Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (23): 4759-4768.doi: 10.3864/j.issn.0578-1752.2015.23.017

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Rice Yield to Inherent Soil Productivity of Paddies and Fertilization in Sichuan Basin

LIANG Tao1,2, CHEN Xuan-jing1, ZHAO Ya-nan1, HUANG Xing-cheng1, LI Hong1SHI Xiao-jun1,3, ZHANG Yue-qiang1,3   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400716
    2Beibei Seed Management Station, Chongqing 400700
    3National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Chongqing 400716)
  • Received:2015-09-17 Online:2015-12-01 Published:2015-12-01

Abstract: 【Objective】Sichuan basin is the main region of single-season rice in China. This paper studied the inherent productivity of paddies, the nutrient supply capacity of paddy soils and the effect of fertilization of paddy in order to evaluate effect on soil inherent productivity of paddies and the effect of fertilization on rice yield. The aim of the study is to provide theoretical basis for improvement in soil fertility and regional rational fertilization. 【Method】The total 474 field experiments were used to evaluate the yield-based inherent soil productivity, nutrient supply capacity of nitrogen (N), phosphorus (P) and potassium (K) and fertilization response with five treatments (unfertilized control, PK, NK, NP and NPK) during 2005 to 2010 in Sichuan basin. The effect of fertilization, yield stability and sustainability based on the yield of rice under different inherent productivity of paddy soils were also assessed. Meanwhile, it analysed the change trend of soil inherent productivity of paddies for more than 30 years in Sichuan basin. 【Result】 It showed that there was a steady improvement of soil inherent productivity in Sichuan basin from literature survey. The rice yield based on soil inherent productivity is between 5.6 to 6.4 t·hm-2 since 2000 and increased 1.5 t·hm-2 than that between 1980 to 2000. The contribution rate of soil productivity also rose by 6.7%. Field trials showed that the contribution rates of inherent productivity and fertilizer to rice yield is 67.4-75.9% and 24.1-32.6% respectively. The supply capacity of nitrogen, phosphorus, and potassium in Sichuan basin paddy soil were 103-120, 23.2-27.5, 139-185 kg·hm-2. The average contribution rate of nutrient supply capacity on yield were 78.2%, 88.8% and 90.8%, respectively and the contribution rate of fertilization on yield is less than 30%. The increment by different fertilizers was largest with N fertilization followed by P and K fertilization. The inherent soil productivity and nutrient supply capacity differed among regions (Chengdu plain>middle shallow hilly zone in Sichuan basin>peripheral hilly zone in Sichuan basin>eastern hilly zone in Sichuan basin). Plots with higher inherent soil productivity can result in higher yield when NPK fertilizer was applied. There is a significant and positive correlation between contribution rate of soil fertility to yield and inherent soil productivity, but the correlation between contribution rate of fertilizer to yield and inherent soil productivity was significantly negative. It also found that sustainable index and stability index of rice yield was increased with improvement of inherent soil productivity. 【Conclusion】 We concluded that improving inherent soil productivity of paddies can promote rice yield while decrease its dependence on fertilization but is also beneficial to sustainable rice production.

Key words: paddy field, inherent soil productivity, yield, fertilization, Sichuan basin

[1]    Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12: 3-8.
[2]    Fan M S, Lal R, Cao J, Qiao L, Su Y S, Jiang R F, Zhang F S. Plant-based assessment of inherent soil productivity and contributions to China’s cere crop yield increase since 1980. Plos One, 2013, 09, 8(9): 1-11.
[3]    Ma L, Feng S Y, Reidsma P, Qu F T, Heerink N. Identifying entry points to improve fertilizer use efficiency in Taihu basin, China. Land Use Policy, 2014, 37: 52-59.
[4]    王伟妮, 鲁剑巍, 陈防, 鲁明星, 李慧, 李小坤. 湖北省水稻施肥效果及肥料利用效率现状研究. 植物营养与肥料学报, 2010, 16(2): 289-295.
Wang W N, Lu J W, Chen F, Lu M X, Li H, Li X K. Study on fertilization effect and fertilizer use efficiency of rice in Hubei province. Journal of Plant Nutrition and Fertilizer Science, 2010, 16(2): 289-295. (in Chinese)
[5]    张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiency of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[6]    Huang Y, Sun W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 2006, 51(15): 1785-1803.
[7]    李忠芳, 张水清, 李慧, 张会民, 逄焕成, 娄翼来, 徐明岗. 长期施肥下中国水稻土基础地力变化趋势与分析. 植物营养与肥料学报, http://www.cnki.net/kcms/detail/11.3996.S.20150702.0923.001.html.
Li Z F, Zhang S Q, LI H, Zhang H M, Pang H C, Lou Y L, Xu M G. Trends of basic soil productivity in paddy soil under long-term fertilization in China. Journal of Plant Nutrition and Fertilizer Science, http://www.cnki.net/kcms/detail/11.3996.S.20150702.0923. 001.html. (in Chinese)
[8]    汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征. 农业环境科学学报. 2009, 28(5): 1070-1078.
Tang Y H, Huang Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in Mainland China. Journal of Agro-Environment Science, 2009, 28(5): 1070-1078. (in Chinese)
[9]    曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012, 45(14): 2886-2894.
Zeng X M, Han B J, Xu F S, Huang J L, Cai H M, Shi L. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. (in Chinese)
[10]   白由路. 植物营养与肥料研究的回顾与展望. 中国农业科学, 2015, 48(17): 3477-3492.
Bai Y L. Review on research in plant nutrition and fertilizers. Scientia Agricultura Sinica, 2015 , 48(17): 3477-3492. (in Chinese)
[11]   孙园园, 孙永健, 秦俭, 杨致远, 陈林, 徐徽, 马均. 四川不同稻作生态区安全播种期变化及其空间分布. 中国农业气象, 2013, 34(1): 58-63.
Sun Y Y, Sun Y J, Qin J, Yang Z Y, Chen L, Xu H, Ma J. Temporal and spatial variation of safe sowing date in different rice cultivation zones in Sichuan. Chinese Journal of Agrometeorology, 2013, 34(1): 58-63. (in Chinese)
[12]   鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2007.
Bao S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[13]   王定勇, 石孝均, 毛知耘. 长期水旱轮作条件下紫色土养分供应能力的研究. 植物营养与肥料学报, 2004, 10(2): 120-126.
Wang D Y, Shi X J, Mao Z Y. Study on nutrient supplying capacity of purple soil under long-term rice-wheat rotation. Journal of Plant Nutrition and Fertilizer Science, 2004, 10(2): 120-126. (in Chinese)
[14]   Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture Ecosystems and Environment, 2009, 129: 344-348.
[15]   鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平. 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015, 52(3): 597-605.
Lu Y H, Liao Y L, Zhou X, Nie J, Xie J, Yang Z P. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system. Acta Pedologica Sinica, 2015, 52(3): 597-605. (in Chinese)
[16]   王清奎, 汪思龙, 冯宗炜, 黄宇. 土壤活性有机质及其与土壤质量的关系. 生态学报, 2005, 25(3): 513-518.
Wang Q K, Wang S L, Feng Z W, Huang Y. Active soil organic matter and its relationship with soil quality. Acta Ecologica Sinica, 2005, 25(3): 513-518. (in Chinese)
[17]   Lal R. Food insecurity’s dirty secret. Science, 2008, 322: 673–674.
[18]   Johnston A E, Poulton P R, Coleman K. Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy, 2009,101: 1-57.
[19]   包耀贤, 黄庆海, 徐明岗,于寒青. 长期不同施肥下红壤性水稻土综合肥力评价及其效应. 植物营养与肥料学报, 2013, 19(1): 74-81.
Bao Y X, Huang Q H, Xu M G, Yu H Q. Assessment and effects of integrated soil fertility in red paddy soil under different long-term fertilization. Plant Nutrition and Fertilizer Science, 2013, 19(1): 74-81. (in Chinese)
[20]   刘晓利, 何园球, 李成亮, 王艳玲. 不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征. 土壤学报, 2008, 45(3): 459-465.
Liu X L, He Y Q, Li C L, Wang Y L. Distribution and physical properties of soil water-stable aggregates in red soil different in land use and soil fertility. Acta Pedologica Sinica, 2008, 45(3): 459-465. (in Chinese)
[21]   Dilly O, Munch J C. Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 1998, 27: 374-379.
[22]   李娟, 赵秉强, 李秀英. 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响. 中国农业科学, 2008 ,41(1): 144-152.
Li J, Zhao B Q, Li X Y. Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility. Scientia Agricultura Sinica, 2008, 41(1): 144-152. (in Chinese)
[23]   黄欠如, 胡锋, 李辉信, 赖涛, 袁颖红. 红壤性水稻土施肥的产量效应及与气候、地力的关系. 土壤学报, 2006, 43(6): 926-933.
Huang Q R, Hu F, Li H X, Lai T, Yuan Y H. Crop yield response to fertilization and its relations with climate and soil fertility in red paddy soil. Acta Pedologica Sinica, 2006, 43(6): 926-933. (in Chinese)
[24]   宇万太, 姜子绍, 周桦, 马强, 沈善敏. 不同施肥制度对作物产量及肥料贡献率的影响. 中国生态农业学报, 2007, 15(6): 54-58.
Yu W T, Jiang Z S, Zhou Y, Ma Q, Shen S M. Crop yield and fertilizer contribution under different fertilization systems. Chinese Journal of Eco-Agriculture, 2007, 15(6): 54-58. (in Chinese)
[25]   王伟妮, 鲁剑巍, 李银水, 邹娟, 苏伟, 李小坤, 李云春. 当前生产条件下不同作物施肥效果和肥料贡献率研究. 中国农业科学, 2010, 43(19): 3997-4007.
Wang W N, Lu J W, Li Y S, Zou J, Su W, Li X K, Li Y C. Study on fertilization effect and fertilizer contribution rate of different crops at present production conditions. Scientia Agricultura Sinica, 2010, 43(19): 3997-4007. (in Chinese)
[26]   田秀英, 石孝均. 不同施肥对稻麦养分吸收利用的影响. 重庆师范学院学报: 自然科学版, 2003, 20(2): 44-47.
Tian X Y, Shi X J. The effects of different fertilizers on the absorption and utilization of rice and wheat. Journal of Chongqing Normal University: Natural Science Edition,2003, 20(2): 44-47. (in Chinese)
[27]   陈新红, 徐国伟, 王志琴. 结实期水分与氮素对水稻氮素利用与养分吸收的影响. 干旱地区农业研究, 2004, 22(2): 35-41.
Chen X H, Xu G W, Wang Z Q. Effects of water and nitrogen on nitrogen utilization and nutrient uptake of rice at late stage.Agricultural Research in the Arid Areas, 2004, 22(2): 35-41. (in Chinese)
[28]   孙永健, 孙园园, 李旭毅. 水氮互作对水稻氮磷钾吸收、转运及分配的影响. 作物学报, 2010, 36(4): 655-664.
Sun Y J, Sun Y Y, Li X Y. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice. Acta Agronomica Sinica, 2010, 36(4): 655-664. (in Chinese)
[29]   张祥明, 郭熙盛, 武际, 王允青, 李霞红, 陈景道. 江淮地区稻田基础土壤肥力与水稻合理施用技术研究. 中国农学通报, 2009, 25(15): 131-135.
Zhang X M, Guo X S, Wu J, Wang Y Q, Li X H, Chen J D. Research on basic soil fertility and reasonable fertilization technology in paddy fields in the Jianghuai Region. Chinese Agricultural Science Bulletin, 2009, 25(15): 131-135. (in Chinese)
[30]   张军, 张洪程, 段祥茂, 徐宗进, 杨波, 郭保卫, 杜斌, 戴其根, 许轲, 霍中洋, 魏海燕. 地力与施氮量对超级稻产量、品质及氮素利用率的影响. 作物学报, 2011, 37(11): 2020-2029.
Zhang J, Zhang H C, Duan X M, Xu Z J, Yang B, Guo B W, Du B, Dai Q G, Xu K, Huo Z Y, Wei H Y. Effects of soil fertility and nitrogen application rates on super rice yield, quality, and nitrogen use efficiency. Acta Agronomica Sinica, 2011, 37(11): 2020-2029. (in Chinese)
[31]   Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418: 671-678.
[32]   Wang J Z, Wang X J, Xu M G, Feng G, Zhang W J, Lu C A. Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 2015(102): 371-381.
[33]   Pan G X, Zhou P, Li Z P, Pete Smith, Li L Q, Qiu D S, Zhang X H, Xu X B, Shen S Y, Chen X M. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture, Ecosystems and Environment, 2009, 131(3/4): 274-280.
[34]   曾希柏, 张佳宝, 魏朝富, 宇万太, 黄道友, 徐明岗, 徐建明. 中国低产田状况及改良策略, 土壤学报, 2014, 51(4): 675-682.
Zeng X B, Zhang J B, Wei C F, Yu W T, Huang D Y, Xu M G, Xu J M. The status and reclamation strategy of low-yield fields in China. Acta Pedologica Sinica, 2014, 51(4): 675-682. (in Chinese)
[35]   Chen X P, Cui Z L, Fan M S, Peter Vitousek, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Gup S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, M L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!