Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 236-248.doi: 10.3864/j.issn.0578-1752.2023.02.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition

XIAO DeShun(),XU ChunMei(),WANG DanYing,ZHANG XiuFu,CHEN Song,CHU Guang,LIU YuanHui   

  1. China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 311400
  • Received:2022-04-06 Accepted:2022-06-30 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】This study was conducted to research the effect of rhizosphere oxygen environment on the phosphorus uptake of rice seedlings and its physiological mechanisms, so as to provide a theoretical basis for the new cultivation measures to promote the absorption and utilization of phosphorus uptake of rice. 【Method】Two varieties, including Zhenshan 97B and Miyang 46, were cultured in nutrient solution with different oxygen content (DOC) levels (medium oxygen: DOC 2.5-3.5 mg·L-1, high oxygen: DOC>6.0 mg·L-1, continuous bubbling with atmospheric air, and normal conditions as CK) controlled by on-line dissolved oxygen meter. After different oxygen treatments, the rice seedling growth (biomass, root morphological structure), root physiology (root activity, phosphorus absorption kinetics, phosphatase activity, root secretion of organic acids, citric acid, etc.), and phosphorus absorption and accumulation were measured and analyzed. 【Result】 (1) The medium oxygen treatment significantly promoted the occurrence and growth of tillers, and increased the biomass, root shoot ratio, phosphorus content and accumulation of the two tested varieties; The high oxygen treatment reduced the plant height and shoot biomass, but had no significant effect on root biomass. (2) Compared with the control, the total root length, surface area and total volume of root were significantly increased, and the average root diameter were significantly decreased after the medium oxygen treatment, while the high oxygen treatment was opposite to the medium. The medium and high oxygen treatment could promote the secretion of organic acids (the total amount of organic acids, oxalic acid, tartaric acid, and citric acid content increased), and increase the activity of acid phosphatase in leaves and roots. However, compared with high oxygen, the medium oxygen treatment significantly enhanced the activity of roots, optimized the kinetic parameters of phosphorus absorption, increased Imax, and decreased Km and Cmin. (3) The results of correlation analysis showed that the phosphorus accumulation and aboveground phosphorus content were significantly positively correlated with root morphology (total root length, root surface area, average diameter and total volume of root), root activity, absorption kinetic parameters Imax, the content of oxalic acid and tartaric acid, and negatively correlated with phosphorus absorption kinetic parameters Km and Cmin. The root phosphorus content of root was significantly positively correlated with root acid phosphatase, root activity, total organic acid and oxalic acid content, but not significantly with other indexes. 【Conclusion】The moderate increase of dissolved oxygen concentration (medium oxygen treatment) could improve the activity of acid phosphatase in leaves and roots, root activity, the root secretion content of oxalic acid, tartaric acid and citric acid, optimize the root morphological structure (increase the root surface area) and phosphorus uptake kinetics of rice seedlings so as to increase phosphorus content and accumulation of rice. Therefore, the selecting appropriate cultivation measures could change the rhizosphere oxygen environment and improve the ability of phosphorus absorption of rice in field planting.

Key words: rice, rhizosphere oxygen environment, phosphorus, root morphology, root physiology

Table 1

Effects of different oxygen treatments on biomass of rice seedlings"

品种
Variety
处理
Treatment
株高
Plant height (cm)
分蘖数
Tiller number
地上部干重
Shoot dry weight (g)
地下部干重
Root dry weight (g)
根冠比
Root-shoot ratio of dry weight
珍汕 97B
Zhenshan 97B
对照 Control 87.56a 4.40b 11.41b 1.81b 0.158b
中氧Middle oxygen 88.92a 5.68a 12.95a 2.31a 0.178a
高氧 High oxygen 85.38a 4.54b 10.05c 1.88b 0.187a
密阳 46
Miyang 46
对照 Control 63.77ab 5.53b 7.95ab 1.25b 0.150b
中氧 Middle oxygen 68.13a 6.13a 8.65a 1.51a 0.175a
高氧 High oxygen 62.57b 5.47b 7.09b 1.19b 0.168a
ANOVA
品种 Variety (V) ** ** ** ** *
处理 Treatment (T) * ** ** ** **
V × T ns ns ns ns ns

Table 2

Effects of different oxygen treatments on root morphology of rice seedlings"

品种
Variety
处理
Treatment
总根长
Total root length (cm)
总根系表面积
Total surface area (cm
2)
平均根粗
Average diameter
(mm)
总根系体积
Total root volume
(cm3)
珍汕 97B
Zhenshan 97B
对照 Control 1593.97b 196.29b 0.392b 1.926a
中氧 Middle oxygen 1764.58a 211.81a 0.381c 2.030a
高氧 High oxygen 1359.80c 175.94c 0.412a 1.816b
密阳 46
Miyang 46
对照 Control 1320.76b 124.27b 0.300a 0.932a
中氧 Middle oxygen 1560.55a 142.33a 0.286b 0.978a
高氧 High oxygen 1225.51c 123.99b 0.295a 0.919a
ANOVA
品种 Variety (V) ** ** ** **
处理 Treatment (T) ** ** ** ns
V × T ns * ** ns

Table 3

Effects of different oxygen treatments on phosphorus uptake of rice seedlings"

磷吸收
Phosphorus uptake
珍汕97B Zhenshan97B 密阳46 Miyang46 ANOVA
对照
Control
中氧
Medium oxygen
高氧
High oxygen
对照
Control
中氧
Medium oxygen
高氧
High oxygen
品种
Variety

(V)
处理
Treatment
(T)
V×T
地上部磷含量
Shoot phosphorus content (mg·g-1)
5.83b 6.12a 6.14a 5.42a 5.51a 5.50a ** ** ns
地下部磷含量
Root phosphorus content (mg·g-1)
5.25c 5.58b 5.90a 5.30b 5.59a 5.43ab * ** **
地上部磷积累量
Shoot phosphorus accumulation (mg)
13.30ab 13.79a 12.28b 8.61b 9.89a 7.92b ** ** ns
地下部磷积累量
Root phosphorus accumulation (mg)
1.89b 2.33a 2.10ab 1.29b 1.62a 1.33b ** ** ns
单株磷积累量
Plant phosphorus accumulation (mg)
15.19ab 16.12a 14.38b 9.90ab 10.98a 9.25b ** ** ns
地上部磷分配率
Shoot phosphorus accumulation ratio (%)
87.56a 85.55b 85.25b 86.99a 84.79b 85.59b ns ** ns
地下部磷分配率
Root phosphorus accumulation ratio (%)
12.44b 14.45a 14.75a 13.01b 15.21a 14.41a ns ** ns

Table 4

Effects of different oxygen treatments on phosphorus uptake kinetics of rice"

品种 Variety 处理 Treatment Imax (μg·g-1 root·DW·h-1) Km (mg·L-1) Cmin (mg·L-1)
珍汕97B
Zhenshan97B
对照 Control 72.88b 1.78b 1.66a
中氧Medium oxygen 97.35a 1.44c 1.20b
高氧 High oxygen 65.70c 1.85a 1.64a
密阳46
Miyang46
对照 Control 71.37a 2.08a 1.94a
中氧 Medium oxygen 72.54a 1.93b 1.83b
高氧 High oxygen 58.60b 2.05a 1.92a
ANOVA
品种 Variety (V) ** ** **
处理 Treatment (T) ** ** **
V×T ** ** **

Fig. 1

Effects of different oxygen treatments on acid phosphatase activity in leaves and roots Different letters indicate statistical significance at 0.05 probability level among different treatments of the same rice variety. The same as below"

Fig. 2

Effects of different oxygen treatments on root activities of rice seedlings"

Fig. 3

Effect of different oxygen treatments on root organic acid secretion of rice seedlings"

Table 5

Effects of different oxygen treatments on different kinds of organic acids of rice (μg·mL-1)"

品种 Variety 处理 Treatment 草酸 Oxalic acid 酒石酸 Tartaric acid 柠檬酸 Citric acid
珍汕97B
Zhenshan97B
对照 Control 0.260b 1.334b 0.015c
中氧 Medium oxygen 0.427a 4.427a 0.025b
高氧 High oxygen 0.384a 1.342b 0.028a
密阳46
Miyang46
对照 Control 0.188c 0.291b 0.044c
中氧 Medium oxygen 0.346a 0.569a 0.491a
高氧 High oxygen 0.286b 0.549a 0.122b
ANOVA
品种 Variety (V) ** ** **
处理 Treatment (T) ** ** **
V × T ns ** **

Fig. 4

Correlation analysis between phosphorus absorption index and physiological index SPC: Shoot phosphorus content; RPC: Root phosphorus content; SPA: Shoot phosphorus accumulation; RPA: Root phosphorus accumulation; TPA: Plant phosphorus accumulation; SPAR: Shoot phosphorus accumulation ratio; RPAR: Root phosphorus accumulation ratio; SD: Shoot dry weight; RD: Root dry weight; RL: Total root length; RSA: Total surface area; RAD: Average diameter; RV: Total root volume; LACP: Acid phosphatase activity in leaves; RACP: Acid phosphatase activity in root; RA: Root activity; TOA: Organic acid content; OA: Oxalic acid; TA: Tartaric acid; CA: Citric acid. * and *** indicated significant correlations at 0.05 and 0.01 levels, respectivel"

[1] 马斌, 李群, 何祖华. 磷平衡机制与水稻产量调控. 植物生理学报, 2020, 56(10): 2017-2028.
MA B, LI Q, HE Z H. Control of grain yield via best understanding of phosphorus homeostasis in rice. Plant Physiology Journal, 2020, 56(10): 2017-2028. (in Chinese)
[2] MAATHUIS F J M. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 2009, 12(3): 250-258.
doi: 10.1016/j.pbi.2009.04.003 pmid: 19473870
[3] 梁翠月, 廖红. 植物根系响应低磷胁迫的机理研究. 生命科学, 2015, 27(3): 389-397.
LIANG C Y, LIAO H. Molecular mechanisms underlying the responses of plant roots to low P stress. Chinese Bulletin of Life Sciences, 2015, 27(3): 389-397. (in Chinese)
[4] 韩梅, 李东坡, 武志杰, 油伦成, 崔磊, 杨立杰. 持续六年施用不同磷肥对稻田土壤磷库的影响. 土壤通报, 2018, 49(4): 929-935.
HAN M, LI D P, WU Z J, YOU L C, CUI L, YANG L J. Response of soil phosphorus pool after 6 years application of different phosphorus fertilizers in a paddy field. Chinese Journal of Soil Science, 2018, 49(4): 929-935. (in Chinese)
[5] 龚海青, 张敬智, 陈晨, 郜红建, 常江, 章力干, 丁玉宇. 磷肥后移与减量对水稻磷素利用效率的影响. 中国农业大学学报, 2017, 22(5): 144-152.
GONG H Q, ZHANG J Z, CHEN C, GAO H J, CHANG J, ZHANG L G, DING Y Y. Effect of phosphorus fertilizer postpone and reduction on phosphorus utilization efficiency of rice. Journal of China Agricultural University, 2017, 22(5): 144-152. (in Chinese)
[6] 张忠学, 姜丽莉, 陈鹏, 聂堂哲, 陈帅宏, 赵健. 水磷运筹对水稻产量和磷素吸收与利用的影响. 农业机械学报, 2019, 50(9): 310-319.
ZHANG Z X, JIANG L L, CHEN P, NIE T Z, CHEN S H, ZHAO J. Effects of water and phosphorus operation on rice yield and phosphorus absorption and utilization. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 310-319. (in Chinese)
[7] 史燕捷, 金梦灿, 朱远芃, 马超, 叶新新, 郜红建. 水稻秸秆还田下磷肥减量对小麦产量及养分利用效率的影响. 中国土壤与肥料, 2020, 285(1): 75-81.
SHI Y J, JIN M C, ZHU Y P, MA C, YE X X, GAO H J. Effects of reducing phosphorus fertilizer on wheat yield and nutrient use efficiency under rice straw return condition. Soil and Fertilizer Sciences in China, 2020, 285(1): 75-81. (in Chinese)
[8] 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯, 刘守坎, 金千瑜, 朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响. 中国农业科学, 2021, 54(7): 1525-1536.
HU J J, ZHONG C, HU Z H, ZHANG J H, CAO X C, LIU S K, JIN Q Y, ZHU L F. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536. (in Chinese)
[9] 徐春梅, 陈丽萍, 王丹英, 陈松, 章秀福, 石庆华. 低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响. 中国农业科学, 2016, 49(8): 1625-1634.
XU C M, CHEN L P, WANG D Y, CHEN S, ZHANG X F, SHI Q H. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings. Scientia Agricultura Sinica, 2016, 49(8): 1625-1634. (in Chinese)
[10] RAKOTOSON T, HOLZ M, WISSUWA M. Phosphorus deficiency tolerance in Oryza sativa: root and rhizosphere traits. Rhizosphere, 2020, 14: 100198.
doi: 10.1016/j.rhisph.2020.100198
[11] DINO A G, YOSHIAKI U, ENRICO H P, MATTHIAS W. Genetic and physiological traits for internal phosphorus utilization efficiency in rice. PLoS ONE, 2020, 15(11): e0241842-e0241842.
doi: 10.1371/journal.pone.0241842
[12] DING Y, WANG Z G, MO S R, LIU J, XING Y, WANG Y P, GE C L, WANG Y L. Mechanism of low phosphorus inducing the main root lengthening of rice. Journal of Plant Growth Regulation, 2020, 40(3): 1032-1043.
doi: 10.1007/s00344-020-10161-w
[13] 郭玉春, 林文雄, 石秋梅, 梁义元, 何华勤, 陈芳育. 低磷胁迫下不同磷效率水稻苗期根系的生理适应性研究. 应用生态学报, 2003, 14(1): 61-65.
GUO Y C, LIN W X, SHI Q M, LIANG Y Y, HE H Q, CHEN F Y. Physiological adaptability of seeding rice genotypes with different P uptake efficiency under low P deficient stress. Chinese Journal of Applied Ecology, 2003, 14(1): 61-65. (in Chinese)
[14] 蔡银美, 赵庆霞, 张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展. 东北农业大学学报, 2021, 52(2): 79-86.
CAI Y M, ZHAO Q X, ZHANG C F. Effect of plant root exudates on soil phosphorus transformation under low phosphorus: A review. Journal of Northeast Agricultural University, 2021, 52(2): 79-86. (in Chinese)
[15] 乔胜锋, 邓亚萍, 瞿寒冰, 张伟杨, 顾骏飞, 张耗, 刘立军, 王志琴, 杨建昌. 不同籼稻品种对低磷响应的差异及其农艺生理性状. 中国水稻科学, 2021, 35(4): 396-406.
doi: 10.16819/j.1001-7216.2021.210304
QIAO S F, DENG Y P, QU H B, ZHANG W Y, GU J F, ZHANG H, LIU L J, WANG Z Q, YANG J C. Differences in response to low phosphorus stress among indica rice varieties and their agronomic and physiological characteristics. Chinese Journal of Rice Science, 2021, 35(4): 396-406. (in Chinese)
doi: 10.16819/j.1001-7216.2021.210304
[16] XU F Y, SONG T, WANG K, XU W F, CHEN G L, XU M, ZHANG Q, LIU J P, ZHU Y Y, RENSING C, ZHANG J H, YUAN W. Frequent alternate wetting and drying irrigation mitigates the effect of low phosphorus on rice grain yield in a 4-year field trial by increasing soil phosphorus release and rice root growth. Food and Energy Security, 2020, 9(3): e206.
[17] 徐春梅, 王丹英, 陈松, 陈丽萍, 章秀福. 增氧对水稻根系生长与氮代谢的影响. 中国水稻科学, 2012, 26(3): 320-324.
doi: 10.3969/j.issn.10017216.2012.03.010
XU C M, WANG D Y, CHEN S, CHEN L P, ZHANG X F. Effect of aeration on root growth and nitrogen metabolism in rice. Chinese Journal of Rice Science, 2012, 26(3): 320-324. (in Chinese)
doi: 10.3969/j.issn.10017216.2012.03.010
[18] 赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征. 作物学报, 2010, 36(2): 303-312.
doi: 10.3724/SP.J.1006.2010.00303
ZHAO F, WANG D Y, XU C M, ZHANG W J, LI F B, MAO H J, ZHANG X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere. Acta Agronomica Sinica, 2010, 36(2): 303-312. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00303
[19] 周晚来, 易永健, 屠乃美, 谭志坚, 汪洪鹰, 杨媛茹, 王朝云, 易镇邪. 根际增氧对水稻根系形态和生理影响的研究进展. 中国生态农业学报, 2018, 26(3): 367-376.
ZHOU W L, YI Y J, TU N M, TAN Z J, WANG H Y, YANG Y R, WANG C Y, YI Z X. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367-376. (in Chinese)
[20] 徐春梅, 谢涛, 王丹英, 陈松, 计成林, 章秀福, 石庆华. 根际氧浓度对水稻分蘖期养分吸收和根系形态的影响. 中国水稻科学, 2015, 29(6): 619-627.
doi: 10.3969/j.issn.1001G7216.2015.06.008
XU C M, XIE T, WANG D Y, CHEN S, JI C L, ZHANG X F, SHI Q H. Effects of rhizosphere oxygen concentration on nutrient uptake and root morphology of rice at tillering stage. Chinese Journal of Rice Science, 2015, 29(6): 619-627. (in Chinese)
doi: 10.3969/j.issn.1001G7216.2015.06.008
[21] 张志良, 翟伟菁. 植物生理学实验指导第三版. 北京: 高等教育出版社, 2003.
ZHANG Z L, ZHAI W J. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2003. (in Chinese)
[22] 郜红建, 常江, 张自立, 丁士明, 魏俊岭. 研究植物根系分泌物的方法. 植物生理学通讯, 2003, 39(1): 56-60.
GAO H J, CHANG J, ZHANG Z L, DING S M, WEI J L. Methods for investigating root exudates of plants. Plant Physiology Communications, 2003, 39(1): 56-60. (in Chinese)
[23] 蒋廷惠, 郑绍建, 石锦芹, 胡霭堂, 史瑞和, 徐茂. 植物吸收养分动力学研究中的几个问题. 植物营养与肥料学报, 1995, 1(2): 11-17.
JIANG T H, ZHENG S J, SHI J Q, HU A T, SHI R H, XU M. Several considerations in kinetic research on nutrients uptake by plants. Journal of Plant Nutrition and Fertilizers, 1995, 1(2): 11-17. (in Chinese)
[24] HAYES P E, ADEM G D, PARIASCA-TANAKA J, WISSUWA M. Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency. Annals of Botany, 2021, 129(3): 287-302.
doi: 10.1093/aob/mcab138 pmid: 34875007
[25] SONG T, DAS D, HU Q J, YANG F, ZHANG J H. Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Science of the Total Environment, 2021, 752: 141862-141862.
doi: 10.1016/j.scitotenv.2020.141862
[26] LAMBERS H, RAVEN J A, SHAVER G R, SMITH S E. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 2007, 23(2): 95-103.
doi: 10.1016/j.tree.2007.10.008
[27] 李孝龙, 周俊, 彭飞, 钟宏韬, LAMBERS H. 植物养分捕获策略随成土年龄的变化及生态学意义. 植物生态学报, 2021, 45(7): 714-727.
doi: 10.17521/cjpe.2021.0160
LI X L, ZHOU J, PENG F, ZHONG H T, LAMBERS H. Temporal trends of plant nutrient-acquisition strategies with soil age and their ecological significance. Chinese Journal of Plant Ecology, 2021, 45(7): 714-727. (in Chinese)
doi: 10.17521/cjpe.2021.0160
[28] DENG Y P, MEN C B, QIAO S F, WANG W J, GU J F, LIU L J, ZHANG Z J, ZHANG H, WANG Z Q, YANG J C. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. The Crop Journal, 2020, 8(4): 534-547.
doi: 10.1016/j.cj.2020.01.002
[29] YANG C, YANG L, YANG Y, ZHU O. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 2004, 70(1): 67-81.
doi: 10.1016/j.agwat.2004.05.003
[30] BEKTAS H, HOHN C E, WAINES J G. Root and shoot traits of bread wheat (Triticum aestivum L.) landraces and cultivars. Euphytica, 2016, 212(2): 1-15.
doi: 10.1007/s10681-015-1511-3
[31] 李锋, 潘晓华, 刘水英, 李木英, 杨福孙. 低磷胁迫对不同水稻品种根系形态和养分吸收的影响. 作物学报, 2004, 30(5): 438-442.
LI F, PAN X H, LIU S Y, LI M Y, YANG F S. Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agronomica Sinica, 2004, 30(5): 438-442. (in Chinese)
[32] 褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35(6): 586-594.
doi: 10.16819/j.1001-7216.2021.201213
CHU G, XU R, CHEN S, XU C M, LIU Y H, ZHANG X F, WANG D Y. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice. Chinese Journal of Rice Science, 2021, 35(6): 586-594. (in Chinese)
doi: 10.16819/j.1001-7216.2021.201213
[33] 郭士伟, 夏士健, 朱虹霞, 张云华, 施卫明. 水稻根系活力测定方法及超级稻两优培九生育后期根系活力研究. 土壤, 2012, 44(2): 308-311.
GUO S W, XIA S J, ZHU H X, ZHANG Y H, SHI W M. Factors influencing collecting amount of rice roots bleeding and investigation on roots vigor after heading. Soils, 2012, 44(2): 308-311. (in Chinese)
[34] XU C M, CHEN L P, CHEN S, CHU G, WANG D Y, ZHANG X F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Annals of Applied Biology, 2020, 177(1): 61-73.
doi: 10.1111/aab.12589
[35] 赵宽, 周葆华, 马万征, 羊礼敏. 不同环境胁迫对根系分泌有机酸的影响研究进展. 土壤, 2016, 48(2): 235-240.
ZHAO K, ZHOU B H, MA W Z, YANG L M. The influence of different environmental stresses on root-exuded organic acids: A review. Soils, 2016, 48(2): 235-240. (in Chinese)
[36] 王永壮, 陈欣, 史奕, 鲁彩艳. 低分子量有机酸对土壤磷活化及其机制研究进展. 生态学杂志, 2018, 37(7): 2189-2198.
WANG Y Z, CHEN X, SHI Y, LU C Y. Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms. Chinese Journal of Ecology, 2018, 37(7): 2189-2198. (in Chinese)
[37] LIANG S, WANG Y H, ZHANG H, YUN X Y, WU Y. Response of root-exuded organic acids in irrigated rice to different water management practices. Eurasian Soil Science, 2020, 53(11): 1572-1578.
doi: 10.1134/S1064229320110101
[38] BI J G, HOU D P, ZHANG X X, TAN J S, BI Q Y, ZHANG K K, LIU Y, WANG F M, ZHANG A N, CHEN L, LIU G L, LIU Z C, YU X I, LUO L J. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving condition. Journal of Cleaner Production, 2021, 315: 127992.
doi: 10.1016/j.jclepro.2021.127992
[39] 惠乾龙, 叶文彬, 郭晋隆, 袁照年, 许莉萍. 植物磷匮乏下的根系、代谢和分子响应研究进展. 中国糖料, 2021, 43(3): 34-42.
HUI Q L, YE W B, GUO J L, YUAN Z N, XU L P. Insights into the roots, metabolic adaptations and molecular responses to phosphorus deprived plants. Sugar Crops of China, 2021, 43(3): 34-42. (in Chinese)
[40] 林文雄, 石秋梅, 郭玉春, 梁义元, 何华勤, 陈芳育. 水稻磷效率差异的生理生化特性. 应用与环境生物学报, 2003, 9(6): 578-583.
LIN W X, SHI Q M, GUO Y C, LIANG Y Y, HE H Q, CHEN F Y. Physio-biochemical characters of P-efficient differences in rice (Oryza sativa L.). Chinese Journal of Applied and Environmental Biology, 2003, 9(6): 578-583. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[3] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[13] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[14] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[15] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!