Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 3002-3017.doi: 10.3864/j.issn.0578-1752.2022.15.011

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach

WANG LuWei1(),SHEN ZhiJun2,LI HeHuan1,PAN Lei1,NIU Liang1,CUI GuoChao1,ZENG WenFang1,WANG ZhiQiang1(),LU ZhenHua1()   

  1. 1Zhengzhou Fruit Tree Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/Key Laboratory of Fruit Tree Breeding Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450009
    2Institute of Fruit Trees, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2021-11-18 Accepted:2022-01-14 Online:2022-08-01 Published:2022-08-02
  • Contact: ZhiQiang WANG,ZhenHua LU E-mail:15839552412@163.com;wangzhiqiang@caas.cn;luzhenhua@caas.cn

Abstract:

【Objective】The aim of this study was to perform genotyping and genetic diversity analysis of 79 germplasms taken from National Fruit Germplasm Nanjing Peach Resource Nursery by using SSR fluorescent-labeled capillary electrophoresis technology, and to screen primers with high polymorphism, which could be used for identification of peach varieties and genetic relationship analysis and also be used for the establishment of molecular marker-assisted selection system.【Method】De novo sequencing was performed on the female parent Zhongyou No. 4, and SSR markers were developed in the whole genome with a physical distance of 1 Mb as the unit. 79 peach varieties in Nanjing were used as materials for PCR amplification, and the amplified products were detected by polyacrylamide gel electrophoresis and screened for markers with clear target bands and abundant polymorphisms. The 5' end of the screened markers were fluorescently modified, and the PCR products were sequenced on the ABI3730XL sequencer to realize the rescreening of the markers. Genmapper 4.0 software was used to count the sequencing results, and Data Formater 2.1 software converted the bp data obtained by statistics into the data format required by Power Marker v3.25. The selected primers were analyzed for polymorphism, and the fluorescent SSR primers with polymorphism information content (PIC) greater than 0.45 were selected as the core primers of 79 germplasm materials. Using Nei's as a parameter, the UPDM clustering method in NTSYSpc 2.1 software was used to analyze the genetic diversity among cultivars. The Structure v2.3.4 software based on Bayesian model was used to analyze the population genetic structure of 79 accessions. 【Result】Based on 79 germplasms, the SSR markers covering the whole gene were screened by polyacrylamide gel electrophoresis, and 207 pairs of primers with good polymorphism were screened out. The 207 pairs of primers were re-screened by SSR fluorescent-labeled capillary electrophoresis technology, and 26 pairs of core primers were finally screened, of which 5 pairs of core primers could completely distinguish 79 varieties. 26 pairs of SSR core primers amplified a total of 174 polymorphic genotypes in 79 peach germplasms, and each pair of primers were amplified 4-13 genotypes, with an average of 6.69 genotypes amplified per pair of primers. The polymorphism information content PIC of each pair of primers was above 0.45. Based on the locus information amplified by 207 pairs of SSR primers in 79 accessions, the genetic relationship map and population genetic structure map of 79 accessions were constructed. 207 pairs of primers divided 79 accessions into 7 groups based on genetic distance and 2 groups based on population structure. The genetic diversity of 79 cultivars was high, and the clustering results of some cultivars were consistent with the pedigree. 【Conclusion】The cluster analysis map and population genetic structure map of 79 materials were constructed, revealing the genetic relationship of 79 materials to a certain extent. The overall results showed that due to the complex genetic background of peach, the cultivars according to a single characteristic or determine the relationship between cultivars could not be classified. The screened 26 pairs of core primers could be used for genome-wide identification of linked traits, identification of peach germplasm resources, identification and protection of new varieties, and construction of molecular marker-assisted breeding systems.

Key words: peach, fluorescent labeling SSR, capillary electrophoresis, variety identification

Table 1

79 Cultivars of peach for SSR analysis"

编号
No.
种质材料
Germplasm
亲本
Parentage
来源
Source
1 雨花2号 Yuhua 2 63-9-22(西姆斯×菲利甫)自然实生 63-9-22 (SIMS×Philip) natural reality 中国江苏 Jiangsu, China
2 霞脆 Xiacui 雨花2号×77-1-6[(白花×橘早生)×朝霞]
Yuhua 2×77-1-6 [(Baihua ×Tachibana Wase)×Zhaoxia]
中国江苏 Jiangsu, China
3 雨花1号 Yuhua 1 不详 Unknown 中国江苏 Jiangsu, China
4 瑞光18号 Ruiguang 18 丽格兰特×81-25-15(京玉×NJN76) Legrand×81-25-15 (Jingyu×NJN76) 中国北京 Beijing, China
5 瑞光19号 Ruiguang 19 丽格兰特×瑞光15号(京玉×NJN76) Legrand×Ruiguang No. 15 (Jingyu× NJN76) 中国北京 Beijing, China
6 早美 Zaomei 庆丰×朝霞 Qingfeng×Zhaoxia 中国北京 Beijing, China
7 红粉佳人 Pinklady Rutgers Redleaf×白寿 Rutgers Redleaf×Baishou 中国江苏 Jiangsu, China
8 瑞光美玉 Ruiguangmeiyu 京玉×瑞光7号 Jingyu×Ruiguang 7 中国北京 Beijing, China
9 早花露 Zaohualu 雨花露自然实生 Yuhualu natural birth 中国江苏 Jiangsu, China
10 大久保 Okubo 白桃园中发现的实生后代 The postnatal offspring found in the white peach garden 日本 Japan
11 金陵黄露 Jilinghuanglu 99-8-3×Spring baby 中国江苏 Jiangsu, China
12 沪油002号 Huyou 002 瑞光3号×五月火 Ruiguang 3×May fire 中国上海 Shanghai, China
13 锦绣 Jinxiu 白花×云署1号 White flower×Yunshu No.1 中国上海 Shanghai, China
14 金童7号 Babygold 7 [Lemon Free×P.I.35201(云南桃实生
Yunnan peach seed)]×NJ196 (J.H.Hale×Goldfinch)
美国 US
15 沪油003号 Huyou 003 不详 Unknown 中国上海 Shanghai, China
16 玉霞蟠桃 Yuxiapantao 瑞蟠4号×瑞光18号 Ruipan 4×Ruiguang 18 中国江苏 Jiangsu, China
17 五月火 Mayfire 阿姆肯自然实生 Amken natural birth 美国 US
18 早凤玉 Zaofengyu 早凤桃芽变选育而成 Zaofeng peach was bred by bud mutation 中国北京 Beijing, China
19 沪021号 Hu 021 不详 Unknown 中国上海 Shanghai, China
20 日川白凤 Richuanbaifeng 白桃×橘早生 White peach×Tachibana Wase 日本 Japan
21 瑞光7号 Ruiguang 7 京玉×B7R2T129 Jingyu×B7R2T129 中国北京 Beijing, China
22 瑞光22号 Ruiguang 22 丽格兰特×82-48-12 Legrand×82-48-12 中国北京 Beijing, China
23 阿姆肯 Armking Palomar×Springtime (春时 Chunshi) 美国 US
24 霞晖22号 Xiahui 22 朝晖×朝霞 Zhaohui×Zhaoxia 中国江苏 Jiangsu, China
25 瑞蟠3号 Ruipan 3 大久保×陈圃蟠桃 Okubo×Chenpu flat peach 中国北京 Beijing, China
26 早金露 Zaojinlu 不详 Unknown 未知 Unknown
27 瑞蟠5号 Ruipan 5 晚熟大蟠桃×油蟠桃 Late ripening flat peach×Youpantao 中国北京 Beijing, China
28 晚硕蜜 Wanshuomi 肥城桃 Feicheng peach 中国江苏 Jiangsu, China
29 早露蟠桃Zaolupantao 撒花红蟠桃×早香玉 Sahuahongpantao×Zaoxiangyu 中国北京 Beijing, China
30 霞晖8号 Xiahui 8 朝晖×瑞光18号 Zhaohui×Ruiguang 18 中国江苏 Jiangsu, China
31 晚白花 Wanbaihua 不详 Unknown 中国江苏 Jiangsu, China
32 连黄 Lian huang 早生黄金自然实生 Early Gold’s natural growth 中国辽宁 Liaoning, China
33 春花 Chun hua 北农2号×春蕾 Beinong 2×Chunlei 中国上海 Shanghai, China
34 黄露蟠桃Huanglupantao 不详 Unknown 中国浙江 Zhejiang, China
35 金童5号Babygold 5 PI35201(云南桃实生 Yunnan peach seed)×NJ196[NJ76925OP(J.H.Hale×Goldfinch)] 美国 US
36 砂子早生 Sunago Wase 偶发实生(神玉,久保?) Accidental birth (Shenyu, Jiubao?) 日本 Japan
37 早上海水蜜 Zaoshanghaishuimi 上海水蜜早熟变异 Early maturing variation of Chinese Cling 中国上海 Shanghai, China
38 金童9号 Babygold 9 PI35201 (云南桃实生 Yunnan peach seed)×PI43137 美国 US
39 紫金红2号 Zijinhong 2 霞光×早红宝石 Xiaguang × Early Ruby 中国江苏 Jiangsu, China
40 银花露 Yinhualu 白花×初香美 Baihua×Hatsukami 中国江苏 Jiangsu, China
41 弗雷德里克 Frederica NJC95×D42-13W 美国 US
42 新白凤 Early Hakuho 不详 Unknown 中国江苏 Jiangsu, China
43 奉化玉露早 Fenghuayuluzao 不详 Unknown 未知 Unknown
44 霞晖4号 Xiahui 4 白花 Baihua 中国江苏 Jiangsu, China
45 早硕蜜 Zaoshuomi 白芒蟠桃×朝霞 Baimangpantao×Zhaoxia 中国江苏 Jiangsu, China
46 早魁蜜 Zaokuimi 晚蟠桃×124蟠桃 Wanpantao×124 pantao 中国江苏 Jiangsu, China
47 霞光 Xiaguang 理想 Fantasia 中国山西 Shanxi, China
48 瑞蟠4号 Ruipan 4 晚熟大蟠桃×扬州124蟠桃 Late ripening dapantao×Yangzhou 124 pantao 中国北京 Beijing, China
49 京玉 Jingyu 大久保×兴津油桃 Okubo×Okitsu 中国北京 Beijing, China
50 金霞蟠桃 Jinxiapantao 霞光×NF9260 Xiaguang×NF9260 中国江苏 Jiangsu, China
51 京红 Jinghong 不详 Unknown 中国北京 Beijing, China
52 银河 Galaxy 不详 Unknown 美国 US
53 瑞光28号Ruiguang 28 丽格兰特×瑞光2号(京玉×NJN76) Legrand×Ruiguang 2 (Jingyu×NJN76) 中国北京 Beijing, China
54 瑞蟠2号 Ruipan 2 晚熟大蟠桃×扬州124蟠桃 Late ripening dapantao×Yangzhou 124 pantao 中国北京 Beijing, China
55 金晖 Jinhui 早生黄金×罐桃5号 Early gold×Canned peach 5 中国江苏 Jiangsu, China
56 雨花露 Yuhualu 白花×早上海水蜜 Baihua×Zaoshanghaishuimi 中国江苏 Jiangsu, China
57 白花水蜜 Baihuashuimi 不详 Unknown 中国江苏 Jiangsu, China
58 丰黄 Fenghuang 早生黄金自然实生 Early Gold’s natural growth 中国辽宁 Liaoning, China
59 晖雨露 Huiyulu 朝晖×雨花露 Zhaohui×Yuhualu 中国江苏 Jiangsu, China
60 奉化玉露 Fenghuayulu 上海水蜜营养系变异 Variation of Chinese Cling nutrition system 中国上海 Shanghai, China
61 花玉露 Huayulu 玉露变异 Jade dew variation 中国浙江 Zhejiang, China
62 瑞光23号 Ruiguang 23 Fuzador×瑞光7号(京玉×B7R2T129)Fuzador×Ruiguang 7 (Jingyu× B7R2T129) 中国北京 Beijing, China
63 瑞蟠1号 Ruipan 1 大久保×陈圃蟠桃 Okubo×Chenpupantao 中国北京 Beijing, China
64 霞晖3号 Xiahui 3 白花 Baihua 中国江苏 Jiangsu, China
65 玉露蟠桃Yulupantao 地方品种 Local varieties 中国浙江 Zhejiang, China
66 霞晖1号 Xiahui 1 朝晖×朝霞(亲本均为白花) Zhaohui×Zhaoxia (both parents are Baihua) 中国江苏 Jiangsu, China
67 雨花3号Yuhua 3 不详 Unknown 中国江苏 Jiangsu, China
68 金陵锦桃 Jinlingjintao 红粉佳人实生后代 The offspring of Pink Lady 中国江苏 Jiangsu, China
69 源东白桃 Yuandongbaitao 砂子早生芽变 Bud mutation of Sunago Wase 中国浙江 Zhejiang, China
70 新白花 Xinbaihua 白花水蜜自然实生 Baihua honey naturally grows 中国江苏 Jiangsu, China
71 金童6号 Babygold 6 NJ13232(=NJ58127×OP)×NJ196 美国 US
72 紫金红3号 Zijinhong 3 W31×紫金红1号 W31×Zijinhong 1 中国江苏 Jiangsu, China
73 金山早红 Jinshanzaohong 早红宝石芽变 Bud mutation of Early Red Ruby 中国江苏 Jiangsu, China
74 早红港 Early Redhaven 不详 Unknown 未知 Unknown
75 霞晖5号 Xiahui 5 朝晖×63-17-1 Zhaohui×63-17-1 中国江苏 Jiangsu, China
76 南山甜桃 Nanshantiantao 地方品种 Local varieties 中国广东 Guangdong,China
77 锦香 Jinxiang 北农2号×60-27-7 Beinong 2×60-27-7 中国上海 Shanghai, China
78 佛尔蒂尼·莫蒂尼 Fertilia Morettini Gialla Di Firenze×Fertilia I 意大利 Italy
79 京春 Jingchun 早生黄金自然实生 Early Gold’s natural growth 中国北京 Beijing, China

Fig. 1

PAGE images of 5 pairs of primers after PCR amplification in 8 germplasms M: DL2000 DNA Marker; 1: Yuhua 2; 2: Xiacui; 3: Yuhua 1; 4: Ruiguang 18; 5: Ruiguang 19; 6: Zaomei; 7: Pinklady; 8: Ruiguangmeiyu"

Fig. 2

SSR fingerprints of Ruiguang19, Zaomei, Okubo and Zaofengyu at SSR locus Pp01-38545547"

Fig. 3

The distribution of 207 pairs of primers on the whole genome"

Table 2

Amplification results of 5 pairs of primers in 79 accessions"

种质材料编号
Germplasms No.
Pp01-3F-2356268 Pp01-64F-38037623 LG4-8F-21523456 LG3-37F-16205196 Pp01-19F-9009794
1 186\201 161 95\97 149 147\149
2 178\188 159\161 84\97 149 149
3 186\194 144 75\84 148\150 147\149
4 190 161 84\97 140\145 149
5 190\197 146 75\84 151 149
6 188\190 155\161 84\95 145\151 147\149
7 188\201 144 82\95 145\149 147\149
8 178\201 144 82\95 145\151 147
9 194 155\157 82 140\149 \
10 190 146 84 149 149
11 190 144\146 84\95 149\151 149
12 188\197 144 95\97 145\149 149
13 186\197 144 82\84 149 149
14 188\190 144 95 149 147\149
15 178\188 144 95 145\149 147
16 186\197 144 84\97 149\151 149
17 186 144 84 145\149 149
18 186\188 155\157 95 140\149 145\147
19 188 155\157 82\95 145\149 147
20 190\197 155\157 84 \ 149
21 190\194.9 144 84 149\151 149
22 188\197 157\161 84\97 145\149 149
23 178\197 159\161 95\97 145\149 149
24 190 155\163 75\84 140\151 147\149
25 190\197 144 75\84 149 149
26 190\197 155\157 84\95 149\151 149
27 190\197 144 75\84 149 147\149
28 188 155\161 95\97 149 \
29 188\197 144 84 149 147\149
30 190 144 75 149\151 149
31 186\197 144 84\95 145\149 149
32 186 144 95\97 149 149
33 180 144 78\87 140\145 145
34 186\197 157 84 145\151 149
35 188 155\161 95\97 149 149
36 190 144 75\84 140\151 149
37 188\197 159 84 145\151 149
38 190 155\157 84\95 149\151 149
39 178\197 161 95\97 149 149
40 186\197 157\159 75\89 149 147\155
41 186\201 144 95\97 145\149 147
42 186\190 155\159 75\89 145\149 149
43 188 144 84\97 149 149
44 186\201 \ 95\97 149 147\149
45 188\197 155\161 84 149 147\149
46 194 155\157 82 140\149 157
47 190 \ 75\84 149 \
48 190\197 \ 75\84 140\149 147\149
49 188\197 155\161 84\95 145\151 147\149
50 190\197 144 84 149\151 147\149
51 186\197 \ 75 149 147\149
52 186\190 144 75\84 149\151 147\149
53 190\197 144 75\84 149 149
54 190\194 144 95\97 149\151 149
55 188 155\161 84 145\149 147\149
56 186\190 144 95 149 147\149
57 190\197 159\161 84\95 149 147\149
58 188 144 84 149\151 147\149
59 186 144 84\97 149\151 147\149
60 178\186 144 84/95 145 149
61 190\197 144\155 84 149\151 147\149
62 178\201 155\161 95 145 147\149
63 188 159\161 84 145\149 147
64 190\197 146 75\89 145\149 149\155
65 188\197 144 84\95 145 147\149
66 190\197 159\161 84\97 145\149 147\149
67 186\197 144 84 149 147\149
68 186\188 144 95 145\149 145\147
69 187\203 159\161 82 140 149\157
70 188\197 144 84\97 149 147\149
71 197\201 157 84\95 145\149 147
72 190\201 161 95\97 145\149 147\149
73 190\197 144 75\84 149 149
74 197 144\146 84\95 149 149
75 178\197 144 84 149\151 149
76 178\190 155\157 84 145\151 149
77 190\197 159\161 95 140\145 147\149
78 186 159\161 84 149 149
79 188 \ 95\97 145\151 147\149

Table 3

Information of 26 SSR core primers"

编号
No.
SSR位点
Code
重复单元
Motif
引物序列
Primer sequence (5'-3')
退火温度
Temperature (℃)
片段长度
Size (bp)
等位基因数
Allele No
多态信息含量
PIC
1 Pp01-2356268 (TC)27 F-ACTGTGGAGAAATGTCACTAAATCC 53-56 187 10 0.79
R-CGGCTGACTTCTGTGACTATGTATT
2 Pp01-4292817 (AG)16 F-AGAAATTAAAGACACGCCAAGAAAT 53-56 116 6 0.67
R-TGACTCACACTTGTTTTTCTCTCTG
3 Pp01-6357400 (ATT)7 F-GGTTTACGGAGGTAAATTTTGTTTT 53-56 156 4 0.49
R-TCATTACCCTATAACCATCATCACA
4 Pp01-9009794 (AT)11 F-GGGTTCGCTCTTAACTTCATTTATT 53-56 145 8 0.47
R-AACAAGCTGAACATAACCCACATAA
5 Pp01-12524641 (CTT)16 F-ACAAAAGAACTTGCACCCATATTT 53-56 106 7 0.58
R-GTTGTTGGATCAAAGAAGAAGAAAA
6 Pp01-17577816 (TTA)12 F-TAAAATTGGAGTGGGAAAATCATTA 53-56 116 4 0.56
R-CTCTTTTGATTGATAAAGAAACTGCT
7 Pp01-29068991 (GA)16 F-CTACCCAAGCCCATTAAATTTGG 53-56 150 13 0.75
R-CGAAGTATGTGCATGTTGTCACTA
8 Pp01-32006223 (CT)11 F-AGGACAAAGAAAGAATAACCCAAAT 53-56 152 6 0.61
R-CGTATTATATGTGTTGGTAAGTTGGC
9 Pp01-37824973 (GA)28 F-TACTGCGATCATATAATGGGTGAGT 53-56 158 5 0.48
R-CTTCTCTTTCACAACAACATCCAC
10 Pp01-38545547 (TTA)16 F-CTTCAGGAGATTCAATTCGTTTTT 53-56 153 7 0.63
R-TTATTAACAAGGTTGAGTTGAGTCG
11 Pp02-3112920 (TAT)5 F-ATTCATTGGTTGGTTCCAATACTTA 53-56 134 5 0.46
R-TTATTCAATTGGATTGGATTTTGTT
12 Pp02-8084012 (AT)11 F-GATTCAGATTAAAGCATGTCCATTT 53-56 130 7 0.56
R-CGGTGAGTAAAATACTTCATTCGTT
13 Pp02-26052271 (AT)6 F-GAATCGTTGAACATTTATATGGGAC 53-56 139 6 0.55
R-AAAGGGAAACAAGAACTCAGGTAAT
14 Pp03-8152877 (CT)15 F-AGCATACTTGAAGAAAAATGCTCAC 53-56 126 8 0.67
R-CTCAGCCAAAACCTATCAGAATTTA
15 Pp03-16205196 (AG)9 F-GGTTTCTTATGAGTGAGAATCCAAG 53-56 146 7 0.59
R-GCTGAGGTGTGAATATCTGTTTCTT
16 Pp03-21358179 (TGACCA)4 F-ACCAAGTGTAAATGGTCAATTTTGT 53-56 132 4 0.5
R-TCTGGATTGTACTGTTCACTATGGA
17 Pp04-7103540 (AT)11 F-CCACTATTCAAAAACCAGTTTGTCT 53-56 155 11 0.63
R-ATAGATGGTTTGAATCATTGGAAAA
18 Pp04-19374257 (TTA)6 F-AATTCGTATTCCCCTTTTAACATTC 53-56 154 6 0.49
R-CAAACTCAAACTAATCAACTGGAGG
19 Pp04-21523456 (TA)13 F-ATCCCTCAATGAAAGCTCTCTGTAT 53-56 97 8 0.7
R-CAAAACTTGTGTCAAAAATATGGTG
20 Pp04-22537846 (CA)6 F-AAAGTTAACCCAACACACCTATCAA 53-56 125 5 0.47
R-CTGTATTTTCAAACAGAAGATTGCC
21 Pp05-11324136 (GT)9 F-ATGATCAGTCAGAGGTCTCAAAGTT 55-58 105 5 0.52
R-TTTTTCTTTCTCTTTTTGTCAAAGG
22 Pp05-17864845 (TA)12 F-AATCAAACAGAAAAGCGAACTGTAA 53-56 130 7 0.49
R-TCGAGGATGATTTGTTTAGTACGTT
23 Pp06-374720 (CT)16 F-GAATAAGTCACACCCACATCACTAA 53-56 148 10 0.55
R-TATGAAAGGGTGTAAGCTACCTCAA
24 Pp06-6343221 (AT)7 F-CCTTGAACCGGAAAATAATAGAAAT 53-56 120 5 0.68
R-ATTCACGAGAATAGTGTCAGTCCTT
25 Pp06-8102398 (TA)11 F-GCCATTCACTCTACTAGAAGGACAC 53-56 149 5 0.63
R-GCCCACATGCATCAATTAATATC
26 Pp07-21855211 F-AATTATGGAACCATACACACGTTTT 53-56 153 5 0.48
R-AAAGGGTATTTTGGAGTGAGACAAT
平均值 Mean 6.69 0.57

Fig. 4

Neighbor-joining clustering analysis chart based on Nei genetic distance The number is the same as that in Table 1. The same as below"

Table 4

Statistics of clustering results"

组别 Group 数量 No. 桃品种(系) Cultivar (line)
14 1、40、34、77、2、66、44、64、19、33、10、13、67、69
16 9、24、56、25、42、20、32、58、65、70、63、8、21、12、15、49
17 11、62、31、39、45、60、59、57、18、36、75、38、61、28、46、51、79
10 3、23、55、16、76、48、54、43、29、37
14 4、5、53、14、35、74、52、72、71、73、78、7、27、68
4 6、30、17、41
4 22、26、47、50

Fig. 5

Trend of ΔK with K value"

Fig. 6

Population genetic structure map of 79 peach cultivars (K=2)"

[1] 汪祖华, 庄恩及. 中国果树志-桃卷. 北京: 中国林业出版社, 2001.
WANG Z H, ZHUANG E J. Chinese Fruit Trees:Peach Roll. Beijing: China Forestry Publishing House, 2001. (in Chinese)
[2] BAIRD W V, ESTAGER A S, WELLS J K. Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. Journal of the American Society for Horticultural Science, 1994, 119(6): 1312-1316.
doi: 10.21273/JASHS.119.6.1312
[3] VERDE I, ABBOTT A G, SCALABRIN S, JUNG S, SHU S Q, MARRONI F, ZHEBENTYAYEVA T, DETTORI M T, GRIMWOOD J, CATTONARO F, ZUCCOLO A, ROSSINI L, JENKINS J, VENDRAMIN E, MEISEL L A, DECROOCQ V, SOSONSKI B, PROCHNIK S, MITROS T, POLICRITI A, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5): 487-494. doi: 10.1038/ng.2586.
doi: 10.1038/ng.2586
[4] ARANZANA M J, ABBASSI E K, HOWAD W, ARÚS P. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genetics, 2010, 11: 69. doi: 10.1186/1471- 2156-11-69.
doi: 10.1186/1471
[5] LI T H, LI Y X, LI Z C, ZHANG H L, QI Y W, WANG T. Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). Journal of Integrative Plant Biology, 2008, 50(1): 102-110. doi: 10.1111/j.1744-7909.2007.00598.x.
doi: 10.1111/j.1744-7909.2007.00598.x.
[6] GUICHOUX E, LAGACHE L, WAGNER S, CHAUMEIL P, LÉGER P, LEPAIS O, LEPOITTEVIN C, MALAUSA T, REVARDEL E, SALIN F, PETIT R J. Current trends in microsatellite genotyping. Molecular Ecology Resources, 2011, 11(4): 591-611. doi: 10.1111/j.1755-0998.2011.03014.x.
doi: 10.1111/j.1755-0998.2011.03014.x.
[7] EMANUELLI F, LORENZI S, GRZESKOWIAK L, CATALANO V, STEFANINI M, TROGGIO M, MYLES S, MARTINEZ-ZAPATER J M, ZYPRIAN E, MOREIA F M, GRANDO M S. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BioMed Central, 2013, 13(1): 39.
[8] 李益, 马先锋, 唐浩, 李娜, 江东, 龙桂友, 李大志, 牛英, 韩瑞玺, 邓子牛. 柑橘品种鉴定的SSR标记开发和指纹图谱库构建. 中国农业科学, 2018, 51(15): 2969-2979. doi: 10.3864/j.issn.0578-1752.2018.15.012.
doi: 10.3864/j.issn.0578-1752.2018.15.012
LI Y, MA X F, TANG H, LI N, JIANG D, LONG G Y, LI D Z, NIU Y, HAN R X, DENG Z N. SSR markers screening for identification of Citrus cultivar and construction of DNA fingerprinting library. Scientia Agricultura Sinica, 2018, 51(15): 2969-2979. doi: 10.3864/j.issn.0578-1752.2018.15.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.15.012
[9] 赵瑞娟, 薛华柏, 王磊, 温晶晶, 杨健, 王龙, 王苏珂, 苏艳丽, 李秀根. 梨属植物SSR分子标记核心引物的筛选及其聚类分析. 果树学报, 2017, 34(10): 1229-1238. doi: 10.13925/j.cnki.gsxb.20170099.
doi: 10.13925/j.cnki.gsxb.20170099
ZHAO R J, XUE H B, WANG L, WEN J J, YANG J, WANG L, WANG S K, SU Y L, LI X G. Core primers screening for SSR markers and cluster analysis in the plants of Pyrus spp. Journal of Fruit Science, 2017, 34(10): 1229-1238. doi: 10.13925/j.cnki.gsxb.20170099. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20170099
[10] LIU M P, DU H Y, ZHU G P, FU D L, TANA W Y. Genetic diversity analysis of sweet kernel apricot in China based on SSR and ISSR markers. Genetics and Molecular Research, 2015, 14(3): 9722-9729. doi: 10.4238/2015.August.19.4.
doi: 10.4238/2015.August.19.4
[11] EMANUELLI F, LORENZI S, GRZESKOWIAK L, CATALANO V, STEFANINI M, TROGGIO M, MYLES S, MARTINEZ-ZAPATER J M, ZYPRIAN E, MOREIRA F M, STELLA GRANDO M. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 2013, 13: 39.
doi: 10.1186/1471-2229-13-39
[12] ARANZANA M J, GARCIA-MAS J, CARBO J, ARÚS P. Development and variability analysis of microsatellite markers in peach. Plant Breeding, 2002, 121(1): 87-92.
doi: 10.1046/j.1439-0523.2002.00656.x
[13] ARANZANA M J, ABBASSI E K, HOWAD W, ARÚS P. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genetics, 2010, 11: 69. doi: 10.1186/1471-2156-11-69.
doi: 10.1186/1471-2156-11-69
[14] 舒楠, 石广丽, 张庆田, 刘涛, 路文鹏. 基于SSR分子标记的集安白桃等桃资源遗传多样性分析. 特产研究, 2020, 42(4): 24-27. doi: 10.16720/j.cnki.tcyj.2020.04.005.
doi: 10.16720/j.cnki.tcyj.2020.04.005
SHU N, SHI G L, ZHANG Q T, LIU T, LU W P. Genetic diversity analysis of peach in Ji’an based on SSR markers. Special Wild Economic Animal and Plant Research, 2020, 42(4): 24-27. doi: 10.16720/j.cnki.tcyj.2020.04.005. (in Chinese)
doi: 10.16720/j.cnki.tcyj.2020.04.005
[15] 陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44(10): 2081-2093. doi: 10.3846/j.issn.0578-175.2011.10.013.
doi: 10.3846/j.issn.0578-175.2011.10.013
CHEN C W, CAO K, WANG L R, ZHU G R, FANG W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011, 44(10): 2081-2093. doi: 10.3846/j.issn.0578-175.2011.10.013. (in Chinese)
doi: 10.3846/j.issn.0578-175.2011.10.013
[16] 李丹, 张学英, 韩艳, 闫洪波, 杨晓悦, 于小双, 李晨希, 陈海江. 不同来源‘大久保’亲缘关系SSR分析. 分子植物育种, 2016, 14(8): 2147-2154. doi: 10.13271/j.mpb.014.002147.
doi: 10.13271/j.mpb.014.002147
LI D, ZHANG X Y, HAN Y, YAN H B, YANG X Y, YU X S, LI C X, CHEN H J. SSR analysis of genetic relationship of ‘Okubo’ peach from different regions. Molecular Plant Breeding, 2016, 14(8): 2147-2154. doi: 10.13271/j.mpb.014.002147. (in Chinese)
doi: 10.13271/j.mpb.014.002147
[17] 王力荣, 朱更瑞, 方伟超. 中国桃遗传资源. 北京: 中国农业出版社, 2012.
WANG L R, ZHU G R, FANG W C. Peach Genetic Resource in China. Beijing: Chinese Agriculture Press, 2012. (in Chinese)
[18] 张南南, 牛良, 崔国朝, 潘磊, 曾文芳, 王志强, 鲁振华. 一种高通量提取桃DNA方法的建立与应用. 中国农业科学, 2018, 51(13): 2614-2621. doi: 10.3864/j.issn.0578-1752.2018.13.016.
doi: 10.3864/j.issn.0578-1752.2018.13.016
ZHANG N N, NIU L, CUI G C, PAN L, ZENG W F, WANG Z Q, LU Z H. Establishment and application of a high-throughout protocol for peach (Prunus persica) DNA extraction. Scientia Agricultura Sinica, 2018, 51(13): 2614-2621. doi: 10.3864/j.issn.0578-1752.2018.13.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.016
[19] 郭培国, 刘文杰, 李海洋, 王直亮, 夏岩石, 李荣华. 一种快速有效检测SSR标记的非变性聚丙烯酰胺凝胶的银染方法. 广州大学学报(自然科学版), 2016, 15(4): 8-12, 49.
GUO P G, LIU W J, LI H Y, WANG Z L, XIA Y S, LI R H. A rapid and effective method of silver staining for detecting SSR markers in nondenaturing polyacrylamide gels. Journal of Guangzhou University (Natural Science Edition), 2016, 15(4): 8-12, 49. (in Chinese)
[20] 钱刚, 平军娇, 王大忠, 张珍, 刘茂生. SSR多态性信息含量(PIC)对大麦糖化力的选择效果. 广东农业科学, 2011, 38(14): 120-123. doi: 10.16768/j.issn.1004-874x.2011.14.054.
doi: 10.16768/j.issn.1004-874x.2011.14.054
QIAN G, PING J J, WANG D Z, ZHANG Z, LIU M S. Screening of diastatic power with polymorphism information content (PIC) generated by SSR in barley. Guangdong Agricultural Sciences, 2011, 38(14): 120-123. doi: 10.16768/j.issn.1004-874x.2011.14.054. (in Chinese)
doi: 10.16768/j.issn.1004-874x.2011.14.054
[21] LIU K J, MUSE S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129. doi: 10.1093/bioinformatics/bti282.
doi: 10.1093/bioinformatics/bti282
[22] NEI M, TAJIMA F, TATENO Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 1983, 19(2): 153-170.
doi: 10.1007/BF02300753
[23] ROHLF F J. NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System, version 2. 1. 2000.
[24] PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959. doi: 10.1093/genetics/155.2.945.
doi: 10.1093/genetics/155.2.945
[25] EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x.
doi: 10.1111/j.1365-294X.2005.02553.x.
[26] EARL D A, VONHOLDT B M. STRUCTURE HARVESTER: A website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2): 359-361. doi: 10.1007/s12686-011-9548-7.
doi: 10.1007/s12686-011-9548-7
[27] 马静, 安永平, 王彩芬, 张文银. 遗传多样性研究进展. 陕西农业科学, 2010, 56(1): 126-130.
MA J, AN Y P, WANG C F, ZHANG W Y. Research progress on genetic diversity. Shaanxi Journal of Agricultural Sciences, 2010, 56(1): 126-130. (in Chinese)
[28] KHLESTKINA E K. Molecular markers in genetic studies and breeding. Russian Journal of Genetics Applied Research, 2014, 4(3): 236-244.
doi: 10.1134/S2079059714030022
[29] 孙林, 耿其芳. 珍稀濒危植物遗传多样性研究方法及影响因素. 安徽农业科学, 2014, 42(13): 3793-3798. doi: 10.13989/j.cnki.0517-6611.2014.13.004.
doi: 10.13989/j.cnki.0517-6611.2014.13.004
SUN L, GENG Q F. Research methods and influencing factors of genetic diversity of rare and endangered plants. Journal of Anhui Agricultural Sciences, 2014, 42(13): 3793-3798. doi: 10.13989/j.cnki.0517-6611.2014.13.004. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2014.13.004
[30] 闫路娜, 张德兴. 种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响. 动物学报, 2004, 50(2): 279-290. doi: 10.3969/j.issn.1674-5507.2004.02.019.
doi: 10.3969/j.issn.1674-5507.2004.02.019
YAN L N, ZHANG D X. Effects of sample size on various genetic diversity measures in population genetic study with microsatellite DNA markers. Acta Laboratorium Animalis Scientia Sinica, 2004, 50(2): 279-290. doi: 10.3969/j.issn.1674-5507.2004.02.019. (in Chinese)
doi: 10.3969/j.issn.1674-5507.2004.02.019
[31] 俞明亮, 马瑞娟, 沈志军, 葛志刚, 蔡志翔. 应用SSR标记进行部分黄肉桃种质鉴定和亲缘关系分析. 园艺学报, 2010, 37(12): 1909-1918. doi: 10.16420/j.issn.0513-353x.2010.12.019.
doi: 10.16420/j.issn.0513-353x.2010.12.019
YU M L, MA R J, SHEN Z J, GE Z G, CAI Z X. Analysis of genetic diversity and relationship of yellow flesh peach by SSR. Acta Horticulturae Sinica, 2010, 37(12): 1909-1918. doi: 10.16420/j.issn.0513-353x.2010.12.019. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2010.12.019
[32] 陈巍, 王力荣, 张绍铃, 陈昌文, 曹珂. 利用SSR研究不同国家桃育成品种的遗传多样性. 果树学报, 2007, 24(5): 580-584.
CHEN W, WANG L R, ZHANG S L, CHEN C W, CAO K. Genetic diversity analysis of peach (Prunus persica) cultivars introduced from different countries by SSR. Journal of Fruit Science, 2007, 24(5): 580-584. (in Chinese)
[33] 王淋, 敖敦, 包文泉, 张淑宁, 陈俊兴, 李凤鸣, 孟繁庆, 杨钰莹, 白玉娥. 基于SSR分子标记的桃品种鉴别及指纹图谱构建. 中南林业科技大学学报, 2021, 41(6): 131-138. doi: 10.14067/j.cnki.1673-923x.2021.06.014.
doi: 10.14067/j.cnki.1673-923x.2021.06.014
WANG L, AO D, BAO W Q, ZHANG S N, CHEN J X, LI F M, MENG F Q, YANG Y Y, BAI Y E. Research on the identification of main peach varieties and construction of fingerprint based on SSR markers. Journal of Central South University of Forestry & Technology, 2021, 41(6): 131-138. doi: 10.14067/j.cnki.1673-923x.2021.06.014. (in Chinese)
doi: 10.14067/j.cnki.1673-923x.2021.06.014
[34] 张南南. 温敏半矮生型桃PpTssd基因的精细定位及分子鉴定[D]. 北京: 中国农业科学院, 2018.
ZHANG N N. Fine mapping and molecular identification of PpTssd gene in temperature sensitive semi-dwarf peach[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[35] 鲁振华, 沈志军, 牛良, 潘磊, 崔国朝, 曾文芳, 王志强. 122份栽培桃品种(系)黄白肉性状的分子标记辅助鉴定. 中国农业科学, 2020, 53(14): 2929-2940. doi: 10.3864/j.issn.0578-1752.2020.14.016.
doi: 10.3864/j.issn.0578-1752.2020.14.016
LU Z H, SHEN Z J, NIU L, PAN L, CUI G C, ZENG W F, WANG Z Q. Molecular marker-assisted identification of yellow/white flesh trait for 122 peach cultivars (lines). Scientia Agricultura Sinica, 2020, 53(14): 2929-2940. doi: 10.3864/j.issn.0578-1752.2020.14.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.14.016
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[5] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[8] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[9] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[10] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[11] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[12] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[13] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
[14] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[15] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!