Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (9): 1952-1963.doi: 10.3864/j.issn.0578-1752.2021.09.012
• HORTICULTURE • Previous Articles Next Articles
LIU Chuang(),GAO Zhen,YAO YuXin,DU YuanPeng(
)
[1] | JAMES R A, BLAKE C, BYRT C S, MUNNS R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 2011,62(8):2939-2947. |
[2] | 刘俊, 晁无疾, 亓桂梅, 刘寅喆, 汉瑞峰. 蓬勃发展的中国葡萄产业. 中外葡萄与葡萄酒, 2020(1):1-8. |
LIU J, CHAO T J, Qi G M, QI G M, LIU Y Z, HAN Y F. Booming development of Chinese grape industry. Sino-Overseas Grapevine & Wine, 2020(1):1-8. (in Chinese) | |
[3] | MAAS E V, HOFFMAN G J. Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Division, 1977,103(2):115-134. |
[4] | CHINNUSAMY V, ZHU J H, ZHU J K. Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering, 2006,27:141-177. |
[5] | DEINLEIN U, STEPHAN A B, HORIE T, LUO W, XU G H, SCHROEDER J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014,19(6):371-379. |
[6] | NEUMANN P M. Chapter 2-recent advances in understanding the regulation of whole-plant growth inhibition by salinity, drought and colloid stress. Advances in Botanical Research, 2011,57:33-48. |
[7] | 秦玲, 康文怀, 齐艳玲, 蔡爱军. 盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响. 中国农业科学, 2012,45(20):4233-4241. |
QIN L, KANG W H, QI Y L, CAI A J. Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (Vitis spp.). Scientia Agricultura Sinica, 2012,45(20):4233-4241. (in Chinese) | |
[8] | BABY T, COLLINS C, TYERMAN S D, GILLIHAM M. Salinity negatively affects pollen tube growth and fruit set in grapevines and cannot be ameliorated by silicon. American Journal of Enology & Viticulture, 2016,67(2):218-228. |
[9] | WALKER R R, CLINGELEFFER P R. Rootstock attributes and selection for Australian conditions. Australian Viticulture, 2009,13(4):70-76. |
[10] | 李晨, 李秀杰, 韩真, 刘莉萍, 李勃. 非生物胁迫对葡萄光合作用的影响研究进展. 山东农业科学, 2017,49(12):144-148. |
LI C, LI X J, HAN Z, LIU L P, LI B. Research advances on effects of abiotic stress on photosynthesis of grape. Shandong Agricultural Sciences, 2017,49(12):144-148. (in Chinese) | |
[11] | WALKER R R, BLACKMORE D H, CLINGELEFFER P R, CORRELL R L. Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 2004,10(2):90-99. |
[12] | STEVENS R M, HARVEY G, PARTINGTON D L. Irrigation of grapevines with saline water at different growth stages: Effects on leaf, wood and juice composition. Australian Journal of Grape & Wine Research, 2011,17(2):239-248. |
[13] | FRANCISCO R, WALTER G, JULIAN I S. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995,270(5242):1660-1663. |
[14] | UOZUMI N, KIM E J, RUBIO F, YAMAGUCHI T, MUTO S, TSUBOI A, BAKKER E P, NAKAMURA T, SCHROEDER J I. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology, 2000,122(4):1249-1259. |
[15] | HORIE T, YOSHIDA K, NAKAYAMA H, YAMADA K, OIKI S, SHINMYO A. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant Journal, 2001,27(2):129-138. |
[16] | GARCIADEBLÁS B, SENN M E, BAÑUELOS M A, RODRĺGUEZ- NAVARRO A. Sodium transport and HKT transporters: The rice model. Plant Journal, 2003,34(6):788-801. |
[17] | MASER P, ECKELMAN B, VAIDYANATHAN R, HORIE T, FAIRBAURN D J, KUBO M, YAMAGAMI M, YAMAGUCHI K, NISHIMURA M, UOZUMI N, ROBERYSON W, SUSSMAN M R, SCHROEDER J I. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 2002,531(2):157-161. |
[18] | SCHACHTMAN D P, SCHROEDER J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994,370(6491):655-658. |
[19] | WATERS S, GILLIHAM M, HRMOVA M. Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. International Journal of Molecular Sciences, 2013,14(4):7660-7680. |
[20] | BEZOUW R F H M V, JANSSEN E M, ASHRAFUZZAMAN M, GHAHRAMANZADEH R, KILIAN B, GRANER A, VISSER R G F, VAN DER LINDEN C G. Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. Journal of Plant Physiology, 2019,241:153029. |
[21] | SUZUKI K, YAMAJI N, COSTA A, OKUMA E, KOBAYASHI N I, KASHIWAGI T, KATSUHARA M, WANG C, TANOI K, MURATA Y, SCHROEDER J I, MA J F, HORIE T. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology, 2016,16(1):22. |
[22] | WANG L, LIU Y H, LI D, FENG S J, YANG J W, ZHANG J J, ZHANG J L, WANG D, GAN Y T. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biology, 2019,19(1):357. |
[23] | 付晴晴. ‘左山一’杂交砧木株系耐盐评价及钠离子吸收分配特征研究[D]. 泰安: 山东农业大学, 2018. |
FU Q Q. Salt tolerance identification and mechanism of hybrid rootstocks from ‘Zuo Shan 1’[D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese) | |
[24] | WANG F P, ZHAO P P, ZHANG L, ZHAI H, DU Y P. Functional characterization of WRKY46 in grape and its putative role in the interaction between grape and phylloxera (Daktulosphaira vitifoliae). Horticulture Research, 2019,6(1):803-814. |
[25] | 高海波, 张淑静, 沈应柏. 灰斑古毒蛾口腔反吐物诱导沙冬青细胞Ca2+内流及H2O2积累. 生态学报, 2012,32(20):6520-6526. |
GAO H B, ZHANG S J, SHEN Y B. Regurgitant from Orgyia ericae Germar induces calcium influx and accumulation of hydrogen peroxide in Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. cells. Acta Ecologica Sinica, 2012,32(20):6520-6526. (in Chinese) | |
[26] | ZHU J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003,6(5):441-445. |
[27] | HAMAMOTO S, HORIE T, HAUSER F, DEINLEIN U, SCHROEDER J, UOZUMI N. HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology, 2015,32:113-120. |
[28] | HENDERSON S W, DUNLEVY J D, WU Y, BLACKMORE D H, WALKER R R, EDWARDS E J, GILLIHAM M, WALKER A R. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks. The New Phytologist, 2018,217(3):1113-1127. |
[29] | HAUSER F, HORIE T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress Cell & Environment, 2010,33(4):552-565. |
[30] | WU Y, HENDERSON S W, WEGE S, ZHENG F, WALKER A R, WALKER R R, GILLIHAM M. The grapevine NaE sodium exclusion locus encodes sodium transporters with diverse transport properties and localisation. Journal of Plant Physiology, 2020,246/247:153113. |
[31] | XU M, CHEN C H, CAI H, WU L. Overexpression of PeHKT1;1 improves salt tolerance in Populus. Genes, 2018,9(10):475. |
[32] | MIAN A, OOMEN R J, LSAYENKOV S, SENTENAC H, MAATHUIS F J, VÉRY A A. Over-expression of an Na+ and K+ permeable HKT transporter in barley improves salt tolerance. Plant Journal, 2011,68(3):468-479. |
[33] | GUO Q, MENG S, TAO S C, FENG J, FAN X Q, XU P, XU Z Z, SHEN X L. Overexpression of a samphire high-affinity potassium transporter gene SbHKT1 enhances salt tolerance in transgenic cotton. Acta Physiologiae Plantarum, 2020,42(3):36. |
[34] | ROMERO-ARANDA M R, GONZÁLEZ-FERNÁNDEZ P, PÉREZ- TIENDA J R, LÓPEZ-DIAZ M R, ESPINOSA J, GRANUM E, TRAVERSO J Á, PINEDA B, GARCIA-SOGO B, MORENO V, ASINS M J, BELVER A. Na+ transporter HKT1;2 reduces flower Na+ content and considerably mitigates the decline in tomato fruit yields under saline conditions. Plant Physiology and Biochemistry, 2020,154:341-352. |
[1] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[2] | LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422. |
[3] | GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148. |
[4] | WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990. |
[5] | WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486. |
[6] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[7] | MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830. |
[8] | JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811. |
[9] | YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226. |
[10] | HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025. |
[11] | XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151. |
[12] | XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217. |
[13] | PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228. |
[14] | ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082. |
[15] | SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420. |
|