Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4388-4398.doi: 10.3864/j.issn.0578-1752.2020.21.008

• SPECIAL FOCUS: HIGH EFFICIENCY UTILIZATION OF WATER AND FERTILIZER OF WHEAT-MAIZE CROPPING SYSTEM • Previous Articles     Next Articles

The Coordination of Nitrogen Optimization with Matched Variety Could Enhance Maize Grain Yield and Nitrogen Use Efficiency of Summer Maize in Saline Land

GAO YingBo1(),ZHANG Hui1,LIU KaiChang2,ZHANG HuaBin3,LI YuanFang1,FU XiQiang3,XUE YanFang1,QIAN Xin1,DAI HongCui2,LI ZongXin1()   

  1. 1Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Ji’nan 250100
    2Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100
    3Huibangbohai Agricultural Development Co., Ltd., Dongying 257000, Shandong
  • Received:2020-05-20 Accepted:2020-09-09 Online:2020-11-01 Published:2020-11-11
  • Contact: ZongXin LI E-mail:yingboandy@163.com;sdaucliff@sina.com

Abstract:

【Objective】In order to achieve synergistic promotion of both maize grain yield and nitrogen use efficiency (NUE) under salt stress, it is essential to explore the performance difference of different salt-tolerant maize varieties on yield formation, nitrogen uptake, transport and utilization, to excavate biological potential of maize varieties using nitrogen, so as to provide matched maize variety for the optimized nitrogen application regime.【Method】In this study, salt-tolerance maize varieties Denghai605, Ludan818 and salt-sensitive maize varieties Ludan981 and Liansheng188 were separately used to systematically study the effects on accumulation and distribution of dry matter and nitrogen, nitrogen utilization efficiency and yield formation under different nitrogen application rates of 0, 180 and 360 kg·hm-2, denoted by N0, N1 and N2 treatments in turn, as well as the interaction of nitrogen levels and maize varieties and inter-annual were analyzed.【Result】Suitable nitrogen application rate could significantly increase grain yield. Compared with N1 treatment, there were no difference in grain yield for salt-tolerance varieties but significant increase for Ludan981 (avg. 9.93%) and Liansheng188 (avg. 16.31%) under N2 treatment. Also, high nitrogen application (N2) got lower nitrogen agricultural efficiency (NAE), nitrogen utilization efficiency (NUE) and nitrogen partial factor productivity (NPFP) than low nitrogen application (N1). The difference in grain yield and yield components was the result from the varieties, nitrogen regimes, and their interaction. Compared with salt-sensitive maize varieties, salt-tolerance maize varieties had greater grain yield, nitrogen absorption and use efficiency across same nitrogen regime. Specifically, the grain yield of salt-tolerance maize varieties were increased by 7.78%-27.63% (N0), 7.40%-24.87% (N1), and 0.32%-9.55% (N2), respectively, while the nitrogen utilization efficiency were increased by 26.65%-48.28% (N1) and 1.20%-24.87% (N2), respectively.【Conclusion】It was performance well for the salt-tolerances varieties than the salt-sensitive varieties on dry matter accumulation and nitrogen uptake and utilization. Low nitrogen application was beneficial for salt-tolerant maize variety getting higher grain yield and vice versa. The nitrogen utilization efficiency was affected by maize varieties, nitrogen regimes and its interaction, through affecting grain yield, dry matter accumulation, and nitrogen uptake and utilization. Thus, it would be an efficient strategy to achieve synergistic promotion of both maize grain yield and nitrogen use efficiency, through the coordination of nitrogen optimization with matched maize variety.

Key words: summer maize, variety, nitrogen level, yield, nitrogen utilization efficiency, saline land

Fig. 1

Precipitation in the experimental field during maize growth period in 2016 and 2018"

Table 1

Effects of variety, nitrogen and their interaction in the global analyses of variance of grain yield, yield components, nitrogen use efficiency and nitrogen transition efficiency"

变异来源
Source of variation
GY EN KN TGW NPFP NAE NUE SNDR NAAG NTA AANAA NTE NCP
年份 Year (Y) *** ** *** *** *** *** *** *** *** *** *** ns ***
品种 Variety (V) *** *** *** *** *** ns *** *** *** *** *** *** **
氮肥水平 Nitrogen (N) *** *** *** *** *** *** *** *** *** *** *** ns ***
Y×V ** *** *** *** ** ns *** *** *** *** *** *** ***
Y×N ** * ns ns *** ns *** *** *** *** *** *** ***
V×N ns ns *** * ** ns *** ** ** ** *** ns ***
Y×V×N ns ns ** ns ns ns ** * ** *** *** *** ***

Table 2

Effects of nitrogen levels on grain yield and yield components of different salt-tolerant summer maize"

年份
Year
品种
Variety
处理
Treatment
籽粒产量
Grain yield
(mg·kg-1)
收获穗数
Ear number
(×104 ears/hm2)
穗粒数
Kernel number per ear
千粒重
1000-grains weight (g)
穗行数
Rows number
per ear
行粒数
Kernels number per row
2016 DH605 N0 5.58b 5.67b 455.86b 280.50b 15.6a 29.2b
N1 7.39a 5.95a 524.80a 303.01a 16.0a 32.8a
N2 7.64a 5.96a 571.71a 308.34a 16.4a 34.9a
LD818 N0 5.31b 5.61b 462.59b 272.14b 14.3a 32.4b
N1 6.89a 5.92a 522.42a 295.36a 14.9a 35.0a
N2 6.94a 5.97a 491.07a 313.81a 14.4a 34.1a
LD981 N0 5.22c 5.45b 471.02b 274.10b 14.6a 32.3b
N1 6.50b 5.74ab 495.99b 301.44a 14.6a 34.0ab
N2 7.08a 5.86a 553.30a 312.40a 15.2a 36.4a
LS188 N0 4.22c 5.26b 463.84b 257.03c 15.3a 30.3b
N1 5.56b 5.72a 468.49b 276.81b 15.0a 31.2ab
N2 6.67a 5.84a 503.51a 302.13a 15.1a 33.3a
2018 DH605 N0 3.75b 5.67b 277.87b 237.58b 15.0a 18.6b
N1 4.71a 6.00a 324.07a 263.82a 14.6a 22.2a
N2 4.81a 6.28a 336.31a 265.37a 14.6a 23.0a
LD818 N0 3.69b 5.39b 288.96b 237.40b 13.6a 21.3b
N1 4.57a 5.83a 316.13a 261.10a 13.5a 23.4a
N2 4.72a 5.89a 333.31a 261.20a 14.5a 22.9a
LD981 N0 3.13c 5.11b 289.16c 225.49b 13.3a 21.8a
N1 4.17b 5.61a 314.27b 241.45a 14.2a 22.1a
N2 4.65a 5.83a 334.63a 252.64a 14.8a 22.6a
LS188 N0 3.09c 4.94b 290.46c 216.03c 14.5a 20.0b
N1 4.13b 5.67a 315.52b 245.00b 14.5a 21.8ab
N2 4.60a 5.61a 331.52a 262.27a 14.9a 22.3a

Fig. 2

Effects of nitrogen levels on the dry matter accumulation of different salt-tolerance summer maize at maturity Different capital letters above the bars represent significant differences in dry mater accumulation of whole aboveground plant of four varieties among different nitrogen levels (P<0.05). Different small letters above the bars represent significant differences in dry mater accumulation of different organs of the same variety among different nitrogen levels (P<0.05)"

Table 3

Effects of nitrogen levels on nitrogen use efficiency of different salt-tolerant summer maize"

年份
Year
品种
Variety
处理
Treatment
氮肥偏生产力
NPFP (kg·hm-2)
氮肥农学利用效率
NAE (kg·kg-1)
氮肥利用率
NUE (%)
土壤氮依存率
SNDR (%)
2016 DH605 N1 41.05a 10.03a 31.75a 71.91c
N2 21.22d 5.71c 17.49de 69.91c
LD818 N1 38.27ab 8.80ab 28.76b 70.00c
N2 19.29d 4.55c 16.92e 66.49d
LD981 N1 36.11bc 7.10bc 25.07c 76.15b
N2 19.68d 5.17c 15.52ef 72.01c
LS188 N1 30.86c 7.41bc 20.42d 80.52a
N2 18.52d 6.79bc 13.55f 75.75b
2018 DH605 N1 26.14a 5.32bc 28.96a 64.63c
N2 13.37c 2.96e 17.46c 60.25e
LD818 N1 25.39a 4.90c 23.50b 70.36b
N2 13.11c 2.86e 15.21d 64.70c
LD981 N1 23.66b 6.26a 19.53c 71.41b
N2 12.92c 4.21d 14.82d 62.21d
LS188 N1 22.93b 5.78ab 17.83c 73.92a
N2 12.78c 4.21d 15.03d 62.74d

Table 4

Effects of nitrogen levels on N transition efficiency of different salt-tolerant summer maize"

年份
Year
品种
Variety
处理
Treatment
成熟期籽粒含氮量
NAAG (kg·hm-2)
营养器官氮素转移量
NTA (kg·hm-2)
开花后氮素同化量
AANAA (kg·hm-2)
氮素转运效率
NTE (%)
氮素转运对籽粒的贡献率
NCP (%)
2016 DH605 N0 77.32b 22.81b 54.51b 28.13b 29.51a
N1 127.05a 28.34a 98.71a 30.38ab 22.33b
N2 131.38a 32.56a 98.82a 33.43a 24.80b
LD818 N0 88.19c 26.14b 40.89b 38.68a 39.02a
N1 121.69ab 32.63a 76.08a 37.44a 30.02b
N2 134.37a 37.98a 75.37a 39.79a 33.52b
LD981 N0 83.11c 28.08b 55.04c 36.09b 33.88a
N1 117.10b 39.36a 77.73b 39.82a 33.68a
N2 126.50a 38.39a 88.10a 37.97ab 30.40a
LS188 N0 67.03c 24.90c 63.28c 31.45c 28.28a
N1 108.71b 32.96b 88.73b 36.47b 27.09a
N2 113.34a 39.75a 94.62a 41.31a 29.61a
2018 DH605 N0 49.28c 28.27b 21.01c 43.77a 57.35a
N1 69.95b 33.05a 36.90b 34.70b 47.21b
N2 77.33a 28.88b 48.45a 30.61c 37.32c
LD818 N0 56.25b 33.36b 22.90c 48.73a 59.30a
N1 77.84a 37.66a 40.18b 42.29b 48.39b
N2 81.79a 35.29ab 46.50a 37.71c 43.14b
LD981 N0 45.93c 16.18c 29.75c 33.19a 35.24b
N1 57.51b 24.00b 33.51b 31.00a 41.83a
N2 69.10a 27.32a 41.78a 31.77a 39.58a
LS188 N0 52.34c 19.13c 33.21b 36.91a 36.61b
N1 57.74b 26.03b 31.71b 31.64b 45.10a
N2 71.71a 29.00a 42.71a 31.26b 40.55a
[1] 董红云, 朱振林, 李新华, 杨丽萍, 张正. 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 2017,49(5):134-139.
DONG H Y, ZHU Z L, LI X H, YANG L P, ZHANG Z. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong province. Shandong Agricultural Sciences, 2017,49(5):134-139. (in Chinese)
[2] 苗珊珊, 徐永金, 陆迁. 中国三大区域玉米产量及增长率的因素分解. 湖北农业科学, 2014,53(12):2932-2936.
MIAO S S, XU Y J, LU Q. Maize yield and growth factor decomposition in three major districts of China. Hubei Agricultural Sciences, 2014,53(12):2932-2936. (in Chinese)
[3] DRAKE D R, UNGAR I A. Effects of salinity, nitrogen, and population density on the survival, growth, and reproduction of Atriplex triangularis(Chenopodiaceae). American Journal of Botany, 1989,76(8):1125-1135.
[4] FARSIANI A, GHOBADI M E. Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. World Academy of Science, Engineering and Technology, 2009,57:382-385.
[5] FAROOQ M, HUSSAIN M, WAKEEL A, SIDDIQUE K H M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 2015,35(2):461-481.
[6] 易琼, 张秀芝, 何萍, 杨利, 熊桂云. 氮肥减施对稻-麦轮作体系作物氮素吸收, 利用和土壤氮素平衡的影响. 植物营养与肥料学报, 2010,16(5):1069-1077.
YI Q, ZHANG X Z, HE P, YANG L, XIONG G Y. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system. Plant Nutrition and Fertilizer Science, 2010,16(5):1069-1077. (in Chinese)
[7] 王永亮, 王琦, 杨治平, 郭军玲, 郭彩霞. 轻度盐碱地玉米专用肥缓效氮不同添加比例的研究. 中国生态农业学报, 2016,24(12):1614-1622.
WANG Y L, WANG Q, YANG Z P, GUO J L, GUO C X. Analysis of slow-release nitrogen fraction in maize specialized fertilizer for mild-saline alkaline soils. Chinese Journal of Eco-Agriculture, 2016,24(12):1614-1622. (in Chinese)
[8] SHAHZAD M, WITZEL K, ZÖRB C, MÜHLING K H. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. Journal of Agronomy and Crop Science, 2012,198(1):46-56.
[9] QU C X, LIU C, GONG X L, LI C X, HONG M M, WANG L, HONG F S. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environmental and Experimental Botany, 2012,75:134-141.
[10] AKRAM M, ASHRAF M Y, WARAICH E A, HUSSAIN M, HUSSAIN N, MALLAHI A R. Performance of autumn planted maize (Zea mays L.) hybrids at various nitrogen levels under salt affected soils. Soil and Environment, 2010,29(1):23-32.
[11] 詹其厚, 王慎强, 周静, 陈杰, 檀满枝. 沿淮低洼地玉米施肥效应与土壤供肥能力研究. 土壤通报, 2011,42(6):1415-1419.
ZHAN Q H, WANG S Q, ZHOU J, CHEN J, TAN M Z. Study on fertilization effects on maize and soil nutrient supply capacity in lowland along Huaihe River. Chinese Journal of Soil Science, 2011,42(6):1415-1419. (in Chinese)
[12] TURAN M A, ELKARIM A H A, TABAN N. Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African Journal of Agricultural Research, 2010,5(7):584-588.
[13] GADALLA A M, HAMDY A, GALAL Y G M, AZIZ H A A, MOHAMED M A A, AHMED K Z. Evaluation of maize grown under salinity stress and N application strategies using stable nitrogen isotope. African Crop Science Society, 2007,8:1653-1662.
[14] ROJAS-TAPIAS D, MORENO-GALVÁN A, PARDO-DÍAZ S, OBANDO-MELISSA R, DIEGO , BONILLA R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays L.). Applied Soil Ecology, 2012,61:264-272.
[15] 杜海岩, 柳新伟, 崔德杰, 徐双, 赵亚慧. 氮素营养对盐碱地棉花生长及生理特性的影响. 华北农学报, 2015,30(6):195-200.
DU H Y, LIU X W, CUI D J, XU S, ZHAO Y H. Effects of nitrogen nutrition on the growth and physiological characteristics of cotton in saline soil. Acta Agriculture Boreali-Sinica, 2015,30(6):195-200. (in Chinese)
[16] NAIDOO G, NAIDOO Y. Effects of salinity and nitrogen on growth, ion relations and proline accumulation inTriglochin bulbosa. Wetlands Ecology and Management, 2001,9(6):491-497.
[17] 李嘉, 吕慎强, 杨泽宇, 李惠通, 王吕, 阳婷, 王筱斐, 王林权. 氮肥运筹对黄土塬区春玉米产量、效益和氮肥利用率的综合效应. 植物营养与肥料学报, 2020,26(1):32-41.
LI J, LÜ S Q, YANG Z Y, LI H T, WANG L, YANG T, WANG X F, WANG L Q. Comprehensive effects of nitrogen fertilizer management on yield, economic performance and nitrogen use efficiency of spring maize in Loess Plateau, China. Journal of Plant Nutrition and Fertilizers, 2020,26(1):32-41. (in Chinese)
[18] 徐祥玉, 张敏敏, 翟丙年, 李生秀, 张兴昌, 王朝辉. 夏玉米氮效率基因型差异研究. 植物营养与肥料学报, 2006,12(4):495-499.
XU X Y, ZHANG M M, ZHAI B N, LI S X, ZHANG X C, WANG Z H. Genotypic variation in nitrogen use efficiency in summer maize. Plant Nutrition and Fertilizer Science, 2006,12(4):495-499. (in Chinese)
[19] 徐建亭, 姜雯. 不同夏玉米品种氮积累和利用效率差异的研究. 玉米科学, 2014,22(4):62-66.
XU J T, JIANG W. Differences in nitrogen accumulation and nitrogen utilization efficiency among summer maize cultivars. Journal of Maize Sciences, 2014,22(4):62-66. (in Chinese)
[20] 高英波, 张慧, 薛艳芳, 匡朴, 钱欣, 代红翠, 李源方, 王竹, 韩小伟, 李宗新. 不同夏玉米品种耐盐性综合评价与耐盐品种筛选. 玉米科学, 2020,28(2):33-40.
GAO Y B, ZHANG H, XUE Y F, KUANG P, QIAN X, DAI H C, LI Y F, WANG Z, HAN X W, LI Z X. Comprehensive evaluation of salt tolerance and screening for salt tolerance accessions of different summer maize varieties. Journal of Maize Sciences, 2020,28(2):33-40. (in Chinese)
[21] 蔡红光, 袁静超, 刘剑钊, 闫孝贡, 张洪喜, 梁尧, 任军. 高密度种植条件下春玉米氮素的需求规律与适宜施氮量. 中国农业科学, 2017,50(11):1995-2005.
CAI H G, YUAN J C, LIU J Z, YAN X G, ZHANG H X, LIANG R, REN J. Optimal nitrogen application rate and nitrogen requirement characteristics in spring maize under high planting density condition. Scientia Agricultura Sinica, 2017,50(11):1995-2005. (in Chinese)
[22] 温立玉, 薛艳芳, 张慧, 张秀清, 高英波, 刘开昌, 李宗新. 不同氮效率玉米品种亲本自交系花粒期氮素转运特性. 植物营养与肥料学报, 2019,25(4):568-578.
WEN L Y, XUE Y F, ZHANG H, ZHANG X Q, GAO Y B, LIU K C, LI Z X. The characteristics of nitrogen translocation of maize inbred lines with different nitrogen efficiency from anthesis to maturity. Journal of Plant Nutrition and Fertilizers, 2019,25(4):568-578. (in Chinese)
[23] HÜTSCH B W, SAQIB M, OSTHUSHENRICH T, SCHUBERT S. Invertase activity limits grain yield of maize under salt stress. Journal of Plant Nutrition and Soil Science, 2014,177(2):278-286.
[24] SCHUBERT S, NEUBERT A, SCHIERHOLT A, SÜMER A, ZÖRB C. Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Science, 2009,177(3):196-202.
[25] KAYA C, ASHRAF M, DIKILITAS M, MURAT , TUNA A L. Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-A field trial. Australian Journal of Crop Science, 2013,7(2):249.
[26] 刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011,17(1):38-47.
LIU Z J, XIE J G, ZHANG K, WANG X F, HOU Y P, YI C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin province. Plant Nutrition and Fertilizer Science, 2011,17(1):38-47. (in Chinese)
[27] SCHILTZ S, MUNIER-JOLAIN N, JEUDY C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiology, 2005,137(4):1463-1473.
pmid: 15793068
[28] SUBEDI K D, MA B L. Effects of N-deficiency and timing of N supply on the recovery and distribution of labeled 15N in contrasting maize hybrids. Plant and Soil, 2005,273(1/2):189-202.
[29] 王进军, 柯福来, 白鸥, 黄瑞冬. 不同施氮方式对玉米干物质积累及产量的影响. 沈阳农业大学学报, 2008,39(4):392-395.
WANG J J, KE F L, BAI O, HUANG R D. Effect of dry weight accumulation and yields of maize under different nitrogen application. Journal of Shenyang Agricultural University, 2008,39(4):392-395. (in Chinese)
[30] CHEN X C, CHEN F J, CHEN Y L, GAO Q, YANG X L, YUAN L X, ZHANG F S, MI G H. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology, 2013,19(3):923-936.
doi: 10.1111/gcb.12093 pmid: 23504848
[31] 张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中. 密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响. 中国农业科学, 2015,48(22):4574-4584.
ZHANG J J, FAN T L, DANG Y, ZHAO G, WANG L, LI S Z. The effects of density and nitrogen management on the yield and physiological indices of spring maize under plastic-covered ridge and furrow planting in Loess Plateau East of Gansu. Scientia Agricultura Sinica, 2015,48(22):4574-4584. (in Chinese)
[32] GUNES A, INAL A, ALPASLAM M, ERSLAN F, BAGSI E G, CICEK N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize(Zea mays L.) grown under salinity. Journal of Plant Physiology, 2007, 164:728-736.
pmid: 16690163
[33] 张慧, 赵红香, 温立玉, 王庆成, 刘开昌, 赵海军, 李宗新. 黄淮海区域30个夏玉米品种干物质积累和氮素转运特性. 玉米科学, 2016,24(3):78-84.
ZHANG H, ZHAO H X, WEN L Y, WANG Q C, LIU K C, ZHAO H J, LI Z X. Characteristics of dry matter accumulation and nitrogen use efficiency of 30 summer maize hybrids with cluster analysis grouped in Huang-Huai-Hai region. Journal of Maize Sciences, 2016,24(3):78-84. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!