Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3404-3411.doi: 10.3864/j.issn.0578-1752.2020.16.017

• RESEARCH NOTES • Previous Articles     Next Articles

Construction and Utilization of Database for Chinese Maize Varieties and Their Genealogy

LI JianXin1(),XI MengHui2,ZHANG JiaWei1,XI MengJuan3,TIAN Ding4,LU YiZhe1,CHEN XiaoYang1,LI WeiHua1,ZHANG XueHai1(),TANG JiHua1   

  1. 1College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
    2School of Chemistry and Chemical Engineering, Nanyang Normal University, Nanyang 473061, Henan
    3School of Management, Xinxiang Medical University, Xinxiang 450003, Henan
    4Sino-Germany College, Zhengzhou Institute of Technology, Zhengzhou 450000
  • Received:2020-04-28 Accepted:2020-06-18 Online:2020-08-16 Published:2020-08-27
  • Contact: XueHai ZHANG;


【Objective】 The breeding and popularization of new varieties are important for promoting the continuous improvement of maize yield in China. Breeding elite inbred lines is the prerequisite for strong heterotic combinations. To determine the kinship and genealogy relationship among maize inbred lines is the important basis for improvement of maize inbred, classification of heterotic groups and cross combination. It is imperative to sort out the genealogy of existing varieties and construct the corresponding genealogy database, so as to solve unclear consanguinity and inconvenient inquiry of maize inbred lines in China. 【Method】 A network MySQL database ( of Chinese maize inbred lines, varieties and their genealogies was built based on the LNMP (Linux system, Nginx server software, MySQL database management system and PHP hypertext preprocessing software) server environment configuration. In addition, information of inbred lines and approval information of maize varieties in past years from the websites of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Provincial Agricultural and Rural Affairs Departments, the big data platform of China’s seeds, as well as related literature and books were collected, collated and imported into MySQL database. Then, dream-weaving content management system (DedeCMS) was used to manage and update MySQL database. Query requests were submitted through AJAX (Asynchronous Javascript and XML) asynchronous processing, and the extracted inbred line and variety information were processed by PHP. Finally, the detailed genealogy information and genealogy tree were returned and displayed on the front-end web pages. In addition, phpMyAdmin software was applied to optimize the database structure and add new functions. 【Result】 In this database, more than 10 000 maize varieties that examined and approved by the provincial level or above, and their parents were collected, including 1218 inbred lines and 7823 varieties that have 1 to 10 pieces of information with different approved numbers and across eras in China. Variety information retrieval, genealogy tracing, filial generation query and customized query are the core functions of the database. Additionally, functions, such as addition, modification and deletion of maize inbred lines and variety pedigree information, haven been also integrated in the database. 【Conclusion】 Based on the LNMP server environment configuration, a database for Chinese maize varieties and their genealogies was constructed, which covers more than 10 000 maize varieties, including 1218 inbred lines and 7823 varieties. Core functions contain variety information retrieval, genealogy tracing, filial generation query, customized query, data uploading and updating. As an effective tool for Chinese maize breeders and researchers to quickly search the information and pedigree of maize inbred and varieties, the database can promote the breeding of elite maize inbred lines.

Key words: maize, inbred line, variety, genealogy, database

Fig. 1

The processing flowchart of an ajax request sent by the client to the server"

Fig. 2

The principle of genealogical tree"

Fig. 3

Advanced Search page"

Fig. 4

Genealogical of Bixiang 101"

Fig. 5

Offsprings of Huang Zaosi and their offsprings"

[1] YAN J B, WARBURTON M, CROUCH J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Science, 2011,51(2):433-449.
[2] 李建生. 玉米分子育种研究进展. 中国农业科技导报, 2007,9(2):10-13.
LI J S. Progress of molecular breeding in maize. China Agricultural Science and Technology, 2007,9(2):10-13. (in Chinese)
[3] 孙琦, 李文才, 张发军, 于彦丽, 张庆伟, 窦圣强, 孟昭东. 2001~2012年国审玉米品种亲本自交系系谱来源分析. 玉米科学, 2014,22(6):6-11.
SUN Q, LI W C, ZHANG F J, YU Y L, ZHANG Q W, DOU S Q, MENG Z D. Analysis on the pedigree of the parental lines of the maize hybrids approved by the nation from 2001 to 2012. Journal of Maize Sciences, 2014,22(6):6-11. (in Chinese)
[4] 王明泉, 苏俊, 李春霞, 龚士琛, 张瑞英, 宋锡章, 闫淑琴, 李国良, 扈光辉, 关海涛, 王伟威, 曹士亮, 曹娟华. 黑龙江省部分审定玉米品种亲本自交系的遗传多样性分析. 中国农学通报, 2009(22):274-279.
WANG M Q, SU J, LI C X, GONG S C, ZHANG R Y, SONG X Z, YAN S Q, LI G L, HU G H, GUAN H T, WANG W W, CAO S L, CAO J H. The genetic diversity of parents inbred lines from parts of released corn hybrids in Heilongjiang province. Chinese Agricultural Science Bulletin, 2009(22):274-279. (in Chinese)
[5] 王向峰, 才卓. 中国种业科技创新的智能时代——“玉米育种4.0”. 玉米科学, 2019,27(1):1-9.
WANG X F, CAI Z. Era of maize breeding 4.0. Journal of Maize Sciences, 2019,27(1):1-9. (in Chinese)
[6] 沈一, 鄂志国, 刘永惠, 陈志德. 中国花生品种及其系谱数据库的构建. 中国油料作物学报, 2015,37(4):571-575.
doi: 10.7505/j.issn.1007-9084.2015.04.021
SHEN Y, E Z G , LIU Y H, CHEN Z D. Database construction of Chinese peanut varieties and their genealogy. Chinese Journal of Oil Crop Sciences, 2015,37(4):571-575. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2015.04.021
[7] 鄂志国, 王磊. 中国水稻品种及其系谱数据库. 中国水稻科学, 2011,25(5):565-566.
doi: 10.3969/j.issn.10017216.2011.05.017
E Z G, WANG L. Construction of database for Chinese rice varieties and their genealogy. Chinese Journal of Rice Science, 2011,25(5):565-566. (in Chinese)
doi: 10.3969/j.issn.10017216.2011.05.017
[8] 种业商务网.
Seed business affairs website. yumi/..(in Chinese)
[9] 中国种业大数据平台. Index..
Big data platform of China's seeds. Home/Index..(in Chinese)
[10] 第一种业网.
The first seed industry website. Chinese)
[11] 汪黎明, 王庆成, 孟昭东. 中国玉米品种及其系谱. 上海: 上海科学技术出版社, 2010.
WANG L M, WANG Q C, MENG Z D. Chinese Maize Varieties and Their Genealogy. Shanghai: Shanghai Science and Technology Press, 2010. (in Chinese)
[12] 陈灿, 林秀芳, 陈勤平, 袁维科. 2008~2014年广西审定玉米品种种质基础及杂优模式分析. 南方农业学报, 2015,46(7):1160-1165.
CHEN C, LIN X F, CHEN Q P, YUAN W K. Analysis of germplasm basis and heterotic model of maize varieties registered and approved by Guangxi from 2008 to 2014. Journal of Southern Agriculture, 2015,46(7):1160-1165. (in Chinese)
[13] 刘纪鳞. 玉米育种学. 北京: 中国农业出版社, 2002.
LIU J L. Maize Breeding. Beijing: China Agricultural Publishing Press, 2002. (in Chinese)
[14] 曹广才, 徐雨昌. 实用玉米自交系. 北京: 气象出版社, 2000.
CAO G C, XU Y C. Practical Maize Inbred Line. Beijing: Meteorological Press, 2000. (in Chinese)
[15] 李维岳, 才卓, 赵化春. 吉林玉米. 长春: 吉林科学技术出版社, 2000.
LI W C, CAI Z, ZHAO H C. Jilin Maize. Changchun: Jilin Science and Technology Press, 2000. (in Chinese)
[16] 刘旭, 景希强, 何晶, 李芳志, 陈得义, 赵文媛, 曲江波, 李媛. 二十年来辽宁省玉米种质基础及杂优模式分析. 玉米科学, 2008,16(6):33-37.
LIU X, JING X Q, HE J, LI F Z, CHEN D Y, ZHAO W Y, QU J B, LI Y. Analysis of maize germplasm foundation and heterosis model of Liaoning province in the last twenty years. Journal of Maize Sciences, 2008,16(6):33-37. (in Chinese)
[17] 李春雷, 王敏, 孟令聪, 吕庆雪, 李洋, 宁恰. 吉林省玉米种质基础及2001~2013年品种推广分析. 玉米科学, 2016,24(5):15-25.
LI C L, WANG M, MENG L C, LÜ Q X, LI Y, NING Q, Analysis of germplasm base and certified maize varieties from 2001 to 2013 in Jilin province. Journal of Maize Sciences, 2016,24(5):15-25. (in Chinese)
[18] 唐文明, 杨辉, 佟圣辉, 赵成昊. 旅大红骨种群自交系在辽宁省玉米育种和生产中的应用. 现代农业科技, 2013,595(5):65-66.
TANG W M, YANG H, TONG S H, ZHAO C H. Utilization of lvda red cob group inbred lines in breeding and production of maize in Liaoning province. Xiandai Nongye Keji, 2013,595(5):65-66. (in Chinese)
[19] 于明彦, 柳迎春, 夏远峰, 刘爱华, 代秀云. 塘四平头种群自交系在吉林省玉米育种和生产中的利用. 作物杂志, 2009(1):93-96.
YU M Y, LIU Y C, XIA Y F, LIU A H, DAI X Y. Utilization of Tang Sipingtou inbred lines in breeding and production of maize in Jilin province. Crops, 2009(1):93-96. (in Chinese)
[20] 黎裕, 王天宇. 我国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010,18(5):1-8.
LI Y, WANG T Y. Germplasm base of maize breeding in China and formation of foundation parents. Journal of Maize Sciences, 2010,18(5):1-8. (in Chinese)
[21] 陈灿, 林秀芳, 陈勤平, 袁维科. 2008~2014年广西审定玉米品种种质基础及杂优模式分析. 南方农业学报, 2015,46(7):1160-1165.
CHEN C, LIN X F, CHEN Q P, YUAN W K. Analysis of germplasm basis and heterotic model of maize varieties registered and approved by Guangxi from 2008 to 2014. Journal of Southern Agriculture, 2015,46(7):1160-1165. (in Chinese)
[22] 郑大浩, 李艳茹, 金锋学, 蒋基建. 中国玉米Lancaster杂种优势群自交系的系谱、种质基础分析. 中国农业科学, 2002,35(7):750-757.
ZHENG D H, LI Y R, JIN F X, JIANG J J. Pedigree and germplasm base of inbreds of the lancaster heterotic group of maize in China. Scientia Agricultura Sinica, 2002,35(7):750-757. (in Chinese)
[23] 高兴武, 董玲, 金益, 于天江, 张士龙. 黑龙江省常用玉米自交系的杂种优势类群研究. 玉米科学, 2010,18(6):8-10, 14.
GAO X W, DONG L, JIN Y, YU T J, ZHANG S L. Study on classification for heterotic group of maize inbred lines in Heilongjiang province. Journal of Maize Sciences, 2010,18(6):8-10, 14. (in Chinese)
[24] 任转滩, 马毅. 浅谈我国玉米杂交种种质来源及其利用途径. 玉米科学, 2004,12(2):30-33.
REN Z T, MA Y. Brief talk on the source and utilization of maize hybrid germplasm in China. Journal of Maize Sciences, 2004,12(2):30-33. (in Chinese)
[25] 史新海, 宋再华, 刘恩训, 柳玉学. 山东省主要玉米杂交种系谱分析. 玉米科学, 1995,3(2):4-6.
SHI X H, SONG Z H, LIU E X, LIU Y X. Pedigree analysis of main maize hybrids in Shandong. Journal of Maize Sciences, 1995,3(2):4-6. (in Chinese)
[26] 徐芹, 郭东全, 刘金根. 玉米种质资源系谱研究. 种子, 2005,24(10):44-47.
XU Q, GUO D Q, LIU J G. Genealogy of maize germplasm resources research. Seed, 2005,24(10):44-47. (in Chinese)
[27] 焦仁海, 李凤任. 吉林省主米杂交种系谱分析. 吉林农业科学, 1999,24(1):32-35.
JIAO R H, LI F R. Pedigree analysis of main maize hybrids in Jilin province. Jilin Agricultural Sciences, 1999,24(1):32-35. (in Chinese)
[28] ZHANG X, ZHANG H, LI L J, LAN H, REN Z Y, LIU D, WU L, LIU H L, JAQUETH J, LI B L, PAN G T, GAO S B. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics, 2016,17(1):697.
[29] JIAO Y P, ZHAO H N, REN L H, SONG W B, ZENG B, GUO J J, WANG B B, LIU Z P, CHEN J, LI W, ZHANG M, XIE S J, LAI J S. Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 2012(44):812-815.
[30] WANG B B, LIN Z C, LI X, ZHAO Y P, ZHAO B B, WU G X, MA X J, WANG H, XIE Y R, LI Q Q, SONG G S, KONG D X, ZHENG Z G, WEI H B, SHEN R X, WU H, CHEN C X, MENG Z D, WANG T Y, LI Y, LI X H, CHEN Y H, LAI J S, B HUFFORD M, ROSS-IBARRA J, HE H, WANG H Y. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020,
pmid: 32632335
[31] 宋静. 基于LNMP框架的结构化数据抽取平台的设计与实现[D]. 北京: 北京交通大学, 2016.
SONG J. Design and implementation of structured data extraction platform based on LNMP framework[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
[32] 艾勇, 谭成予, 帖军, 常军. 基于LNMP架构的教学互动平台的设计. 科教文汇, 2013(25):83-84.
AI Y, TAN C Y, TIE J, CHANG J. The design of interactive platform based on LNMP. The Science Education Article Cultures, 2013(25):83-84. (in Chinese)
[33] 肖剑伟. 基于LNMP平台Moodle课程学习管理系统部署. 信息与电脑: 理论版, 2019,426(8):78-81.
XIAO J W. Deployment of Moodle curriculum learning management system based on LNMP platform. Information and Computer: Theoretical Edition, 2019,426(8):78-81. (in Chinese)
[34] 文广. 基于PHP的汉唐网上书店的设计与实现[D]. 四川: 电子科技大学, 2011.
WEN G. Design and implementation of Han Tang online bookstore based on PHP[D]. Sichuan: University of Electronic Science and Technology, 2011. (in Chinese)
[35] 李云海, 郑志高. 基于DedeCMS技术的网站设计与实现--以西安市高校联盟网为例. 中国教育技术装备, 2013(36):38-39.
LI Y H, ZHENG Z G. Website design and implementation based on DedeCMS technology--taking Xi'an University alliance network as an example. China Education Technology & Equipment, 2013(36):38-39. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Full text



No Suggested Reading articles found!