Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (17): 3372-3387.doi: 10.3864/j.issn.0578-1752.2015.17.005

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Twenty Years of Research and Application of Transgenic Cotton in China

GUO San-dui1, WANG Yuan1, SUN Guo-qing1, JIN Shi-qiao2, ZHOU Tao1, MENG Zhi-gang1, ZHANG Rui1   

  1. 1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    2The National Agro-Tech Extension and Service Center, Beijing 100125
  • Received:2015-01-19 Online:2015-09-01 Published:2015-09-01

Abstract: Genetic engineering mainly deals with the transfer and expression of functional genes into the targeted genome of an organism to have desired phenotype. This technique has stunned the limitations of sexual hybridization by allowing the transfer of genes among species from prokaryotes to eukaryotes, unicellular to multicellular, lower organisms to higher organisms and Vice versa. This technology has opened the avenues of research, and since its invention scientists are readily using it in the field of agriculture, forestry and medicine. The use of different techniques like agrobacterium mediated transformation has made it possible to transfer different genes to the targeted genomes for deploying the resistance against biotic and abiotic stresses like diseases, insect/pests, drought and salinity as well as for the improvement of yield and quality of plants. Since the birth of first transgenic tobacco in 1983, more than 200 plant species have been used by the researchers for genetic transformation and some thousands of transgenic plants of 40 species are under field trials. International Service for the Acquisition of Agri-Biotech Applications (ISAAA) has reported the dramatic increase in area under transgenic plant, i.e. 2.6 million hectares in 1996 to 181.5 million hectares in 2014 around the whole globe. The accumulated area of transgenic crops in the world is 80% more than the total land of China. With the global large scale adoption and application of transgenic plants development technology, seven transgenic plants also have been approved by Chinese government for general cultivation. Among these, insect resistant transgenic cotton including series of GK and SGK cotton cultivars developed by the Chinese scientists in 1994 and 1998 respectively, as well as the Boll guard imported from USA in 1995 was the only crop occupying the large cultivated area of China. This paper discussed the course of development of transgenic cotton for resistance against diseases, insects and herbicides as well as for the improvement of fiber yield and quality in China and improved methods of genetic transformation like Agrobacterium mediated, tissue culture, gene gun bombardment, pollen tube pathway, shoot tip, floral-dip and nano-carrier pollen mediated transformations. Finally this paper also discussed the biosafety system regarding the transgenic plants development, Bt cotton seed industry and future prospects of transgenic cotton in China.

Key words: insect resistant cotton, transgene, biosafety evaluation, variety, industrialization

[1]    转基因权威关注: http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/.
GM authority concerned: http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/. (in Chinese)
[2]    郭三堆, 倪万潮, 徐琼芳. 编码杀虫蛋白融合基因和表达载体及其应用: 中国, ZL95119563.8.
Guo S D, Ni W C, Xu Q F. Encoding insecticidal protein fusion gene and expression vectors and its application: China, ZL95119563.8. (in Chinese)
[3]    郭三堆, 崔洪志, 倪万潮. 两种编码杀虫蛋白质基因和双价融合表达载体及其应用:中国, ZL98102885.3.
Guo S D, Cui H Z, Ni W C. Two genes encoding insecticidal proteins and double fusion expression vector and itsapplication: China, ZL98102885.3. (in Chinese)
[4]    崔金杰, 雒瑶瑜, 王春义, 马艳, 李春花. 转双价基因棉田主要害虫及其天敌的种群动态. 棉花学报, 2004, 16(2): 94-101.
Cui J J, Luo J Y, Wang C Y, Ma Y, Li C H. Population dynamics of main pests and enemies in the transgenic Cry1Ac+ CpTI cotton field. Acta Gossypii Sinica, 2004, 16(2): 94-101. (in Chinese)
[5]    王伟, 朱祯, 高越峰, 石春林, 陈宛新, 郭仲琛, 李向辉. 双价抗虫基因陆地棉转化植株的获得. 植物学报, 1999, 41(4): 384-388.
Wang W, Zhu Z, Gao Y F, Shi C L, Chen W X, Guo Z C, Li X H. Obtaining a transgenic upland cotton harboring two insecticidal genes. Acta Botanica Sinica, 1999, 41(4): 384-388. (in Chinese)
[6]    刘志, 郭旺珍, 朱协飞, 朱祯, 张天真. 转Bt+GNA双价基因抗虫棉花的抗虫性表现特征. 高技术通讯, 2003(1): 37-41.
Liu Z, Guo W Z, Zhu X F, Zhu Z, Zhang T Z. Go Bt+GNA of bivalent insect-resistant gene zoophobous cotton features. High Technology Letters, 2003(1): 37-41. (in Chinese)
[7]    吴家和, 田颖川, 罗晓丽, 郭洪年, 石跃进, 陈晓英, 贾燕涛, 肖娟丽, 张献龙. 转两类抗虫基因棉花优良纯合品系的选育. 中国农业科学, 2003, 36(6): 651-656.
Wu J H, Tian Y C, Luo X L, Guo H N, Shi Y J, Chen X Y, Jia Y T, Xiao J L, Zhang X L. Selection of homozygous cotton lines transformed with two types of insect-resistant genes. Scientia Agricultura Sinica, 2003, 36(6): 651-656. (in Chinese)
[8]    肖松华, 吴巧娟, 刘剑光, 柏立新, 束春娥, 肖留斌. 转野生荠菜凝集素基因棉花对棉蚜的抗性鉴定. 江西农业学报, 2006, 18(5): 46-50.
Xiao S H, Wu Q J, Liu J G, Bai L X, Shu C E, Xiao L B. Identification on resistance of trans- wild shepherd’s purse agglutinin gene cotton (Gossypium hirsutum) to Aphis (Aphis gossypii). Acta Agriculturae Jiangxi, 2006, 18(5): 46-50. (in Chinese)
[9]    张林水, 朱祯, 吴霞, 姜艳丽, 徐鸿林, 上官小霞, 李波, 李燕娥. 转三价抗虫基因彩色棉的获得. 西北植物学报, 2005, 25(6): 1126-1131.
Zhang L S, Zhu Z, Wu X, Jiang Y L, Xu H L, Shangguan X X, Li B, Li Y E. Acquisition of transgenic colour cotton with a trivalent insect-resistant gene. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(6): 1126-1131. (in Chinese)
[10]   雒瑶瑜, 崔金杰, 王春义, 辛惠江. 转Cry1Ac+Cry2ab基因棉花对小地老虎生长发育的影响. 棉花学报, 2014, 26(5): 179-183.
Luo J Y, Cui J J, Wang C Y, Xin H J. Effects of transgenic Cry1Ac plus Cry2Ab cotton on blank cutworm (Agrotis ypsilon Rottemberg) growth and development. Cotton Science, 2014, 26(5): 179-183. (in Chinese)
[11]   McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis toxins. Science, 1992, 258: 1451-1455.
 [12]刘超, 朱彦卓, 代文俊, 任燕萍. 转基因棉花抗逆性研究进展. 湖南农业科学, 2014(15): 32-35.
Liu C, Zhu Y Z, Dai W J, Ren Y P. Advances in stress resistance research on transgenic cotton. Hunan Agricultural Sciences, 2014(15): 32-35. (in Chinese)
[13]   吕素莲. 转betA和TsVP基因提高棉花耐盐、抗旱性的研究[D]. 济南: 山东大学, 2007.
Lü S L. Go beta and TsVP gene cotton resistant to salt and drought resistance research [D]. Jinan: Shandong University, 2007. (in Chinese)
[14]   曹燕燕, 廖平安, 葛昌斌, 沈向磊, 杨业华. 转rolB基因棉花抗旱性研究. 湖南农业科学, 2012(15): 1-2, 5.
Cao Y Y, Liao P A, Ge C B, Shen X L, Yang Y H. Drought resistance of rolB transgenic cotton. Hunan Agricultural Sciences, 2012(15): 1-2, 5. (in Chinese)
[15]   王娟. 转ZmPIS基因及聚合betA/TsVP基因提高棉花耐旱性的研究[D]. 济南: 山东大学, 2010.
Wang J. Go ZmPIS betA/TsVP gene and polymerization to improve drought tolerance of cotton research [D]. Jinan: Shandong University, 2010. (in Chinese)
[16]   吴伟. 转ZmPLCI-betA 基因棉花的耐旱性研究[D]. 济南: 山东大学, 2012.
Wu W.Study ondrought toleranceoftransgeniccottonwithZmPLCI- betAgene[D]. Jinan: Shandong University, 2012. (in Chinese)
[17]   杨云尧. 转MVP5CS和MvNHX1基因提髙棉花抗旱性的研究[D]. 乌鲁木齐: 新疆农业大学, 2012.
Yang Y Y. Go MVP5CS and MvNHX1 genes of higher drought resistance of cotton research [D]. Urumqi: Xinjiang Agricultural University, 2012. (in Chinese)
[18]   蔡永智. 转CBF1和KatG基因棉花抗旱性分析[D]. 石河子: 石河子大学, 2013.
Cai Y Z. CBF1 KatG gene and analysis of drought resistance of cotton [D]. Shihezi: Shihezi University, 2013. (in Chinese)
[19]   钱进, 杨云尧, 任燕萍, 朱超, 陈全家, 张桦. 转MvNHX1基因棉花抗旱性研究和株系变异分析. 分子植物育种, 2014, 12(1): 80-86.
Qian J, Yang Y Y, Ren Y P, Zhu C, Chen Q J, Zhang H. The study on drought resistance and variation analysis in transgenic MvNHX1 cotton. Molecular Plant Breeding, 2014, 12(1): 80-86. (in Chinese)
[20]   Gu L, Zhang H, Guo H, Cheng H. Cloning of Ammopiptanthus mongolicus C-repeat-binding factor gene and its cold-induced tolerance in transgenic tobacco. Brazilian Archives of Biology and Technology, 2013, 56(6): 895-903.
[21]   张慧军, 董合忠, 石跃进, 陈受宜, 朱永红. 山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达. 作物学报, 2007, 33(7): 1073-1078.
Zhang H J, Dong H Z, Shi Y J, Chen S Y, Zhu Y. Hong transformation of cotton (Gossypium hirsutum L.) with AhCMO gene and the expression of salinity tolerance. Acta Agronomica Sinica, 2007, 33(7): 1073-1078. (in Chinese)
[22]   连丽君. betA基因的异源表达提高了棉花耐盐和耐低温能力[D]. 济南: 山东大学, 2008.
Lian L J. Heterologous expression of beta gene improves salt tolerance in cotton and low temperature-resistant ability [D]. Jinan: Shandong University, 2008. (in Chinese)
[23]   樊文菊. 转ZmPLC1基因及聚合ZmPLC1/betA基因棉花耐盐性的研究[D]. 济南: 山东大学, 2013.
Fan W J. ZmPLC1 gene and the ZmPLC1/beta study on salt-tolerance of transgenic cotton [D]. Jinan: Shandong University, 2013. (in Chinese)
[24]   陈翠霞, 于元杰, 刘风珍, 沈法富, 王洪刚. 棉花耐盐变异体的遗传分析. 西北植物学报, 2000, 20(2): 234-237.
Chen C X, Yu Y J, Liu F Z, Shen F F, Wang H G. Genetic analysis of salt-tolerance variant in cotton. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(2): 234-237. (in Chinese)
[25]   李雪林. SNAC1基因在棉花上的应用及盐胁迫下棉花基因组DNA甲基化分析[D]. 武汉: 华中农业大学, 2009.
Li X L. Application of SNAC1 in cotton and cotton under salt stress genome-wide DNA methylation analysis [D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[26]   张锐, 郭三堆, 梁成真. 三个棉花ABF/AREB/ABI5/DPBF类转录因子及其编码基因与应用: 中国, ZL200910158311.X.
Zhang R, Guo S D, Liang C Z. Coding genes of three cotton transcription factors ABF/AREB/ABI5/DPBF and its applications: China, ZL200910158311.X. (in Chinese)
[27]   王宗文. 国内外抗除草剂棉花研究应用现状. 山东农业科学, 2011(1): 81-85.
Wang Z W. Research and application status of herbicide- resistant cotton at home and abroad. Shandong Agricultural Sciences, 2011(1): 81-85. (in Chinese)
[28]   雷凯健, 卢维维, 洪玉枝, 刘子铎. 土壤总DNA中草甘膦N-乙酸转移酶基因的克隆及酶学特性分析. 农业生物技术学报, 2007, 15(1): 153-156.
Lei K J, Lu W W, Hong Y Z, Liu Z D. Cloning of the glyphosate N-acetyltransferase gene from soil total DNA and its characterization of enzyme activity. Journal of Agricultural Biotechnology, 2007, 15(1): 153-156. (in Chinese)
[29]   何鸣, 曾海燕, 徐培林, 叶长明. aroA基因的克隆和优化. 中山大学学报: 自然科学版, 2002, 41(2): 76-79.
He M, Zeng H Y, Xu P L, Ye C M. Cloning and mutagenesis of the aroA gene. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(2): 76-79. (in Chinese)
[30]   赵特. 一种抗草甘麟基因的发现和抗草甘麟转基因水稻的培育[D]. 杭州: 浙江大学, 2008.
Zhao T. An resistant glyphosategenediscoveryandthecultivationof transgenicrice [D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
[31]   朱玉. 极端污染环境下草甘膦耐受菌株荧光假单胞菌G2的鉴定及其EPSP合成酶墓因的克隆[D]. 北京: 中国农业科学院, 2002.
Zhu Y. Under extreme environmental pollution by glyphosate-tolerant strains offluorescent Pseudomonas G2, identification and cloning of EPSP synthase [D]. Beijing: Chinese Academy of Agricultural Sciences, 2002. (in Chinese)
[32]   沙纪莹. 斯氏假单胞菌A1501 EPSP合酶基因的克隆及表达[D]. 成都: 四川师范大学, 2008.
Sha J Y. PseudomonasStradivariA1501EPSP synthasegenecloningandexpression [D]. Chengdu: Sichuan Normal University, 2008. (in Chinese)
[33]   刘柱. 可变盐单胞菌中草甘膦抗性EPSP合酶新基因克隆、大肠杆菌表达及其抗性机制的研究[D]. 成都: 四川大学, 2004.
Liu Z. Cloning a novel 5-enolpyruvylshikimate-3-phosphate synthase gene conferring increased glyphosate tolerance from Halomonas variabilis and its expression in Escherichia coli and its glyphosate- tolerant mechanism [D]. Chengdu: Sichuan University, 2004. (in Chinese)
[34]   童旭宏, 吴玉香, 祝水金. 陆地棉epsps基因的克隆及其组织特异性表达分析. 棉花学报, 2009, 4: 259-264.
Tong X H, Wu Y X, Zhu S J. Cloning of 5-enolpyruvylshikimate 3-phosphate synthase genes EPSPS from the upland cotton and its expression in different cotton tissues. Cotton Science, 2009, 4: 259-264. (in Chinese)
[35]   程海刚, 张锐, 罗淑萍, 代培红, 郭三堆. 青麻ePsPs基因在酵母中表达. 新疆农业大学学报, 2007, 30(4): 52-56.
Cheng H G, Zhang R, Luo S P, Dai P H, Guo S D. Expression of ePsPs gene from Abutilon theophrasti medic in the pichia pastoris. Journal of Xinjiang Agricultural University, 2007, 30(4): 52-56. (in Chinese)
[36]   郭三堆, 孙豹, 张锐, 孟志刚, 孙国清, 林敏, 陆伟. 一种含有草甘膦抗性基因的表达载体及其应用: 中国, 201410204703.6.
Guo S D, Sun B, Zhang R, Meng Z G, Sun G Q, Lin M, Lu W. A glyphosate resistance gene expression vector and its application: China, 201410204703.6. (in Chinese)
[37]   Guo S D, Sun B, Zhang R, Meng Z G, Sun G Q, Lin M, Lu W. A glyphosate resistance gene expression vector and its application: China, PCT/CN2014000620.
[38]   陈志贤, Danny J Liewellyn, 范云六, 李淑君, 郭三堆, 焦改丽, 赵俊侠. 利用农杆菌介导法转移tfdA基因获得可遗传的抗2, 4 -D棉株. 中国农业科学, 1994, 27(2): 31-37.
Chen Z X, Liewllyn D J, Fan Y L, Li S J, Guo S D, Jiao G L, Zhao J X. 2,4-D resistant transgenic cotton plants produces by Agrobacterium- mediated gene transfer. Scientia Agricutura Sinica, 1994, 27(2): 31-37. (in Chinese)
[39]   刘方, 王坤波, 宋国立. 中国棉花转基因研究与应用. 棉花学报, 2002, 14(4): 249-253.
Liu F, Wang K B, Song G L. Application and advances in study on the improvement of cotton transgene in China. Acta Gossypii Sinica, 2002, 14(4): 249-253. (in Chinese)
[40]   张磊. 水稻苯达松抗性基因Bel的精细定位与克隆[D]. 武汉: 华中农业大学, 2006.
Zhang L. Rice bentazone fine mapping and cloning of resistance gene Bel [D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)
[41]   张金文, 熊春蓉, 李静雯, 王旺田, 孟亚雄, 陈正华. 臭鼻杆菌腈水解酶基因(bxn)的克隆及其在原核生物中的表达. 草业学报, 2006, 15(6): 87-92.
Zhang J W, Xiong C R, Li J W, Wang W T, Meng Y X, Chen Z H. Cloning of bromoxyni-l specific nitrilase gene (bxn) from Klebsiella ozaenae and expression in prokaryotic cells. Acta Prataculturae Sinica, 2006, 15(6): 87-92. (in Chinese)
[42]   宋贵生, 冯德江, 魏晓丽, 唐家斌, 朱祯. 水稻乙酰乳酸合成酶基因的克隆和功能分析. 中国农业科技导报, 2007, 9(3): 66-72.
Song G S, Feng D J, Wei X L, Tang J B, Zhu Z. Isolation and functional analysis of rice acetolactate-synthase (ALS). Journal of Agricultural Science and Technology, 2007, 9(3): 66-72. (in Chinese)
[43]   卢宗志, 张朝贤, 傅俊范, 李茂海, 李贵军. 抗苄嘧磺隆雨久花ALs基因突变研究. 中国农业科学, 2009, 42(10): 3516-3521.
Lu Z Z, Zhang C X, Fu J F, Li M H, Li G J. Molecular basis of resistance to bensulfuron-methyl in Monochoria korsakowii. Scientia Agricultura Sinica, 2009, 42(10): 3516-3521. (in Chinese)
[44]   高巍. 棉花响应黄萎病菌分子机制的蛋白质组学研究及HDTF1基因的功能鉴定[D]. 武汉: 华中农业大学, 2014.
Gao W. Molecular mechanisms of response of cotton verticillium wilt research onproteomics and functional identification of HDTF1 genes [D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[45]   徐理. 棉花与黄萎病菌的分子互作机制研究及GbWRKY1基因的功能鉴定[D]. 武汉: 华中农业大学, 2011.
Xu L. Study on molecular interaction mechanism of verticillium dahliae of cotton and the functional identification of GbWRKY1 genes [D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[46]   孟宪鹏. 海岛棉抗病相关ERF转录因子的克隆与鉴定[D]. 安阳: 中国农业科学院, 2009.
Meng X P. Cloning and identification of relevant ERF transcription factors of Gossypium barbadense [D]. Anyang: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[47]   张文蔚. 陆地棉抗黄萎病相关基因筛选及功能验证[D]. 北京: 中国农业科学院, 2013.
Zhang W W. Screening and functional verification of genes related to resistance to Verticillium wilt in Gossypium hirsutum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[48]   赵付安. 棉花黄萎病菌诱导陆地棉和野生棉差异表达分析及抗病相关基因克隆[D]. 郑州: 河南大学, 2012.
Zhao F A. Differential expression analysis and cloning of disease resistance-related gene among Wild cotton induced by verticillium dahlia in cotton [D]. Zhengzhou: Henan University, 2012. (in Chinese)
[49]   倪萌, 缪卫国, 刘海洋, 邵家丽, 努尔孜亚, 乔子辰, 尚衍强, 王金生. 棉花黄萎病菌诱导转hpa1xoo基因棉花产生微过敏防御反应. 新疆农业科学, 2009, 46(1): 46-49.
Ni M, Miao W G, Liu H Y, Shao J L, Nuerziya, Qiao Z C, Shang Y Q, Wang J S. Micro- HR elicited by Verticillium dahliae kleb. in transgenic hpa1xoo cotton. Xinjiang Agricultural Sciences, 2009, 46(1): 46-49. (in Chinese)
[50]   李德谋, 裴炎, 罗小英, 侯磊, 李先碧, 肖月华, 罗明, 白文钦, 张觅, 李忠旺, 梁俊俊. GhASN-Like基因、表达载体及其在提高棉花产量中的应用: 中国, 201110104141.4.
Li D M, Pei Y, Luo X Y, Hou L, Li X B, Xiao Y H, Luo M, Bai W Q, Zhang M, Li Z W, Liang J J. GhASN-Like gene, expression vectors and its application on cotton yield: China, 201110104141.4. (in Chinese)
[51]   裴炎, 侯磊, 李德谋, 宋水清, 李先碧, 罗明, 肖月华, 郑雪莲, 曾其伟, 张觅, 邱坤, 罗凤涛. 表达生长素合成相关基因的植物表达载体及其在棉花纤维性状改良的应用: 中国, CN200810142518.3.
Pei Y, Hou L, Li D M, Song S Q, Li X B, Luo M, Xiao Y H, Zheng X L, Zeng Q W, Zhang M, Qiu K, Luo F T. Auxin biosynthesis related genes expression in plant expression vector and itsapplication in cotton fiber properties improvement: China, CN200810142518.3. (in Chinese)
[52]   Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 2011, 29(5): 453-459.
[53]   李文彬, 宋晶, 孙勇如, 张利明, 王义琴, 牛恒尧. bec基因棉花特异表达载体: 中国, 02103787.6.
Li W B, Song J, Sun Y R, Zhang L M, Wang Y Q, Niu H Y. BEC cotton-specific expression vector: China, 02103787.6. (in Chinese)
[54]   左开井, 王劲, 陈继军. 提高棉花纤维品质的GbAnn9基因及其应用: 中国, ZL201110253458.4.
Zuo K J, Wang J, Chen J J. GbAnn9 and application of cotton fiber quality: China, ZL201110253458.4. (in Chinese)
[55]   夏桂先, 韩立波, 焦改丽, 李元宝, 王海云. GhLIN2蛋白及其基因在改良棉花纤维品质中的应用: 中国, 201210505575.X.
Xia G X, Han L B, Jiao G L, Li Y B, Wang H Y. GhLIN2 protein and its gene in the modified application of cotton fiber quality: China, 201210505575.X. (in Chinese)
[56]   李晓荣, 秦咏梅, 李晓东, 范玲, 李波, 胡文冉, 柳皋隽, 杨洋. GhUGP1基因在改良棉花纤维品质中的应用方法: 中国, 201310613879.2.
Li X R, Qin Y M, Li X D, Fan L, Li B, Hu W R, Liu G J, Yang Y. Application of GhUGP1 in improving cotton fibre quality: China, 201310613879.2. (in Chinese)
[57]   刘进元, 赵广荣, 徐振彪. 棉花纤维可逆糖基化蛋白酶基因及其编码的蛋白质: 中国, CN01142164.9.
Liu J Y, Zhao G R, Xu Z B. Cotton fiber reversible effect of protease gene and its encoded protein: China, CN01142164.9. (in Chinese)
[58]   李学宝, 李登弟, 王秀兰, 阮想梅, 吴雅洁. 棉花纤维特异表达的水孔蛋白家族基因GhPIP2;6: 中国, ZL 200910273363.1.
Li X B, Li D D, Wang X L, Ruan X M, Wu Y J. Specific expression of Aquaporin family of cotton fiber gene GhPIP2;6: China, ZL 200910273363.1. (in Chinese)
[59]   朱玉贤, 姬生健, 卢迎春, 冯建勋. 棉花纤维的类β微管蛋白及其编码基因与应用: 中国, CN02128986.7.
Zhu Y X, Ji S J, Lu Y C, Feng J X. Coding gene and its application of β-tubulin protein in cotton fiber: China, CN02128986.7. (in Chinese)
[60]   郭三堆, 任茂智, 张锐. 棉花Nodulin-like基因及其启动子: 中国, CN 2003101137982.
Guo S D, Ren M Z, Zhang R. Nodulin-like gene and its promoter in cotton: China, CN 2003101137982. (in Chinese)
[61]   张献龙, 胡海燕, 刘迪秋, 涂礼利. 一种棉花纤维伸长期表达的启动子及制备方法和应用: 中国, CN201210280595.1.
Zhang X L, Hu H Y, Liu D Q, Tu L L. A cotton fibers elongation expression of promoter and its preparation methodand application: China, CN201210280595.1. (in Chinese)
[62]   李静, 沈法富, 于海东, 韩秀兰. 转基因抗早衰棉的获得. 西北植物学报, 2004, 24(8): 1419-1423.
Li J, Shen F F, Yu D H, Han X L. The obtaining of transgenic cottons resistant to premature senescence. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(8): 1419-1423. (in Chinese)
[63]   傅荣昭, 孙勇如, 贾士荣. 植物遗传转化手册. 北京: 科学技术出版社, 1995: 9-11.
Fu R Z, Sun Y R, Jia S R. Plant Genetic Transformation. Beijing: Science and Technology Press, 1995: 9-11. (in Chinese)
[64]   Vasil V, Castillo A M, Fromm M E, Vasil I K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nature Biotechnology, 1992, 10: 667-674.
[65]   Ming X T, Yuan H Y, Wang L J, Chen Z L. Agrobacterium-mediated transformation of rice with help of bombardment. Acta Botanica Sinica, 2001, 43(1): 72-73.
[66]   Kleint T M, Wlofe E D, Wu R, SANFORD J C. High-velocity microprojectiles for delievering nucleic acid into living cells. Nature, 1987, 327: 70-73.
[67]   Philippe V, Horth Y, Pascal F. Enhancement of production and regeneration of embryo genictypeII callus in ZeamPaysl by AgNO3. Plant Cell Tissue and Organ Culture, 1989, 18: 143-151.
[68]   刘娜. vgb基因在抗虫棉中的功能研究[D]. 乌鲁木齐: 新疆农业大学, 2007.
Liu N. vgb study of gene function in insect-resistant cotton[D]. Urumqi: Xinjiang Agricultural University, 2007. (in Chinese)
[69]   牟红梅, 刘树俊, 周文娟, 文玉香, 张文俊, 魏荣瑄. 慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析. 遗传学报, 1999, 26(6): 634-642.
Mu H M, Liu S J, Zhou W J, Wen Y X, Zhang W J, Wei R X. transformation of wheat with insectide gene arrowhead proteinase inhibitor by pollen tube pathway and analysis of transgenic plants. Acta Genetica Sinica, 1999, 26(6): 634-642. (in Chinese)
[70]   曾君祉, 王东江, 吴有强, 张健, 周文娟, 朱小平, 徐乃正. 用花粉管途径获得小麦转基因植株. 中国科学, 1993, 23(3): 256-262.
Zeng J Z, Wang D J, Wu Y Q, Zhang J, Zhou W J, Zhu X P, Xu N Z. Obtained by pollen tube pathway transgenic wheat plants. Science in China: Ser.B, 1993, 23(3): 256-262. (in Chinese)
[71]   Langridge P, Brettschneider R, Lazzeri P, Lörz H. Transformation of cereals via Agrobacterium and the pollen pathway: A critical assessment. The Plant Journal, 1992, 2(4): 631-638.
[72]   李君, 李岩, 刘德虎. 植物遗传转化的替代方法及研究进展. 生物技术通报, 2011(7): 31-36.
Li J, Li Y, Liu D H. Alternative methods of plant genetic transformation and recent advances. Biotechnology Bulletin, 2011(7): 31-36. (in Chinese)
[73]   Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l'Académie des Sciences Pairs Life Sciences,1993, 316: 1194-1199.
[74]   Feldmann K. T-DNA insertion mutagenesis in Arabidopsis: Mutational spectrum. The Plant Journal, 1991, 1: 71-82.
[75]   Azpiroz-Leehan R, Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis: Going back and forth. Trends in Genetics, 1997, 13(4): 152-156.
[76]   Torney F, Trewyn B G, Lin V S Y, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2007, 2: 295-300.
[77]   Yi B, Liu F Y, Zhang H, Liu H, Peng Y M, Liu Y H. Gene therapy of mice peritoneal fibrosis by nano-carrier pamam mediated pCTGF- shRNA. Cell Biology International, 2008, 32(3): S7.
[78]   Chemin I, Moradpour D, Wieland S, Offensperger W B, Walter E, Behr J P, Blum H E. Liver-directed gene transfer: A linear polyethylenimine denvative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. Journal of Viral Hepatitis, 1998, 56: 369.
[79]   Takefumi S, Eiji N, Tomohiko I, Mizukami A, Takakura Y, Kajiyama S, Fukusaki E, Harashima S, Kobayashi A, Fukui K. A novel gene delivery system in plants with calcium alginate micro-beads. Journal of Bioscience and Bioengineering, 2002, 94(1): 87-91.
[80]   王国英. 转基因植物的安全性评价. 农业生物技术学报, 2001,  9(3): 205-207.
Wang G Y. The safety evaluation of teansgenic plants. Journal of Agricultural Biotechnology, 2001, 9(3): 205-207. (in Chinese)
[81]   吴志平, 徐步进. 转基因植物释放后在环境中成为杂草的风险性. 生物工程进展, 1999, 19(1): 9-13.
Wu Z P, Xu B J. The risk of transgenic plants changing into wild weeds after environmental release. Progress in Biotechnology, 1999, 19(1): 9-13. (in Chinese)
[82]   Losey J E, Rayor L S, Carter M. Transgenic pollen harms rmnarch larvae. Nature, 1999(399): 214-419.
[83]   国家农作物品种审定委员会办公室. 中国转抗虫基因棉花品种(1997~2007). 北京: 中国农业出版社, 2008.
Office of the national crop varieties Committee. Transgenic Cotton Varieties in China (1997-2007). Beijing: China Agriculture Press, 2008. (in Chinese)
[84]   中华人民共和国农业部公告: 国家审定棉花品种1997年-2013年.
Announcement of the Ministry of agriculture of the people's Republic of China: National approved cotton varieties from 1997 to 2003. (in Chinese)
[85]   汪若海, 李秀兰, 杨付新, 付小琼. 从国家棉花品种区试看杂交棉//中国棉花学会2005年年会暨青年棉花学术研讨会论文汇编. 2005: 117.
Wang R H, Li X L, Yang F X, Fu X Q. The development of hybrid cotton from the perspective of the national trials for cotton varieties. //Proceedings of Chinese Cotton Society 2005 Annual Conference & Youth Symposium. 2005: 117. (in Chinese)
[86]   全国农业技术推广服务中心. 全国农作物主要品种推广情况统计1996年-2012年.
The National Agro-Tech Extension and Service Center. Extension statistics of main varieties of crops in China from 1996 to 2012. (in Chinese)
[87]   金石桥, 刘逢举, 刘媛, 杨付新. 黄河流域常规棉品种近几年育种趋势分析. 中国棉花, 2014, 41(1): 8-11.
Jin S Q, Liu F J, Liu Y, Yang F X. Discussion on the conventional cotton breeding direction in the yellow river region in recent years. China Cotton, 2014, 41(1): 8-11. (in Chinese)
[88]   付小琼, 杨付新, 王秀玲. 黄河流域春棉区试纤维品质近16年的变化趋势//中国棉花学会年年会论文汇编. 2008: 99-102.
Fu X Q, Yang F X, Wang X L. Yellow spring trend of cotton fiber quality test nearly 16 years// China Cotton Association Annual Proceedings. 2008: 99-102. (in Chinese)
[89]   黄季焜, 米建伟, 林海, 王子军, 陈瑞剑, 胡瑞法, Rozeelle Scott, Pray Carl. 中国10年抗虫棉大田生产:Bt抗虫棉技术采用的直接效益和间接外部效应评估. 中国科学: 生命科学, 2010, 40(3): 260-272.
Huang J K, Mi J W, Lin H, Wang Z J, Chen R J, Hu R F, Scott R, Carl P. A decade of Bt cotton in farmer fields in China: Assessing the direct effects and indirect externalities of Bt cotton adoption in China. Scientia Sinica Vitae, 2010, 40(3): 260-272. (in Chinese)
[90]   苏岳静, 胡瑞发, 黄季焜, 范存会. 农民抗虫棉技术选择行为及其影响因素分析. 棉花学报, 2004, 16(5): 259-264.
Su Y J, Hu R F, Huang J K, Fan C H. The determinants of farmer Bt cotton technology adoption behavior in China. Acta Gossypii Sinica, 2004, 16(5): 259-264. (in Chinese)
[91]   张锐, 王远, 孟志刚 孙国清, 郭三堆. 国产转基因抗虫棉研究回顾与展望. 中国农业科技导报, 2007, 9(4): 32-42.
Zhang R, Wang Y, Meng Z G, Sun G Q, Guo S D. Retrospect and prospect of research on Chinese transgenic insecticidal cotton. Journal of Agricultural Science and Technology, 2007, 9(4): 32-42. (in Chinese)
[1] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[2] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[3] LI HongYan,XUE Jun,WANG YongHong,WANG KeRu,ZHAO RuLang,MING Bo,ZHANG ZhenTao,ZHANG WenJie,LI ShaoKun. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia [J]. Scientia Agricultura Sinica, 2022, 55(12): 2324-2337.
[4] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[5] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[6] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[7] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[8] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[9] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[10] Yang YANG,HongLi TIAN,HongMei YI,YaWei LIU,Jie REN,Rui WANG,Lu WANG,JiuRan ZHAO,FengGe WANG. Analysis of the Current Status of Protection of Maize Varieties in China [J]. Scientia Agricultura Sinica, 2020, 53(6): 1095-1107.
[11] YuXian CAO,JianQiang ZHU,Jun HOU. Yield Gap of Ratoon Rice and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(4): 707-719.
[12] GAO YingBo,ZHANG Hui,LIU KaiChang,ZHANG HuaBin,LI YuanFang,FU XiQiang,XUE YanFang,QIAN Xin,DAI HongCui,LI ZongXin. The Coordination of Nitrogen Optimization with Matched Variety Could Enhance Maize Grain Yield and Nitrogen Use Efficiency of Summer Maize in Saline Land [J]. Scientia Agricultura Sinica, 2020, 53(21): 4388-4398.
[13] DONG ZhiDan,SONG ShangWei,SONG ChunHui,ZHENG XianBo,JIAO Jian,WANG MiaoMiao,YAN ZhenLi,ZHANG RuiPing,BAI TuanHui. Pedigree Analysis and Breeding Inspiration of Apple Cultivars in China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4485-4496.
[14] LI JianXin,XI MengHui,ZHANG JiaWei,XI MengJuan,TIAN Ding,LU YiZhe,CHEN XiaoYang,LI WeiHua,ZHANG XueHai,TANG JiHua. Construction and Utilization of Database for Chinese Maize Varieties and Their Genealogy [J]. Scientia Agricultura Sinica, 2020, 53(16): 3404-3411.
[15] ZHOU JunFei, CUI YeHan, TANG Hao, LI Lun, CHEN Hong, WEN Wen, HAN RuiXi, HUANG SiSi, FANG ZhiWei, PENG Hai. Utilizing Probability Estimation Improves the Accuracy of Plant Variety Identification by Molecular Markers [J]. Scientia Agricultura Sinica, 2018, 51(6): 1013-1019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!