content in the berries of the DI-1 group, such as limonene, phellandrene, α-pinene, γ-terpinene, (E)-β-ocimene, terpinolene, (E)-furanoxylinalool, linalool, dihydrolinalool, α-terpineol, citronellol, nerol, and geraniol, followed by the content of terpenes under the DI-2 group, and the lowest under the control group. As for esters, the total content of those compounds under the DI-1 group was the highest, followed by the control group, and the content of the DI-2 group was the lowest. For the total amount of aldehydes, the content in the DI-1 group were significantly lower than those in the control group and DI-2 group. For the total amount of higher alcohols, the content of DI-1 group was the highest, followed by DI-2 group, and the control group was the lowest. There were differences in the expression patterns of terpene biosynthesis-related genes under different irrigation conditions. The expression of VvDXS1, VvDXS2, VvDXR, VvDHR, VvPNLinNer1, VvCSLinNer, VvGwbOci, VvCSbOci and VvGwGer were up-regulated in response to water deficit. 【Conclusion】According to the accumulation of aroma components and the comprehensive score of sensory quality, the mild water deficit (60%-70% of the maximum water holding capacity in the field) could better promote the formation of aroma quality of Shine Muscat grape berries and improve their commercial value.

Key words: grape, irrigation amount, aroma, gene expression

Table 1

Primer sequences for real-time quantitative PCR"

基因名称 Gene name 基因ID Gene ID 引物序列Primes sequence (5′-3′)

Fig. 1

Effects of irrigation amount on morphological indexes of grape berries Different lowercase letters indicate significant differences at P<0.05 level. The same as below"

Fig. 2

Effects of irrigation amount on total soluble solids and titratable acid content in grape berries"

Fig. 3

Effects of irrigation amount on sugar compounds content in grape berries"

Fig. 4

Effects of irrigation amount on chlorophyll and carotenoid content in grape berries"

Table 2

Differences of aroma components in berries of Shine Muscat under different irrigation treatments (μg·L-1)"

CAS 编号 保留指数
CK DI1 DI2 感官描述
Odor description
酯类 Esters
Ethyl acetate
141-78-6 612 467.81±8.29b 643.31±10.07a 128.48±7.86c 果味、甜、菠萝、香脂
Fruity, sweet, pineapple, balsamic
Benzoic acid, ethyl ester
93-89-0 1171 20.58±0.58 18.24±1.04 19.99±1.43 甜的、水果、药香香气和味道
Sweet, fruity, medicinal aroma and taste
Methyl salicylate
119-36-8 1192 23.26±0.65b 41.22±0.91a 24.03±3.28b 冬青油 Wintergreen oil
合计 Total 511.65±8.28b 702.77±11.6a 172.5±12.49c
醛类 Aldehydes
正己醛 Hexanal 66-25-1 800 85.96±1.63c 304.3±16.16a 212.87±11.8b 苹果、青草香 Apple, grass
庚醛 Heptanal 111-71-7 910 7.56±0.27b 11.96±1.64a 10.25±0.4a ——
505-57-7 854 1.73±0.24b 5.17±0.2a 0.77±0.058c 青香、辛香、苹果、脂肪、青草
Green, spicy, apple, fatty, grass
2-Hexenal, (E)-
6728-26-3 851 2722.06±121.58a 2034.05±59.3c 2486±38.53b 青苹果、青草
Green apple, grassy
124-13-0 1003 2.18±0.16a 1.64±0.34b 1.7±0.31b 甜橙、脂肪、蜂蜜、杏子
Sweet orange, fatty, honey, apricots
2-Heptenal, (E)-
18829-55-5 958 0.62±0.04a 0.3±0.075b 0.65±0.098a 青香、果香、脂肪、肉香
Green, fruity, fat, meaty
124-19-6 1104 7.44±0.25a 2.78±0.12c 3.94±0.11b 绿色,略带刺鼻
green, slightly pungent
2,4-Hexadienal, (E,E)-
142-83-6 911 2.37±0.21 2.50±0.17 2.24±0.085 甜、青香、果香、柑橘、蜡香、甜瓜味 Sweet, green, fruity, citrus, waxy, melon
癸醛Decanal 112-31-2 1206 2.65±0.29 2.63±0.18 2.43±0.078 青草Grassy
苯甲醛 Benzaldehyde 100-52-7 962 1.60±0.086 1.53±0.18 1.46±0.075 杏仁、香 Almond, fragrant
529-20-4 1064 2.14±0.11b 3.09±0.2a 2.29±0.19b ——
Benzaldehyde, 2,4-dimethyl-
15764-16-6 1181 7.30±0.12a 3.42±0.49c 5.14±0.097b ——
合计 Total 2843.6±122.64a 2373.37±69.61b 2729.75±38.83a ——
萜烯类 Terpernes
柠檬烯 D-Limonene 5989-27-5 1018 113.76±6.16c 154.11±5.63a 129.52±9.44b 花香、绿色、柑橘 Flowery, green, citrus
99-83-2 1005 23.13±3.43b 28.29±0.72a 20.1±1.38b 柑橘香、青香、黑胡椒香
Citrus, green, black pepper
α-蒎烯 alpha.-Pinene 80-56-8 948 47.93±1.5b 61.94±3.8a 52.87±2.81b ——
99-85-4 1169 35.35±1.05c 52.87±3.71a 42.68±2.81b 芳香的松木气味,并略带甜的柑橘风味
Pine wood scent with a slightly sweet citrus flavor
13877-91-3 1037 4.68±0.37b 5.74±0.69a 5.58±0.45a 青香、热带果香、萜香、木香
Green, tropical fruity, terpene, woody
Cyclohexene, 1-methyl-4- (1-methylethylidene)-
586-62-9 1088 140.84±8.32c 209.65±4.25a 181.8±4.04b 柑橘、木香
Citrusy, wood
trans-Linalool oxide (furanoid)
1000121-97-4 1066 32.53±0.82c 51.38±2.83a 41.7±1.81b 木香、花香、凉香、萜香、青香
Woody, floral, cool, terpene, green
78-70-6 1099 240.62±9.31c 310.05±10.25a 276.74±11.09b 花香、果香、麝香、柠檬酸
Flowery, fruity,muscat,citric
二氢芳樟醇 1,5,7-Octatrien-3-ol, 3,7- dimethyl- 29957-43-5 1107 41.35±3.2c 79.31±2.51a 58.4±1.45b ——
CAS 编号 保留指数
CK DI1 DI2 感官描述
Odor description
α-萜品醇.alpha.-Terpineol 7785-53-7 1143 121.16±2.36b 212.95±11.06a 110.47±4.42b 绿色、花香、油性 Green, floral, oily
39028-58-5 1173 26.04±1.91a 16.42±2.13b 26.43±5.1a 木香、花香、凉香、萜香、青香
Woody, floral, cool, terpene, green
106-22-9 750 10.32±0.56b 16.01±0.71a 11.13±1.75b 玫瑰色果香、绿色柠檬
Fruity rosy, green lemon
2,6-Octadien-1-ol, 3,7- dimethyl-, (Z)-
106-25-2 1228 12.95±1.49b 21.61±1.75a 13.14±2.14b 甜美的果香、花香;柑橘
Sweet fruity, floral, citrus
香叶醇 Geraniol 106-24-1 1255 34.65±2.34c 61.18±2.65a 41.8±3.13b 柠檬酸 citric
(2S,4R)-4-Methyl-2-(2-methylprop-1-en-1-yl) tetrahydro- 2H-pyran
876-18-6 1121 2.51±0.33 2.14±0.22 2.39±0.48 花香、青香、香叶、药草、樟脑、辛香香气,青香、蔬菜、柑橘、玫瑰味道
Floral, green, bay leaf, herb, camphor, spice, green, vegetable, citrus, rose
2H-Pyran, 3,6-dihydro-4-methyl- 2-(2-methyl-1-propenyl)-
1786-08-9 1153 115.21±4.56b 114.17±7.63b 132.13±3.72a 强烈的花香香气,橙花油似的香韵,以及新鲜的青香气息
Intense floral aroma, neroli-like aroma, and fresh green notes
p-伞花烃 p-Cymene 527-84-4 975 7.80±0.19c 10.40±1.62a 9.26±0.3b 胡萝卜、柑橘味道 Carrot, citrus
合计 Total 1010.85±47.89c 1408.22±62.18a 1156.15±56.30b
高级醇类 Higher alcohols
111-27-3 868 21.03±1.46b 32.32±2.42a 17.57±0.6c 绿色、草本、油性、花香、草本、木质 Green, grass,oily, floral, herbaceous, woody
3-Hexen-1-ol, (Z)-
544-12-7 856 25.48±4.08c 71.45±2.32a 33.92±1.97b 绿色、苦、脂肪、草
Green, bitter, fatty, grass
2-Hexen-1-ol, (Z)-
928-94-9 868 7.13±0.22b 14.3±0.57a 5.37±0.67c 绿草、草本 Green grass, herb
辛醇 1-Octanol 111-87-5 1071 0.20±0.032 0.19±0.025 0.17±0.021 浓郁的柑橘、玫瑰 Intense citrus, roses
1-己烯-3-醇1-Hexen-3-ol 4798-44-1 769 30.20±0.3b 19.15±0.24c 52.6±3.47a ——
苯甲醇Benzyl alcohol 100-51-6 1036 11.76±0.88c 40.18±1.38a 19.52±0.97b 柑橘味、甜味、花香 Citrusy, sweet, floral
合计 Total 95.8±4.99c 177.57±5.82a 129.15±5.07b
酮类 Ketones
1-辛烯-3-酮1-Octen-3-one 4312-99-6 979 0.55±0.045 0.44±0.09 0.66±0.085 蘑菇香 Mushroom
6-甲基-5-庚烯-2-酮 5-Hepten-2-one, 6-methyl- 110-93-0 986 1.79±0.17a 1.35±0.085b 1.81±0.047a 果香、霉香、酮香,并有苹果、香蕉、奶油的味道Fruity, musty, keto, with notes of apple, banana, cream
2-Buten-1-one, 1-(2,6,6-trimethyl- 1,3-cyclohexadien-1-yl)-, (E)-
23726-93-4 1386 5.12±0.18b 6.88±0.37a 3.41±0.4c 蜂蜜, 甜, 花香, 苹果
Honey, sweet, floral, apple
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-
3796-70-1 1453 0.13±0.015b 0.23±0.04a 0.11±0.024b 青香、果香、蜡香、木香,并有生梨、番石榴、苹果、香蕉、热带水果的香韵
Green, fruity, waxy, woody, with notes of raw pear, guava, apple, banana, tropical fruit
合计 Total 7.59±0.29b 8.90±0.37a 5.99±0.53c
其他组分 Other compounds
乙酸 Acetic acid 64-19-7 610 62.46±4.65c 208.03±2.61a 99.11±4.29b 酸、脂肪、酸、醋、辣
Acid, fatty,sour, vinegar,spicy
96-76-4 1519 13.55±2.11c 17.56±3.09b 23.12±2.66a ——
苯乙烯 Styrene 100-42-5 1741 1.46±0.089 1.36±0.09 1.31±0.22 树脂、花香香气 Resin, floral
合计 Total 77.48±6.38c 226.94±4.41a 123.54±4.97b

Fig. 5

Effects of irrigation amount on the expression of genes related to terpene component biosynthesis in grape berries"

Fig. 6

Effect of irrigation amount on gene expression of terpene synthase in grape berries"

Fig. 7

Scores of sensory characteristics of grape berries under different irrigation treatments"

[1] 张明霞, 吴玉文, 段长青. 葡萄与葡萄酒香气物质研究进展. 中国农业科学, 2008, 41(7): 2098-2104.
ZHANG M X, WU Y W, DUAN C Q. Progress in study of aromatic compounds in grape and wine. Scientia Agricultura Sinica, 2008, 41(7): 2098-2104. (in Chinese)
[2] ROBINSON A L, BOSS P K, SOLOMON P S, TRENGOVE R D, HEYMANN H, EBELER S E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. American Journal of Enology and Viticulture, 2014, 65(1): 1-24.
doi: 10.5344/ajev.2013.12070
[3] 张克坤, 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. ‘瑞都香玉’ 葡萄果实挥发性成分在果实发育过程中的变化. 中国农业科学, 2015, 48(19): 3965-3978.
ZHANG K K, WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z. Evolution of volatile compounds during the berry development of ‘Ruidu Xiangyu’ grape. Scientia Agricultura Sinica, 2015, 48(19): 3965-3978. (in Chinese)
[4] LUND S T, BOHLMANN J. The molecular basis for wine grape quality: A volatile subject. Science, 2006, 311(5762): 804-805. doi: 10.1126/science.1118962.
doi: 10.1126/science.1118962
[5] 王晓玥, 张国军, 孙磊, 赵印, 闫爱玲, 王慧玲, 任建成, 徐海英. 2种架式对3个鲜食葡萄品种栽培性状及果实品质的影响. 中国农业科学, 2019, 52(7): 1150-1163.
WANG X Y, ZHANG G J, SUN L, ZHAO Y, YAN A L, WANG H L, REN J C, XU H Y. Effects of two trellis systems on viticultural characteristics and fruit quality of three table grape cultivars. Scientia Agricultura Sinica, 2019, 52(7): 1150-1163. (in Chinese)
[6] 孙磊, 王晓玥, 王慧玲, 闫爱玲, 张国军, 任建成, 徐海英. 不同砧木对鲜食葡萄生长和香气品质的影响. 中国农业科学, 2021, 54(20): 4405-4420.
SUN L, WANG X Y, WANG H L, YAN A L, ZHANG G J, REN J C, XU H Y. The influence of rootstocks on the growth and aromatic quality of two table grape varieties. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420. (in Chinese)
[7] HE L, XU X Q, WANG Y, VANDERWEIDE J, SUN R Z, CHENG G, CHEN W, LI S D, LI S P, DUAN C Q, WANG J, PAN Q H. Differential influence of timing and duration of bunch bagging on volatile organic compounds in Cabernet Sauvignon berries (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 2022, 28: 75-85.
doi: 10.1111/ajgw.12518
[8] YUE X F, SHI P B, TANG Y L, ZHANG H X, MA X, JU Y L, ZHANG Z W. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine. Journal of the Science of Food and Agriculture, 2021, 101(9): 3665-3675.
doi: 10.1002/jsfa.10996 pmid: 33280112
[9] KOUNDOURAS S, HATZIDIMITRIOU E, KARAMOLEGKOU M, DIMOPOULOU E, KALLITHRAKA S, TSIALTAS J T, KOTSERIDIS Y. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon grapes. Journal of Agricultural and Food Chemistry, 2009, 57(17): 7805-7813.
doi: 10.1021/jf901063a
[10] SONG J, SHELLIE K C, WANG H, QIAN M C. Influence of deficit irrigation and Kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.). Food Chemistry, 2012, 134(2): 841-850.
doi: 10.1016/j.foodchem.2012.02.193
[11] SAVOI S, WONG D C, ARAPITSAS P, MICULAN M, BUCCHETTI B, PETERLUNGER E, FAIT A, MATTIVI F, CASTELLARIN S D. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology, 2016, 16(1): 67.
doi: 10.1186/s12870-016-0760-1
[12] MIRÁS-AVALOS J M, BOUZAS-CID Y, TRIGO-CÓRDOBA E, ORRIOLS I, FALQUÉ E. Effects of two different irrigation systems on the amino acid concentrations, volatile composition and sensory profiles of godello musts and wines. Foods, 2019, 8(4): E135. doi:10.3390/foods8040135.
doi: 10.3390/foods8040135
[13] WANG J, ABBEY T, KOZAK B, MADILAO L L, TINDJAU R, DEL NIN J, CASTELLARIN S D. Evolution over the growing season of volatile organic compounds in Viognier (Vitis vinifera L.) grapes under three irrigation regimes. Food Research International, 2019, 125: 108512. doi: 10.1016/j.foodres.2019.108512.
doi: 10.1016/j.foodres.2019.108512
[14] 房玉林, 孙伟, 万力, 惠竹梅, 刘旭, 张振文. 调亏灌溉对酿酒葡萄生长及果实品质的影响. 中国农业科学, 2013, 46(13): 2730-2738.
FANG Y L, SUN W, WAN L, XI Z M, LIU X, ZHANG Z W. Effects of regulated deficit irrigation (RDI) on wine grape growth and fruit quality. Acta Horticulturae Sinica, 2013, 46(13): 2730-2738. (in Chinese)
[15] 庞国成, 刘凤之, 王海波, 史祥宾, 王宝亮. 不同灌水条件对设施葡萄果实品质的影响. 中国果树, 2019(3): 57-61.
PANG G C, LIU F Z, WANG H B, SHI X B, WANG B L. Effects of different irrigation conditions on fruit quality of cultivated grapes. China Fruits, 2019(3): 57-61. (in Chinese)
[16] CHEN K Q, SUN J H, LI Z H, ZHANG J X, LI Z Y, CHEN L, LI W P, FANG Y L, ZHANG K K. Postharvest dehydration temperature modulates the transcriptomic programme and flavonoid profile of grape berries. Foods, 2021, 10(3): 687. doi: 10.3390/foods10030687.
doi: 10.3390/foods10030687
[17] LI W P, YAO H, CHEN K Q, JU Y L, MIN Z, SUN X Y, CHENG Z L, LIAO Z S, ZHANG K K, FANG Y L. Effect of foliar application of fulvic acid antitranspirant on sugar accumulation, phenolic profiles and aroma qualities of Cabernet Sauvignon and Riesling grapes and wines. Food Chemistry, 2021, 351: 129308.
[18] ZHANG E P, CHAI F M, ZHANG H H, LI S H, LIANG Z C, FAN P G. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry, 2017, 237: 379-389.
doi: S0308-8146(17)30941-X pmid: 28764010
[19] 陈祖民, 校诺娅, 张艳霞, 史晓敏, 郭帅奇, 高虎, 王振平. 水分胁迫对'玫瑰香'葡萄果实挥发性化合物及相关基因表达的影响. 园艺学报, 2021, 48(5): 883-896.
CHEN Z M, XIAO N Y, ZHANG Y X, SHI X M, GUO Q S, GAO H, WANG Z P. Effects of water stress on the volatile compounds and related biosynthetic genes expression in‘Muscat Hamburg’ grape berries. Acta Horticulturae Sinica, 2021, 48(5): 883-896. (in Chinese)
[20] 赵阳, 刘怀锋, 牛媛, 马富裕. 设施条件下灌水方案对弗雷无核葡萄产量及品质的影响. 江苏农业科学, 2019, 47(13): 167-170.
ZHAO Y, LIU H F, NIU Y, MA F Y. Effects of irrigation scheme on the yield and quality of Frey seedless grapes under facility conditions. Jiangsu Agricultural Sciences, 2019, 47(13): 167-170. (in Chinese)
[21] CÁCERES-MELLA A, TALAVERANO M I, VILLALOBOS- GONZÁLEZ L, RIBALTA-PIZARRO C, PASTENES C. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins. Plant Physiology and Biochemistry, 2017, 117: 34-41. doi: 10.1016/j.plaphy.2017.05.015.
doi: 10.1016/j.plaphy.2017.05.015
[22] WANG W, FENG J, WEI L L, KHALIL-UR-REHMAN M, NIEUWENHUIZEN N J, YANG L N, ZHENG H, TAO J M. Transcriptomics integrated with free and bound terpenoid aroma profiling during “Shine Muscat” (Vitis labrusca × V. vinifera) grape berry development reveals coordinate regulation of MEP pathway and terpene synthase gene expression. Journal of Agricultural and Food Chemistry, 2021, 69: 1413-1429.
doi: 10.1021/acs.jafc.0c06591
[23] MARTIN D M, CHIANG A, LUND S T, BOHLMANN J. Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012, 236(3): 919-929.
doi: 10.1007/s00425-012-1704-0
[24] BATTILANA J, COSTANTINI L, EMANUELLI F, SEVINI F, SEGALA C, MOSER S, VELASCO R, VERSINI G, GRANDO M S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theoretical and Applied Genetics, 2009, 118(4): 653-669. doi: 10.1007/s00122-008-0927-8.
doi: 10.1007/s00122-008-0927-8
[25] BATTILANA J, EMANUELLI F, GAMBINO G, GRIBAUDO I, GASPERI F, BOSS P K, GRANDO M S. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. Journal of Experimental Botany, 2011, 62(15): 5497-5508.
doi: 10.1093/jxb/err231 pmid: 21868399
[26] 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析. 中国农业科学, 2022, 55(5): 977-990.
WANG H L, YAN A L, SUN L, ZHANG G J, WANG X Y, REN J C, XU H Y. eQTL analysis of key monoterpene biosynthesis genes in table grape. Scientia Agricultura Sinica, 2022, 55(5): 977-990. (in Chinese)
[27] WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15: 240. doi: 10.1186/s12870-015-0631-1.
doi: 10.1186/s12870-015-0631-1
[28] MARTIN D M, AUBOURG S, SCHOUWEY M B, DAVIET L, SCHALK M, TOUB O, LUND S T, BOHLMANN J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010, 10(1): 226.
doi: 10.1186/1471-2229-10-226
[29] SMIT S J, VIVIER M A, YOUNG P R. Linking terpene synthases to sesquiterpene metabolism in grapevine flowers. Frontiers in Plant Science, 2019, 10: 177.
doi: 10.3389/fpls.2019.00177 pmid: 30846994
[30] TORRES N, YU R, MARTINEZ-LUSCHER J, GIRARDELLO R C, KOSTAKI E, OBERHOLSTER A, KAAN KURTURAL S. Shifts in the phenolic composition and aromatic profiles of Cabernet Sauvignon (Vitis vinifera L.) wines are driven by different irrigation amounts in a hot climate. Food Chemistry, 2022, 371: 131163. doi: 10.1016/j.foodchem.2021.131163.
doi: 10.1016/j.foodchem.2021.131163
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[6] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[7] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[8] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[9] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[10] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[11] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[12] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[13] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[14] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[15] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
Full text



No Suggested Reading articles found!