Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (20): 3871-3884.doi: 10.3864/j.issn.0578-1752.2017.20.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Exogenous 6-BA on Photosynthetic Characteristics and Endogenous Hormone Content in Wheat Leaves Under Two Nitrogen Application Levels at Seedling Stage

YANG DongQing1, DONG WenHua1,LUO YongLi1, 2, SONG WenTing1, CAI Te3, LI Yong1, YIN YanPing1, WANG ZhenLin1   

  1. 1College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong;  2College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong; 3 College of Agronomy, Northwest      A&F University, Yangling 712100, Shaanxi
  • Received:2017-02-27 Online:2017-10-16 Published:2017-10-16

Abstract: 【Objective】The purpose of this study was to test the effects of nitrogen concentrations and spraying exogenous cytokinin (6-BA) on photosynthetic characteristics, chlorophyll a fluorescence, nitrate reductase (NR) and glutamine synthetase (GS) activities, changes of endogenous hormones in leaves of wheat at seedling stage and grain yield, and then provide a theoretical basis for improving the development of winter wheat seedlings. 【Method】Wheat (Jimai 22) was sown in the field and pot culture experiments with two nitrogen levels ( N1, 120 kg·hm-2; N2, 240 kg·hm-2) and modified Hoagland nutrient solutions containing two nitrogen levels (HN, 3.75 mmol·L-1; LN, 0.63 mmol·L-1), respectively. 6-BA (30 mg·L-1) and lovastatin (300 mg·L-1) were sprayed to the whole plants at a rate of 100 mL·m-2 at the three-leaf stage. Ten wheat plants were sampled at 3 d intervals to test chlorophyll contents, NR and GS activities, photosynthetic parameters (Gs, Tr, Ci and Pn), chlorophyll fluorescence parameters (Wk, Vj, Ψo and PIabs), and endogenous hormones. In addition, grain yield, kernels per spike, 1000-grain weight, and ear numbers were determined at maturity stage.【Result】The above ground biomass (AGBM) was significantly increased by exogenous 6-BA treatment in the pot experiment. Conversely, application of lovastatin significantly decreased AGBM. Compared with HN treatment, AGBM under HN+6-BA treatment increased by 21.39% at 12 days after treatment (DAT), and that of LN+6-BA treatment increased by 43.92%, compared with LN treatment. Application of 6-BA significantly increased values of Gs, Tr, Ci and Pn under high nitrogen condition. Especially, Gs, Tr, Pn and Ci increased by 68.32%、58.66%、30.72%、51.61% at 12 DAT, respectively. Chl a increased by application of 6-BA at 9 to 12 DAT, while content of Chl b has significantly increased by exogenous 6-BA from 3 to 12 DAT. Conversely, both Chl a and Chl b have significantly decreased by application of lovastatin. Compared with HN treatment, HN+6-BA treatment significantly increased the activity of nitrate reductase (NR) and glutamine synthetase (GS). While application of lovastatin significantly decreased NR and GS activity. Exogenous 6-BA treatments changed the fast chlorophyll fluorescence induction kinetics curves. Application of 6-BA significantly increased Ψo and PIabs, and decreased Wk and Vj. Wk and Vj decreased by 22.09% and 36.05%, respectively, under LN+6-BA treatment, compared with LN treatment. Application of 6-BA significantly increased Zt content from 3 to 12 DAT, increased IAA content from 6 to 12 DAT, and decreased ABA content. However, spraying exogenous lovastatin obviously increased ABA content. Application of 6-BA significantly increased grain yield in the field experiment. Compared with N1 and N2, grain yield of N1+6-BA and N2+6-BA increased by 10.48% and 16.61%, respectively. 【Conclusion】Exogenous 6-BA increased aboveground biomass due to increasing the leaf photosynthesis and nitrogen assimilation through regulating endogenous hormones contents to enhance chlorophyll content and NR and GS activity, and to improve the electron transfer capability of both the donor and the acceptor sides at PSII reaction center resulting in improved PSII performance. Grain yield has significantly increased under 6-BA combined with nitrogen application treatments.

Key words: wheat seedling, nitrogen, hormone, photosynthetic characteristics, chlorophyll a fluorescence

[1]    翟丙年, 李生秀. 氮素对冬小麦生长发育及产量的亏缺和补偿效应. 植物营养与肥料学报, 2005, 11(3): 308-313.
Zhai B N, Li S X. Response to nitrogen deficiency and compensation on growth and yield of winter wheat. Plant Nutrition and Fertilizer Science, 2005, 11(3): 308-313. (in Chinese)
[2]    翟丙年, 李生秀. 冬小麦水氮配合关键期和亏缺敏感期的确定. 中国农业科学, 2005, 38(6): 1188-1195.
Zhai B N, Li S X. Study on the key and sensitive stage of winter wheat responses to water and nitrogen coordination. Scientia Agricultura Sinica, 2005, 38(6): 1188-1195. (in Chinese)
[3]    彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland B, Christian W. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9): 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland B, Christian W. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002, 35(9): 1095-1103. (in Chinese)
[4]    田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34(1): 1-4.
Tian J C, Chen J X, Wang Y X, Zhang Y X. Effects of delayed nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars. Scientia Agricultura Sinica, 2001, 34(1): 1-4. (in Chinese)
[5]    Zhang X C, Yu X F, Ma Y F. Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves. Photosynthetica, 2013, 51(4): 593-602.
[6]    Herrera J M, Noulas C, Feil B, Stamp P, Liedgens M. Nitrogen and genotype effects on root growth and root survivorship of spring wheat. Journal of Plant Nutrition and Soil Science, 2013, 176(4): 561-571.
[7]    Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3): 357-363.
[8]    张维理, 武淑霞, 冀宏杰, Kolbe H. 中国农业面源污染形势估计及控制对策 I. 21世纪初期中国农业面源污染的形势估计. 中国农业科学, 2004, 37(7): 1008-1017.
Zhang W L, Wu S X, Ji H J, Kolbe H. Estimation of agricultural non-point source pollution in China and the alleviating strategies I. Estimation of agricultural non-point source pollution in China in early 21 century. Scientia Agricultura Sinica, 2004, 37(7): 1008-1017. (in Chinese)
[9]    Zhu Z L, Chen D L. Nitrogen fertilizer use in China– Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63(2): 117-127.
[10]   肖凯, 张荣铣, 钱维朴. 氮素营养对小麦群体光合碳同化作用的影响及其调控机制. 植物营养与肥料学报, 1999, 5(3): 235-243.
Xiao K, Zhang R X, Qian W P. The effect and regulation mechanism of nitrogen nutrition on canopy photosynthetic carbon assimilation in wheat. Plant Nutrition and Fertilizer Science, 1999, 5(3): 235-243. (in Chinese)
[11]   陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44(17): 3529-3536.
Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011, 44(17): 3529-3536. (in Chinese)
[12]   Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 2014, 59(3): 276-283.
[13]   Santner A, Calderon-Villalobos L I, Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 2009, 5(5): 301-307.
[14] Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 2011, 62(4): 1399-1409.
[15]   Krouk G, Ruffel S, Gutiérrez R A, Gojon A, Crawford N M, Coruzzi G M, Lacombe B. A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 2011, 16(4): 178-182.
[16]   Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: The role of glutamine metabolism as an additional signal. Plant and Cell Physiology, 2013, 54(11): 425-432.
[17]   Criado M V, Caputo C, Roberts I N, Castro M A, Barneix A J. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology, 2009, 166(16): 1775-1785.
[18]   Ma W Y, Li J J, Qu B Y, He X, Zhao X Q, Li B, Fu X D, Tong Y P. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. The Plant Journal, 2014, 78(1): 70-79.
[19]   Ljung K. Auxin metabolism and homeostasis during plant development. Development, 2013, 140(5): 943-950.
[20]   冯志威, 杨艳君, 郭平毅, 原向阳, 宁娜. 谷子光合特性及产量最优的氮磷肥水平与细胞分裂素6-BA组合研究. 植物营养与肥料学报, 2016, 22(3): 634-642.
FENG Z W, YANG Y J, GUO P Y, YUAN X Y, NING N. Optimum combining rate of N and P fertilizer with 6-BA for highest photosynthetic efficiency and yield in foxtail millet. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 634-642. (in Chinese)
[21] 骆永丽, 杨东清, 尹燕枰, 崔正勇, 李艳霞, 陈金, 郑孟静, 王玉竹, 庞党伟, 李勇, 王振林. 外源6-BA和不同用量氮肥配合对小麦花后叶片功能与荧光特性的调控效应. 中国农业科学, 2016, 49(6): 1060-1083 .
Luo Y L, Yang D Q, Yin Y P, Cui Z Y, Li Y X, Chen J, Zheng M J, Wang Y Z, Pang D W, Li Y, Wang Z L. Effects of exogenous 6-BA and nitrogen fertilizer with varied rates on function and fluorescence characteristics of wheat leaves post anthesis. Scientia Agricultura Sinica, 2016, 49(6): 1060-1083. (in Chinese)
[22]   Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Research, 1974, 14(6): 451-421.
[23]   Xu J X, Zha M R, Li Y, Ding Y F, Chen L, Ding C Q, Wang S H. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Reports, 2015, 34(9): 1647-1662.
[24]   Crowell D N, Salaz M S. Inhibition of growth of cultured tobacco cells at low concentrations of lovastatin is reversed by cytokinin. Plant Physiology, 1992, 100(4): 2090-2095.
[25]   赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 1988: 55-57.
Zhao S J, Shi G A, Dong X C. Experimental Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 1998: 55-57. (in Chinese)
[26]   Strasser B J. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 1997, 52(2): 147-155.
[27]   Schansker G, Srivastava A, Govindjee, Strasser R J. Characterization of the 820 nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 2003, 30(7): 785-796.
[28]   Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31(4): 671-685.
[29]   Liu Y, Ding Y, Wang Q S, Meng D X, Wang S H. Effects of nitrogen and 6-benzylaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen. Crop Science, 2011, 51(2): 786-792.
[30]   Alzueta I, Abeledo L G, Mignone C M, Miralles D J. Differences between wheat and barley in leaf and tillering coordination under contrasting nitrogen and sulfur conditions. European Journal of Agronomy, 2012, 41(4): 92-102.
[31]   Ferrante A, Savin R, Slafer G A. Floret development of durum wheat in response to nitrogen availability. Journal of Experimental Botany, 2010, 61(5): 4351-4359.
[32]   徐云姬, 张伟杨, 钱希旸, 李银银, 张耗, 杨建昌. 施氮量对小麦籽粒灌浆的影响极其生理机制. 麦类作物学报, 2015, 35(8): 1119-1126.
Xu Y J, Zhang W Y, Qian X Y, Li Y Y, Zhang H, Yang J C. Effect of nitrogen on grain filling of wheat and its physiological mechanism. Journal of Triticeae Crops, 2015, 35(8): 1119-1126. (in Chinese)
[33]   Zheng C F, Zhu Y J, Zhu H J, Kang G Z, Guo T C, Wang C  Y. Floret development and grain setting characteristics in winter wheat in response to pre-anthesis applications of 6-benzylaminopurine and boron. Field Crops Research, 2014, 169: 70-76.
[34]   Buttery B R, Buzzell R I. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Canadian Journal of Plant Science, 1977, 57(1): 1-5.
[35]   Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. Journal of Experimental Botany, 2015, 67(6):1839-1851.
[36]   Yaronskaya E, Vershilovskaya I, Poers Y, Alawady A E, Averina N, Grimm B. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 2006, 224(3): 700-709.
[37]   Katz J J, Norris J R, Shipman L L, Thurnauer M C, Wasielewski M R. Chlorophyll function in the photosynthetic reaction center. Annual Review of Biophysics and Bioengineering, 1978, 7(1): 393-434.
[38]   郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用. 植物生理学通讯, 2006, 42(5): 967-973.
Guo C A, Liu F, Xu X M. Chlorophyll-b deficient and photosynthesis in plants. Plant Physiology Communications, 2006, 42(5): 967-973. (in Chinese)
[39]   张旺锋, 勾玲, 王振林, 李少昆, 余松烈, 曹连莆. 氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响. 中国农业科学, 2003, 36(8): 893-898.
Zhang W F, Gou L, Wang Z L, Li S K, Yu S L, Cao L P. Effect of nitrogen on chlorophyll fluorescence of leaves of high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 2003, 36(8): 893-898. (in Chinese)
[40]   Dani S K G, Fineschi S, Michelozzi M, Francesco L. Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? Plant, Cell & Environment, 2016, 39(5): 1103-1111.
[41]   Rivero R M, Gimeno J, Van Deynze A, Walia H, Blumwald E. Enhanced cytokinin synthesis in tobacco plants expressing PSARK:: IPT prevents the degradation of photosynthetic protein complexes during drought. Plant and Cell Physiology, 2010, 51(11): 1929-1941.
[42]   Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology & Plant Molecular Biology, 1996, 47(1): 569-593.
[43]   Xu Z Z, Zhou G S. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. Journal of Plant Growth Regulation, 2006, 25(3): 252-266.
[44]   Krouk G. Hormones and nitrate: a two-way connection. Plant Molecular Biology, 2016, 91(6): 599-606.
[45]   Foyer C H, Parry M, Noctor G. Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany, 2003, 54(382): 585-593.
[46]   Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 2006, 11(9): 440-448.
[47]   Collier M D, Fotelli M N, Nahm M, Kopriva S, Rennenberg H, Hanke D E, Gebler A. Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level–interactions between cytokinins and soluble N compounds. Plant, Cell & Environment, 2003, 26(9): 1549-1560.
[48]   Signora L, De Smet I, Foyer C H, Zhang H M. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. The Plant Journal, 2001, 28(6): 655-662.
[1] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[2] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[3] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[11] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[12] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[13] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[14] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[15] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!