Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (24): 4892-4902.doi: 10.3864/j.issn.0578-1752.2015.24.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & ECOLOGY • Previous Articles     Next Articles

Effects of Types of Controlled Released Nitrogen and Fertilization Modes on Yield and Dry Mass Production

XING Xiao-ming1, LI Xiao-chun1, DING Yan-feng1, WANG Shao-hua1, LIU Zheng-hui1, TANG She1DING Cheng-qiang1, LI Gang-hua1, WEI Guang-bin2   

  1. 1Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing 210095
    2Changzhou Crop Cultivation Technology Guidance Station, Changzhou 213200, Jiangsu
  • Received:2015-05-05 Online:2015-12-16 Published:2015-12-16

Abstract: 【Objective】This experiment seeks to investigate the effects of different types of controlled released nitrogen and fertilization modes on the yield, characteristics of photosynthesis and dry mass production. 【Method】 Local japonica rice of Wuyunjing 24 mechanical transplanting. Four N fertilizer types (urea, slow-release fertilizer blend, polymer-coated urea, sulfur-coated urea) and two fertilization modes, the base-tiller nitrogen fertilizer and single fertilization were conducted in Danyang, Jiangsu province, China, in 2013 and 2014, seven treatment including single fertilization of slow-release fertilizer blend(B-BSRB), single fertilization of polymer-coated urea(B-PCU), single fertilization of sulfur-coated urea(B-SCU), base-tiller nitrogen fertilizer of slow-release fertilizer blend(BT-BSRB), base-tiller nitrogen fertilizer of polymer-coated urea(BT-PCU), base-tiller nitrogen fertilizer of sulfur-coated urea(BT-SCU) and conventional split fertilization (CK). 【Result】 The yield of different types of controlled released nitrogen showed that, slow-release fertilizer blend >polymer-coated urea > sulfur-coated urea. The dry matter weight of the population, Leaf area index and photosynthetic potential of different controlled released nitrogens at the growth period showed that slow-release fertilizer blend > polymer-coated urea > sulfur-coated urea. Dry matter accumulation, its proportion of distribution and crop growth rate at the jointing stage showed slow-release fertilizer blend >polymer-coated urea > sulfur-coated urea, while at the maturity stage showed slow-release fertilizer blend> sulfur-coated urea> polymer- coated urea. All of them showed a trend of base-tiller nitrogen fertilizer treatment > single fertilization treatment. The yield of slow-releasing blending fertilizer with the base-tiller nitrogen fertilizer treatment (BT-BSRB) was 11.6 and 10.1 t hm-2 in 2013 and 2014, respectively. Compared to conventional fertilization (CK), the yield of BT-BSRB increased by 9.4、12.2%, respectively.【Conclusion】Polymer-coated urea and sulfur-coated urea were a poor application on japonica rice, while slow-release fertilizer blend can significantly increase japonica rice yield and photosynthetic material production.

Key words: rice, controlled released nitrogen, fertilization mode, yield, photosynthetic potential

[1]    Fageria N K, Slaton N A, Baligar V C. Nutrient management for improving lowland rice productivity and sustainability. Advances in Agronomy, 2003, 80: 63-152.
[2]    Xu J Z, Peng S Z, Yang S H, Wang W G. Ammonia volatilization losses from rice paddies with different irrigation and nitrogen managements. Agricultural Water Management , 2012, 104: 184-192.
[3]    Asman W A H, Sutton M A, Schorring J K. Ammonia emission, atmospheric transport and deposition. New Phytologist , 1998, 139(1): 27-48.
[4]    Ghaley B B. Uptake and utilization of 5-split nitrogen topdressing in animproved and a traditional rice cultivar in the Bhutan Highlands. Experimental Agriculture, 2012, 48:536-550.  
[5]    彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland Buresh, Christian Witt. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland Buresh, Christian Witt. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002, 35: 1095-1103. (in Chinese)
[6]    Liang X Q, Chen Y X, Li H, Tian G M, Zhang Z J, Ni W Z, He M M. Nitrogen interception in floodwater of rice field in Taihu region of China. Journal of Environmental Sciences , 2007, 19: 1474-1481.
[7]    Halvorson A D, Alluvione F, Del Grosso S J. Tillage and inorganic nitrogen source effects on nitrous oxide emissions from irrigated cropping systems. Soil Science Society of America Journal, 2010, 74: 436-445.
[8]    Motavalli P P, Nelson K A. Use of enhancedefficiency fertilizers for improved agricultural nutrient management: Introduction to the symposium. Online. Crop Management, 2008, Doi: 10.1094/CM- 2008-0730-01-PS.
[9]    Rochette P, MacDonald J D, Angers D A, Chantigny M H, Gasser M, Bertrand N. Banding of urea increased ammonia volatilization in a dry acidic soil. Journal of Environmental Quality, 2009, 38: 1383-1390.
[10]   Wilson M L, Rosen C J, Moncrief J F. Effects of polymer-coated urea on nitrate leaching and nitrogen uptake by potato. Journal of Environmental Quality, 2010, 39: 492-499.
[11]   Shoji S, Delgado J A, Mosier A, Miura Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science & Plant Analysis, 2001, 32: 1051-1070.
[12]   Guetral E A. Preplant slow-release nitrogen fertilizers produce similar bell pepper yields as split applications of soluble fertilizer. Agronomy Journal, 2000, 92(2): 388-393.
[13]   Li J Y, Hua Q X, Tan J F. Mineral coated fertilizer effect on nitrogen- use efficiency and yield of wheat. Pedosphere, 2000, 15(4): 526-531.
[14]   Duan Y H, Yin X M, Zhang Y L, Shen Q R. Mechanisms of enhanced rice growth and nitrogen uptake by nitrate. Pedosphere, 2007, 17: 697-705.
[15]   Mae T. Physiological nitrogen effciency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil, 1997, 2: 201-210.
[16]   Singh N, Pal N, Mahajan G, Singh S, Shevkani K. Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydrate Polymers, 2011, 86: 219-225.
[17]   Tanaka A, Toriyama K, Kobayashi K. Nitrogen supply via internal nutrient cycling of residus and weeds in lowland rice farming. Field Crops Research, 2012, 137: 251-260.
[18]   Peng Y, Sun Y J, Jiang M J, Xu H, Qin J, Yang Z Y, Ma J. Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and disrtibution in rice. Acta Agronmica Sinica , 2014, 40(5): 859-870.
[19]   唐拴虎, 谢春生, 孙小文, 陈建生, 徐培智, 张发宝. 水稻施用控释肥料生长效应研究. 中国农学通报, 2004, 20(2): 149-151.
Tang S H, Xie C S, Sun X W, Chen J S, Xu P Z, Zhang F B. Effects of controlled-release fertilizers on rice growth. Chinese Agricultural Science Bulletin, 2004, 20(2): 149-151. (in Chinese)
[20]   Azeem B, KuShaari K Z, Man Z B, Basit A, Thanh T H. Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release Official Journal of the Controlled Release Society, 2014, 181: 11-21.
[21]   凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 44-107.
Ling Q H. Quality of Crop Community. Shanghai: Shanghai Science and Technology Press, 2000: 44-107. (in Chinese)
[22]   吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43(2): 266-276.
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice . Scientia Agricultura Sinica, 2010, 43(2): 266-276. (in Chinese)
[23]   张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. 中国农业科学, 2010, 43(13): 2645-2660.
Zhang H C, Wu G C, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Huang X F, Gong J L. The soi model of quantitative cultivation of super-high yielding rice. Scientia Agricultura Sinica, 2010, 43(13): 2645-2660. (in Chinese)
[24]   凌启鸿. 水稻精确定量栽培理论与技术. 北京: 中国农业出版社, 2007: 76-91.
Ling Q H. Rice Precise Quantitative Cultivation Theory and Technology. Beijing: China Agriculture Press, 2007: 76-91. (in Chinese)
[25]   凌启鸿, 张洪程, 丁艳锋, 张益彬. 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005, (1): 3-7.
Ling Q H, Zhang H C, Ding Y F, Zhang Y B. The new development of high-yielding rice technology——precise quantitative cultivation . China Rice, 2005, (1): 3-7. (in Chinese)
[26]   凌启鸿, 张洪程, 戴其根, 丁艳锋, 凌励, 苏祖芬, 徐茂, 阙金华, 王绍华. 水稻精确定量施氮研究. 中国农业科学, 2005, 38(12): 2457-2467.
Ling Q H, Zhang H C, Dai Q G, Ding Y F, Ling L, Su Z F, Xu M, Que J H, Wang S H. Study on precise and quantitative N application in rice. Scientia Agricultura Sinica, 2005, 38(12): 2457-2467. (in Chinese)
[27]   符建荣. 控释氮肥对水稻的增产效应及提高肥料利用率的研究. 植物营养与肥料学报, 2001, 7(2): 145-152.
Fu J R. Effect of controlled release nitrogen fertilizer on rice yield and utilization ratio of fertilizer. Journal of Plant Nutrition and Fertilizer, 2001, 7(2): 145-152. (in Chinese)
[28]   李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19(4): 808-815.
Li M, Guo X S, Ye S Y, Liu F, Y M M, Huang Y D. Effects of sulfur and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 808-815. (in Chinese)
[29]   黄旭, 唐拴虎, 徐培智, 陈建生, 张发宝. 一次性施用控释肥料对超级稻生长及产量的影响. 广东农业科学, 2006, (9): 17-19.
Huang X, Tang S H, Xu P Z, Chen J S, Zhang F B. Effect one-time use of controlled release fertilizer on super rice growth and yield. Guangdong Agricultural Sciences, 2006, (9): 17-19. (in Chinese)
[30]   凌启鸿. 精确定量轻简栽培是作物生产现代化的发展方向. 中国稻米, 2010, 16(4): 1-6.
Ling Q H. Precise quantitative simplified cultivation is the development direction of modern crop production. China Rice, 2010, 16(4): 1-6. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Full text



No Suggested Reading articles found!