Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2538-2551.doi: 10.3864/j.issn.0578-1752.2022.13.005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
MENG Yu1(),WEN PengFei1,DING ZhiQiang2,TIAN WenZhong2,ZHANG XuePin2,HE Li1,DUAN JianZhao1,LIU WanDai1,FENG Wei1()
[1] |
SOUSSANA J F, GRAUX A L, TUBIELLO F N. Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany, 2010, 61(8): 2217-2228.
doi: 10.1093/jxb/erq100 |
[2] | BLOEM M W, SEMBA R D, KRAEMER K. Castel gandolfo workshop: An introduction to the impact of climate change, the economic crisis, and the increase in the food prices on malnutrition. Journal of Nutrition, 2010, 140: 132S-135S. |
[3] | 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22(8): 880-885. |
KANG S Z. Towards water and food security in China. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880-885. (in Chinese) | |
[4] |
GUO Z J, SHI Y, YU Z W, ZHANG Y L. Supplemental irrigation affected flag leaves senescence post-anthesis and grain yield of winter wheat in the Huang-Huai-Hai Plain of China. Field Crops Research, 2015, 180: 100-109.
doi: 10.1016/j.fcr.2015.05.015 |
[5] |
李瑞雪, 孙任洁, 汪泰初, 陈丹丹, 李荣芳, 李龙, 赵卫国. 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023 |
LI R X, SUN R J, WANG T C, CHEN D D, LI R F, LI L, ZHAO W G. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnology Bulletin, 2017, 33(7): 44-48. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023 |
|
[6] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988 |
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988 |
|
[7] |
BlUM A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research, 2005, 56: 1159-1168.
doi: 10.1071/AR05069 |
[8] | NOURI-GANBALANI A, NOURI-GANBALANI G, HASSANPANAH D. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food Agriculture and Environment, 2009, 7(3): 228-234. |
[9] |
ALMESELMANI M, DESHMUKH P S, SAIRAM R K, KUSHWAHA S R, SINGH T P. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006, 171: 382-388.
doi: 10.1016/j.plantsci.2006.04.009 |
[10] |
余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 张峰, 王蒂, 张俊莲. 马铃薯冠气温差变化特性与耐旱性的关系. 作物学报, 2018, 44(7): 1086-1094.
doi: 10.3724/SP.J.1006.2018.01086 |
YU B, YANG H Y, WANG L, LIU Y H, BAI J P, ZHANG F, WANG D, ZHANG J L. Relationship between potato canopy-air temperature difference and drought tolerance. Acta Agronomica Sinica, 2018, 44(7): 1086-1094. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01086 |
|
[11] |
LUAN Y J, XU J Z, LV Y P, LIU X Y, WANG H Y, LIU S M. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agricultural Water Management, 2021, 246(401): 106699.
doi: 10.1016/j.agwat.2020.106699 |
[12] | 赵刚, 樊廷录, 李尚中, 王勇, 王磊, 党翼, 唐小明, 张建军, 王国宇. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31(3): 334-337. |
ZHAO G, FAN T L, LI S Z, WANG Y, WANG L, DANG Y, TANG X M, ZHANG J J, WANG G Y. Study of relationship of canopy temperature with drought resistance and water use efficiency on different genotype winter wheat. Research of Agricultural Modernization, 2010, 31(3): 334-337. (in Chinese) | |
[13] |
FANG J J, MA W Y, ZHAO X Q, HE X, LI B, TONG Y P, LI Z S. Lower canopy temperature is associated with higher cytokinin concentration in the flag leaf of wheat. Crop Science, 2012, 52: 2743-2756.
doi: 10.2135/cropsci2012.03.0163 |
[14] | 黄山, 王伟, 毕永基, 曾罗华, 刘庆友, 谭雪明, 潘晓华. 不同早稻品种冠层温度的差异及其与产量的关系. 江西农业大学学报, 2014, 36(6): 1179-1184. |
HUANG S, WANG W, BI Y J, ZENG L H, LIU Q Y, TAN X M, PANG X H. Genetic differences in canopy temperature of different early-rice varieties and its relationship with yield. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(6): 1179-1184. (in Chinese) | |
[15] | SADLER E J, CAMP C R, EVANS D E, MILLAN J A. Corn canopy temperatures measured with a moving infrared thermometerarray. Transactions of the ASAE, 2002, 45(3): 581-591. |
[16] | WANG M, HUANG T. An integrated electric energy management system to improve fuel economy. Lecture Notes in Electrical Engineering, 2013, 194: 115-122. |
[17] | WATANABE K, AGARIE H, APARATANA K, MITSUOKA M, TAIRA E, UENO M, KAWAMITSU Y. Fundamental study on water stress detection in sugarcane using thermal image combined with photosynthesis measurement under a greenhouse condition. Sugar Tech, 2022: 1-9. |
[18] |
CHAERLE L, CAENEGHEM W V, MESSENS E, LAMBERS H, MONTAGU M V, STRAETEN D V D. Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology, 1999, 17(8): 813-816.
doi: 10.1038/11765 |
[19] |
PEARCE R S, FULLER M P. Freezing of barley studied by infrared video thermography. Plant physiology, 2001, 125(1): 227-240.
doi: 10.1104/pp.125.1.227 |
[20] |
O’SHAUGHNESSY S A, EVETT S R, COLAIZZI P D, HOWELL T A. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 2011, 98(10): 1523-1535.
doi: 10.1016/j.agwat.2011.05.005 |
[21] |
MANGUS D L, SHARDA A, ZHANG N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 2016, 121(4): 149-159.
doi: 10.1016/j.compag.2015.12.007 |
[22] | 张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫. 农业工程学报, 2018, 34(15): 77-84. |
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 77-84. (in Chinese) | |
[23] |
PURUSHOTHAMAN R, THUDI M, KRISHNAMURTHY L, UPADHYAYA H D, KASHIWAGI J, GOWDA C L L, VARSHNEY A K. Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Research, 2015, 174: 1-11.
doi: 10.1016/j.fcr.2015.01.007 |
[24] | 张智韬, 许崇豪, 谭丞轩, 李宇, 宁纪锋. 基于无人机热红外遥感的玉米地土壤含水率诊断方法. 农业机械学报, 2020, 51(3): 180-190. |
ZHANG Z T, XU C H, TAN C X, LI Y, NING J F. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 180-190. (in Chinese) | |
[25] |
JACKSON R D, IDSO S B, REGINATO R J, PINTER, JR P J. Canopy temperature as a crop water stress indicator. Water Resources Research, 1981, 17(4): 1133-1138.
doi: 10.1029/WR017i004p01133 |
[26] |
OLIVO N, GIRONA J, MARSAL J. Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine. Irrigation Science, 2009, 27(2): 175-182.
doi: 10.1007/s00271-008-0134-z |
[27] |
BERGER B, PARENT B, TESTER M. High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 2010, 61(13): 3519-3528.
doi: 10.1093/jxb/erq201 |
[28] | ZIA S, ROMANO G, SPREER W, SANCHEZ C, CAIRNS J, ARAUS J L, MULLER J. Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. Journal of Agronomy and Crop Science, 2012, 13: 931-2250. |
[29] |
GRANT O M, TRONINA L, JONES H G, CHAVES M M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 2007, 58(4): 815-825.
doi: 10.1093/jxb/erl153 |
[30] | 李磊, 贾志清, 朱雅娟, 綦艳林. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. |
LI L, JIA Z Q, ZHU Y J, QI Y L. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. (in Chinese) | |
[31] |
MING H, ZHANG H, DEJONGE K C, COMAS L H, TROUT T J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 2016, 177: 400-409.
doi: 10.1016/j.agwat.2016.08.031 |
[32] | 吴金芝, 王志敏, 李友军, 张英华. 干旱胁迫下不同抗旱性小麦品种产量形成与水分利用特征. 中国农业大学学报, 2015, 20(6): 25-35. |
WU J Z, WANG Z M, LI Y J, ZHANG Y H. Characteristics of yield formation and water use in different drought tolerance cultivars of winter wheat under drought stress. Journal of China Agricultural University, 2015, 20(6): 25-35. (in Chinese) | |
[33] |
IDSO S B, JACKSON R D, PINTER, JR P J, REGINATO R J, HATFIELD J L. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 1981, 24(1): 45-55.
doi: 10.1016/0002-1571(81)90032-7 |
[34] |
XU J, LV Y P, LIU X Y, DALSON T, YANG S H, WU J. Diagnosing crop water stress of rice using infrared thermal imager under water deficit condition. International Journal of Agriculture & Biology, 2015. DOI: 10.17957/IJAB/15.0125.
doi: 10.17957/IJAB/15.0125 |
[35] |
BIJU S, FUENTES S, GUPTA D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought- tolerant lentil genotypes. Plant Physiology and Biochemistry, 2018, 127: 11-24.
doi: 10.1016/j.plaphy.2018.03.005 |
[36] |
BIAN J, ZHANG Z T, CHEN J Y, CHEN H Y, CUI C F, LI X W, CHEN S B, FU Q Q. Simplified evaluation of cotton water stress using high resolution Unmanned Aerial Vehicle thermal imagery. Remote Sensing, 2019, 11(3): 267.
doi: 10.3390/rs11030267 |
[37] | 张仁华. 定量热红外遥感模型及地面实验基础. 北京: 科学出版社, 2009. |
ZHANG R H. Quantitative Thermal Infrared Remote Sensing Model and Ground Experiment Basis. Beijing: Science Press, 2009. (in Chinese) | |
[38] | KARIMIZADEH R, MOHAMMADI M. Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Australian Journal of Crop Science, 2011, 5(2): 138-146. |
[39] |
KUMAR M, GOVINDASAMY, RANE J, SINGH A K, CHOUDHARY R L, RAINA S K, GEORGE P, AHER L K, SINGH N P. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South African Journal of Botany, 2017, 113: 230-238.
doi: 10.1016/j.sajb.2017.08.016 |
[40] |
REBETZKE G J, RATTEY A R, FARQHAR G D, RICHARDS R A, CONDON A G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology, 2013, 40(1): 14-33.
doi: 10.1071/FP12184 |
[41] |
KRISHNAMURTHY L, KASHIWAGI J, GAUR P M, UPADHYAYA H D, VADAZ V. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 2010, 119(2/3): 322-330.
doi: 10.1016/j.fcr.2010.08.002 |
[42] |
JOAQUIM B, JORDI M, JOAN G, VICTORIA G D, ELIAS F, SUSAN L U, PABLO J Z T. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sensing, 2016, 8(1): 39.
doi: 10.3390/rs8010039 |
[43] | 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459. |
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. (in Chinese) | |
[44] | 徐蕊, 王启柏, 张春庆, 吴承来. 玉米自交系抗旱性评价指标体系的建立. 中国农业科学, 2009, 42(1): 72-84. |
XU R, WANG Q B, ZHANG C Q, WU C L. Drought-resistance evaluation system of maize inbred. Scientia Agricultura Sinica, 2009, 42(1): 72-84. (in Chinese) | |
[45] | 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46(3): 476-485. |
XIE X Y, ZHANG X, ZHANG B. Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2013, 46(3): 476-485. (in Chinese) | |
[46] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988 |
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988 |
|
[47] | 唐延林, 黄敬峰, 王人潮, 王福民. 水稻遥感估产模拟模式比较. 农业工程学报, 2004, 20(1): 166-171. |
TANG Y L, HUANG J F, WANG R C, WANG F M. Comparsion of yield estimation simulated models of rice by remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 166-171. (in Chinese) | |
[48] | 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016, 36(4): 426-434. |
ZHANG L L, YANG M M, DONG J, ZHAO W C, GAO X, CHEN D Y. Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stages. Journal of Triticeae Crops, 2016, 36(4): 426-434. (in Chinese) |
[1] | ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673. |
[2] | ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708. |
[3] | GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294. |
[4] | WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934. |
[5] | GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949. |
[6] | ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964. |
[7] | ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657. |
[8] | DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506. |
[9] | MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729. |
[10] | SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521. |
[11] | CHEN Shi, HUANG YinLan, JIN YunXiang, XU ChengLin, ZOU JinQiu. Agricultural Climatic Factors and Their Thresholds for Winter Wheat Cultivation in Northern China [J]. Scientia Agricultura Sinica, 2024, 57(16): 3142-3153. |
[12] | ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi. Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China [J]. Scientia Agricultura Sinica, 2024, 57(15): 2964-2985. |
[13] | WANG Yu, SONG YiFan, ZHANG Rong, MU HaiMeng, SUN LiFang, FU KaiXia, WU ZiJun, HUANG QingQing, XU YingMing, LI GeZi, WANG YongHua, GUO TianCai. Effects of Soil Application of Passivating Agent and Compound Microbial Fertilizer on Cadmium Accumulation in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(1): 126-141. |
[14] | LI Han, JIANG ShangTao, PENG HaiYing, LI PeiGen, GU ChangYi, ZHANG JinLian, CHEN TingSu, XU YangChun, SHEN QiRong, DONG CaiXia. Effects of Inoculation with Indigenous and Exogenous Arbuscular Mycorrhizal Fungi on Drought Resistance of Pyrus betulaefolia and Its Adaptation Mechanism [J]. Scientia Agricultura Sinica, 2024, 57(1): 159-172. |
[15] | WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685. |
|