Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2538-2551.doi: 10.3864/j.issn.0578-1752.2022.13.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image

MENG Yu1(),WEN PengFei1,DING ZhiQiang2,TIAN WenZhong2,ZHANG XuePin2,HE Li1,DUAN JianZhao1,LIU WanDai1,FENG Wei1()   

  1. 1Agronomy College of Henan Agriculture University/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, Zhengzhou 450046
    2Wheat Research Institute, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471000, Henan
  • Received:2021-10-13 Accepted:2021-12-14 Online:2022-07-01 Published:2022-07-08
  • Contact: Wei FENG E-mail:mengyu9540@163.com;fengwei78@126.com

Abstract:

【Objective】The information related to the temperature parameters of different genotypes of wheat canopy were analyzed to explore the indicators and methods for rapid and efficient screening of drought-resistant varieties of winter wheat, so as to provide a reference basis for the screening of drought-resistant varieties of winter wheat.【Method】In this study, the canopy thermal infrared images of 10 wheat varieties with different drought resistance under drought stress were obtained and extracted canopy temperature characteristic parameters by using temperature frequency histogram and other analysis methods, and the quantitative relationship between temperature characteristic parameters and drought resistance index were clarified, and then the effectiveness of canopy temperature characteristic parameters on screening drought-resistant varieties of winter wheat were analyzed.【Result】The grading criteria based on the yield drought resistance index (DRI) classified the measured wheat varieties into four drought resistance categories. The stronger the drought resistance, the more stable the maximum photosynthetic efficiency (Fv/Fm), plant water content (PWC), stomatal conductance (Gs), transpiration rate (Tr), and seed yield. The characteristic parameters of canopy temperature based on thermal infrared images were extracted, indicating the stronger the drought resistance of wheat, the smaller variability in canopy temperature and the less dispersion in canopy temperature. The yield DRI showed highly significant positive correlation with the deviation between crop canopy temperature and ambient temperature (CTD) at the jointing, booting and flowering stages with the correlation coefficient r=0.79-0.84, while the standard deviation of canopy temperature (CTSD), coefficient of variation (CTCV), water stress index (CWSI) and relative canopy temperature difference (CRTD) were significantly negatively correlated (r=-0.56- -0.78). The regression model of yield DRI was built based on canopy temperature characteristic parameters of a single growth period, and the estimation accuracy was r2=0.73-0.87, with the highest accuracy of the prediction model at the jointing stage. And the prediction model of yield DRI was constructed based on the combination of relevant canopy temperature parameters CTD, CTCV, and CTSD CWSI of three growth periods, and the accuracy of prediction was significantly higher (r2=0.95) than that based on a single growth period.【Conclusion】 Thermal infrared images can be used for early identification and rapid evaluation of drought resistance of wheat varieties, which is of great significance for promoting efficient and water-saving crop production.

Key words: winter wheat, drought stress, thermal infrared image, drought resistance index, variety identification

Table 1

Classification standards of drought resistance evaluation based on drought resistance index (DRI) in wheat"

抗旱性级别
Drought resistance rank
抗旱指数
Drought resistance index
抗旱性评价标准
Drought resistance evaluation standard
1 ≥1.30 极强 HR
2 1.10—1.29 强 R
3 0.90—1.09 中等 MR
4 0.70—0.89 弱 S
5 ≤0.69 极弱 HS

Table 2

Grain yield and drought resistance evaluation of wheat varieties with different drought resistance"

代号
Number
品种名称
Cultivar
产量Grain yield(kg·hm-2 抗旱指数
Drought index
抗旱评价
Drought evaluation
棚内 Output in dry land 棚外 Output in wet land
1 洛旱19 Luohan 19 4816.98b 8610.52c 1.06 中等MR
2 洛旱22 Luohan 22 5026.80a 8713.45bc 1.14 强R
3 洛麦26 Luomai 26 4584.04c 9378.24a 0.88 弱S
4 中麦175 Zhongmai 175 4350.88d 9050.06b 0.82 弱S
5 百农207 Bainong 207 4299.84d 8144.90d 0.89 弱S
6 豫农516 Yunong516 4551.87c 8838.05b 0.92 中等MR
7 中麦895 Zhongmai 895 3873.35e 8831.18b 0.67 极弱HS
8 安农0711 Annong 0711 4390.08d 8953.79b 0.85 弱S
9 华成3366 Huacheng 3366 3915.60e 8679.40bc 0.69 极弱HS
10 晋麦47 Jinmai 47 4587.77c 8269.14d 1.00 中等MR

Fig. 1

Effect of drought stress on Fv/Fm, plant water content (PWC), stomatal conductance (Gs) and transpiration rate (Tr) of different drought-resistant types in winter wheat HR: Hightly resistant; R: Resistant; MR: Moderately resistant; S: Sensitive; HS: Highly sensitive. Different small letters indicate significant differences at P<0.05"

Fig. 2

Canopy temperature frequency histogram of different drought resistance wheat a, b, c, d are the four different grades of drought-resistant varieties at jointing stage: Luohan 22, Jinmai 47, Zhongmai 175, and Zhongmai 895, respectively; Similarly, e, f, g, h and i, j, k, l are the representative varieties of these four different levels of drought resistance at booting and flowering stages, respectively"

Table 3

Variation characteristics of canopy temperature parameters of wheat with different drought resistance under drought stress"

时期
Time
抗旱性评价
Drought evaluation
CETR CTEP CTSD CTCV CTD CWSI CRTD
拔节期
Jointing stage
强R 14.90-19.17 6.58 0.480 0.03 5.14 0.4 0.138
中等MR 14.71-23.42 7.99-9.28 0.934-1.102 0.048-0.054 3.42-4.87 0.41-0.44 0.158-0.174
弱S 14.98-23.51 9.62-10.00 1.036-1.273 0.053-0.065 2.22-3.00 0.45-0.47 0.164-0.210
极弱HS 15.15-23.60 11.37-11.62 1.105-1.227 0.068-0.071 1.81-2.69 0.46-0.50 0.198-0.214
孕穗期
Booting stage
强R 21.93-26.28 7.63 0.660 0.028 -0.32 0.44 0.076
中等MR 21.72-28.73 8.43-9.33 0.728-0.850 0.031-0.034 -0.66--1.13 0.46-0.48 0.086-0.096
弱S 22.14-28.36 9.91-10.52 0.807-0.880 0.033-0.040 -1.42--1.88 0.48-0.50 0.101-0.112
极弱HS 21.45-29.77 11.06-11.79 0.952-1.164 0.039-0.045 -1.65--2.38 0.51-0.54 0.119-0.153
开花期
Anthesis stage
强R 21.01-27.67 11.58 1.108 0.041 -4.17 0.47 0.105
中等MR 24.92-35.29 12.21-14.29 1.298-1.601 0.043-0.051 -4.30--5.16 0.49-0.51 0.108-0.116
弱S 25.42-36.19 13.52-14.95 1.270-1.812 0.047-0.056 -5.56--6.47 0.53-0.54 0.120-0.136
极弱HS 25.90-38.48 15.14-18.82 1.824-1.963 0.054-0.060 -6.87--7.78 0.59-0.60 0.149-0.159

Fig. 3

Correlation between drought resistance index and characteristic number of canopy temperature of wheat varieties under drought stress Different colors indicate the intensity of the significant, and the closer to red (plus) or blue (minus), the higher for the significant; the larger the circular diameter, the greater the correlation coefficient, × indicate no significant (P<0.05). DRI: Drought resistance index; CTSD: Standard deviation of canopy temperature; CTCV: Canopy temperature variation coefficient; CTD: Canopy temperature depression; CWSI: Crop water stress index; CRTD: Relative canopy temperature difference"

Fig. 4

The inversed CTD map of different grades of drought-resistant wheat varieties a, b, c, d are the four different grades of drought-resistant varieties at jointing stage: Luohan 22, Jinmai 47, Zhongmai 175, and Zhongmai 895, respectively; Similarly, e, f, g, h and i, j, k, l are the representative varieties of these four different levels of drought resistance at booting and flowering stages, respectively"

Fig. 5

Validation results of drought resistance index DRI model"

Table 4

Stepwise regression analysis based on the canopy temperature parameters at single stage"

响应变异
Response variable
步骤
Step
拔节期 Jointing stage 孕穗期 Booting stage 开花期 Anthesis stage
入选变量
Variable entered
精度
R2
入选变量
Variable entered
精度
R2
入选变量
Variable entered
精度
R2
抗旱指数DRI S1 CTD 0.706 CTD 0.624 CTD 0.672
S2 CTCV 0.837 CTCV 0.734 CWSI 0.768
S3 CWSI 0.872

Table 5

Stepwise regression analysis based on the canopy temperature parameters of multiple growth stages"

响应变异
Response variable
步骤
Step
生育期
Growth stage
入选变量
Variable entered
估算精度
Estimation R2
抗旱指数
DRI
S1 拔节 Jointing stage CTD 0.706
S2 孕穗 Booting stage CTCV 0.836
S3 开花 Anthesis stage CWSI 0.902
S4 拔节 Jointing stage CTSD 0.948
[1] SOUSSANA J F, GRAUX A L, TUBIELLO F N. Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany, 2010, 61(8): 2217-2228.
doi: 10.1093/jxb/erq100
[2] BLOEM M W, SEMBA R D, KRAEMER K. Castel gandolfo workshop: An introduction to the impact of climate change, the economic crisis, and the increase in the food prices on malnutrition. Journal of Nutrition, 2010, 140: 132S-135S.
[3] 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22(8): 880-885.
KANG S Z. Towards water and food security in China. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880-885. (in Chinese)
[4] GUO Z J, SHI Y, YU Z W, ZHANG Y L. Supplemental irrigation affected flag leaves senescence post-anthesis and grain yield of winter wheat in the Huang-Huai-Hai Plain of China. Field Crops Research, 2015, 180: 100-109.
doi: 10.1016/j.fcr.2015.05.015
[5] 李瑞雪, 孙任洁, 汪泰初, 陈丹丹, 李荣芳, 李龙, 赵卫国. 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023
LI R X, SUN R J, WANG T C, CHEN D D, LI R F, LI L, ZHAO W G. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnology Bulletin, 2017, 33(7): 44-48. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023
[6] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988
[7] BlUM A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research, 2005, 56: 1159-1168.
doi: 10.1071/AR05069
[8] NOURI-GANBALANI A, NOURI-GANBALANI G, HASSANPANAH D. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food Agriculture and Environment, 2009, 7(3): 228-234.
[9] ALMESELMANI M, DESHMUKH P S, SAIRAM R K, KUSHWAHA S R, SINGH T P. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006, 171: 382-388.
doi: 10.1016/j.plantsci.2006.04.009
[10] 余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 张峰, 王蒂, 张俊莲. 马铃薯冠气温差变化特性与耐旱性的关系. 作物学报, 2018, 44(7): 1086-1094.
doi: 10.3724/SP.J.1006.2018.01086
YU B, YANG H Y, WANG L, LIU Y H, BAI J P, ZHANG F, WANG D, ZHANG J L. Relationship between potato canopy-air temperature difference and drought tolerance. Acta Agronomica Sinica, 2018, 44(7): 1086-1094. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01086
[11] LUAN Y J, XU J Z, LV Y P, LIU X Y, WANG H Y, LIU S M. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agricultural Water Management, 2021, 246(401): 106699.
doi: 10.1016/j.agwat.2020.106699
[12] 赵刚, 樊廷录, 李尚中, 王勇, 王磊, 党翼, 唐小明, 张建军, 王国宇. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31(3): 334-337.
ZHAO G, FAN T L, LI S Z, WANG Y, WANG L, DANG Y, TANG X M, ZHANG J J, WANG G Y. Study of relationship of canopy temperature with drought resistance and water use efficiency on different genotype winter wheat. Research of Agricultural Modernization, 2010, 31(3): 334-337. (in Chinese)
[13] FANG J J, MA W Y, ZHAO X Q, HE X, LI B, TONG Y P, LI Z S. Lower canopy temperature is associated with higher cytokinin concentration in the flag leaf of wheat. Crop Science, 2012, 52: 2743-2756.
doi: 10.2135/cropsci2012.03.0163
[14] 黄山, 王伟, 毕永基, 曾罗华, 刘庆友, 谭雪明, 潘晓华. 不同早稻品种冠层温度的差异及其与产量的关系. 江西农业大学学报, 2014, 36(6): 1179-1184.
HUANG S, WANG W, BI Y J, ZENG L H, LIU Q Y, TAN X M, PANG X H. Genetic differences in canopy temperature of different early-rice varieties and its relationship with yield. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(6): 1179-1184. (in Chinese)
[15] SADLER E J, CAMP C R, EVANS D E, MILLAN J A. Corn canopy temperatures measured with a moving infrared thermometerarray. Transactions of the ASAE, 2002, 45(3): 581-591.
[16] WANG M, HUANG T. An integrated electric energy management system to improve fuel economy. Lecture Notes in Electrical Engineering, 2013, 194: 115-122.
[17] WATANABE K, AGARIE H, APARATANA K, MITSUOKA M, TAIRA E, UENO M, KAWAMITSU Y. Fundamental study on water stress detection in sugarcane using thermal image combined with photosynthesis measurement under a greenhouse condition. Sugar Tech, 2022: 1-9.
[18] CHAERLE L, CAENEGHEM W V, MESSENS E, LAMBERS H, MONTAGU M V, STRAETEN D V D. Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology, 1999, 17(8): 813-816.
doi: 10.1038/11765
[19] PEARCE R S, FULLER M P. Freezing of barley studied by infrared video thermography. Plant physiology, 2001, 125(1): 227-240.
doi: 10.1104/pp.125.1.227
[20] O’SHAUGHNESSY S A, EVETT S R, COLAIZZI P D, HOWELL T A. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 2011, 98(10): 1523-1535.
doi: 10.1016/j.agwat.2011.05.005
[21] MANGUS D L, SHARDA A, ZHANG N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 2016, 121(4): 149-159.
doi: 10.1016/j.compag.2015.12.007
[22] 张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫. 农业工程学报, 2018, 34(15): 77-84.
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 77-84. (in Chinese)
[23] PURUSHOTHAMAN R, THUDI M, KRISHNAMURTHY L, UPADHYAYA H D, KASHIWAGI J, GOWDA C L L, VARSHNEY A K. Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Research, 2015, 174: 1-11.
doi: 10.1016/j.fcr.2015.01.007
[24] 张智韬, 许崇豪, 谭丞轩, 李宇, 宁纪锋. 基于无人机热红外遥感的玉米地土壤含水率诊断方法. 农业机械学报, 2020, 51(3): 180-190.
ZHANG Z T, XU C H, TAN C X, LI Y, NING J F. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 180-190. (in Chinese)
[25] JACKSON R D, IDSO S B, REGINATO R J, PINTER, JR P J. Canopy temperature as a crop water stress indicator. Water Resources Research, 1981, 17(4): 1133-1138.
doi: 10.1029/WR017i004p01133
[26] OLIVO N, GIRONA J, MARSAL J. Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine. Irrigation Science, 2009, 27(2): 175-182.
doi: 10.1007/s00271-008-0134-z
[27] BERGER B, PARENT B, TESTER M. High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 2010, 61(13): 3519-3528.
doi: 10.1093/jxb/erq201
[28] ZIA S, ROMANO G, SPREER W, SANCHEZ C, CAIRNS J, ARAUS J L, MULLER J. Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. Journal of Agronomy and Crop Science, 2012, 13: 931-2250.
[29] GRANT O M, TRONINA L, JONES H G, CHAVES M M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 2007, 58(4): 815-825.
doi: 10.1093/jxb/erl153
[30] 李磊, 贾志清, 朱雅娟, 綦艳林. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059.
LI L, JIA Z Q, ZHU Y J, QI Y L. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. (in Chinese)
[31] MING H, ZHANG H, DEJONGE K C, COMAS L H, TROUT T J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 2016, 177: 400-409.
doi: 10.1016/j.agwat.2016.08.031
[32] 吴金芝, 王志敏, 李友军, 张英华. 干旱胁迫下不同抗旱性小麦品种产量形成与水分利用特征. 中国农业大学学报, 2015, 20(6): 25-35.
WU J Z, WANG Z M, LI Y J, ZHANG Y H. Characteristics of yield formation and water use in different drought tolerance cultivars of winter wheat under drought stress. Journal of China Agricultural University, 2015, 20(6): 25-35. (in Chinese)
[33] IDSO S B, JACKSON R D, PINTER, JR P J, REGINATO R J, HATFIELD J L. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 1981, 24(1): 45-55.
doi: 10.1016/0002-1571(81)90032-7
[34] XU J, LV Y P, LIU X Y, DALSON T, YANG S H, WU J. Diagnosing crop water stress of rice using infrared thermal imager under water deficit condition. International Journal of Agriculture & Biology, 2015. DOI: 10.17957/IJAB/15.0125.
doi: 10.17957/IJAB/15.0125
[35] BIJU S, FUENTES S, GUPTA D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought- tolerant lentil genotypes. Plant Physiology and Biochemistry, 2018, 127: 11-24.
doi: 10.1016/j.plaphy.2018.03.005
[36] BIAN J, ZHANG Z T, CHEN J Y, CHEN H Y, CUI C F, LI X W, CHEN S B, FU Q Q. Simplified evaluation of cotton water stress using high resolution Unmanned Aerial Vehicle thermal imagery. Remote Sensing, 2019, 11(3): 267.
doi: 10.3390/rs11030267
[37] 张仁华. 定量热红外遥感模型及地面实验基础. 北京: 科学出版社, 2009.
ZHANG R H. Quantitative Thermal Infrared Remote Sensing Model and Ground Experiment Basis. Beijing: Science Press, 2009. (in Chinese)
[38] KARIMIZADEH R, MOHAMMADI M. Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Australian Journal of Crop Science, 2011, 5(2): 138-146.
[39] KUMAR M, GOVINDASAMY, RANE J, SINGH A K, CHOUDHARY R L, RAINA S K, GEORGE P, AHER L K, SINGH N P. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South African Journal of Botany, 2017, 113: 230-238.
doi: 10.1016/j.sajb.2017.08.016
[40] REBETZKE G J, RATTEY A R, FARQHAR G D, RICHARDS R A, CONDON A G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology, 2013, 40(1): 14-33.
doi: 10.1071/FP12184
[41] KRISHNAMURTHY L, KASHIWAGI J, GAUR P M, UPADHYAYA H D, VADAZ V. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 2010, 119(2/3): 322-330.
doi: 10.1016/j.fcr.2010.08.002
[42] JOAQUIM B, JORDI M, JOAN G, VICTORIA G D, ELIAS F, SUSAN L U, PABLO J Z T. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sensing, 2016, 8(1): 39.
doi: 10.3390/rs8010039
[43] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459.
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. (in Chinese)
[44] 徐蕊, 王启柏, 张春庆, 吴承来. 玉米自交系抗旱性评价指标体系的建立. 中国农业科学, 2009, 42(1): 72-84.
XU R, WANG Q B, ZHANG C Q, WU C L. Drought-resistance evaluation system of maize inbred. Scientia Agricultura Sinica, 2009, 42(1): 72-84. (in Chinese)
[45] 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46(3): 476-485.
XIE X Y, ZHANG X, ZHANG B. Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2013, 46(3): 476-485. (in Chinese)
[46] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988
[47] 唐延林, 黄敬峰, 王人潮, 王福民. 水稻遥感估产模拟模式比较. 农业工程学报, 2004, 20(1): 166-171.
TANG Y L, HUANG J F, WANG R C, WANG F M. Comparsion of yield estimation simulated models of rice by remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 166-171. (in Chinese)
[48] 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016, 36(4): 426-434.
ZHANG L L, YANG M M, DONG J, ZHAO W C, GAO X, CHEN D Y. Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stages. Journal of Triticeae Crops, 2016, 36(4): 426-434. (in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[5] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[11] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[12] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[13] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[14] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[15] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!