Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2287-2301.doi: 10.3864/j.issn.0578-1752.2021.11.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review

WANG Xiao(),CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong()   

  1. National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing 210095
  • Received:2020-08-10 Accepted:2020-10-12 Online:2021-06-01 Published:2021-06-09
  • Contact: Dong JIANG E-mail:xiaowang@njau.edu.cn;jiangd@njau.edu.cn

Abstract:

Abiotic stress factors, including heat stress, cold stress, drought stress, waterlogging stress etc., are the limiting factors for plant growth and crop production. Moreover, the frequency, extent and duration of abiotic stresses have predicted to be increased with global climate change. Therefore, improving crops resistance to abiotic stress or finding strategy to reduce the adverse effects of abiotic stress on crop yield and quality is of great significance for ensuring stable crop production and food security. “Priming” by exposing plants to moderate stress in the early growth stage can induce plant resistance to a later severe stress episode which happened during critical stage of the plant growth. The priming is an adaptive strategy that primed plants could effectively mount a faster and/or stronger defense response and actively improve the defensive capacity of plants under stress, compared with non-primed plants. According to the reoccurred stress types, the priming can be generally separated to four types, including in-generational stress tolerance (the priming stimulus and the stress occurred at later stage are the same stress type), intra-generational cross tolerance (the priming stimulus and the stress occurred at later stage are different stress types), transgenerational stress tolerance (the priming stimulus and the stress occurred at next generations are the same stress type), and transgenerational cross tolerance (the priming stimulus and the stress occurred at next generations are different stress types). In this review, the main physiological mechanisms were discussed, including plant photosynthetic response mechanism, antioxidant mechanism, and osmotic regulation, signal transduction mechanisms (plant hormones, Ca2+, hydrogen peroxide, nitric oxide, etc.), and epigenetic modification mechanisms (DNA methylation, histone modification, etc.). Then, the perspectives for the further research on understanding the underlying mechanisms of stress priming and the application of priming effects in the crop production were suggested. After revealing the mechanisms of priming, the candidate genes and proteins which play key regulatory roles in the acquisition of crop stress tolerance are found. And then, we can stimulate the related genes and protein expression which can actively induce the formation of stress tolerance in the critical crops growth stage, thereby effectively alleviating the adverse effects of abiotic stress on crop yield during the critical stage, which is meaningful for the crop production.

Key words: abiotic stress, priming, intra-generational priming, transgenerational priming, physiological mechanisms, signal transduction mechanisms

Fig. 1

Generalised scheme of the priming effects on the plant reaction and plant status (adapted from reference [11]])"

Fig. 2

The proposed mechanisms of abiotic stress priming induced stress memory in plants (adapted from reference[21])"

[1] WOLLENWEBER B, PORTER J R, SCHELLBERG J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 2003,189(3):142-150.
doi: 10.1046/j.1439-037X.2003.00025.x
[2] STOCKER T F, QIN D, PLATTNER G K, TIGNOR M M, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Computational Geometry, 2013,18(2):95-123.
doi: 10.1016/S0925-7721(01)00003-7
[3] TRENBERTH K E. Changes in precipitation with climate change. Climate Research, 2011,47:123-138.
doi: 10.3354/cr00953
[4] FIELD C, BARROS V, DOKKEN D, MACH K, MASTRANDREA M, BILIR T, CHATTERJEE M, EBI K, ESTRADA Y, GENOVA R. IPCC, 2014: Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects//Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, and New York, 2014: 1132.
[5] TAI A P, MARTIN M V, HEALD C L. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 2014(9), 4:817-821.
doi: 10.1038/nclimate2317
[6] ASSENG S, FOSTER I, TURNER N C. The impact of temperature variability on wheat yields. Global Change Biology, 2011,17(2):997-1012.
doi: 10.1111/gcb.2010.17.issue-2
[7] GUPTA R, GOPAL R, JAT M, JAT R, SIDHU H, MINHAS P, MALIK R. Wheat productivity in Indo-Gangetic plains of India during 2010: Terminal heat effects and mitigation strategies. Private Circulation Only Conservation Agriculture, 2010,14:1-4.
[8] DARYANTO S, WANG L, JACINTHE P-A. Global synthesis of drought effects on maize and wheat production. PLoS ONE, 2016,11(5):e0156362.
doi: 10.1371/journal.pone.0156362
[9] KAUR G, SINGH G, MOTAVALLI P P, NELSON K A, ORLOWSKI J M, GOLDEN B R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 2020,112(3):1475-1501.
doi: 10.1002/agj2.v112.3
[10] BRUCE T J A, MATTHES M C, NAPIER J A, PICKETT J A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science, 2007,173(6):603-608.
doi: 10.1016/j.plantsci.2007.09.002
[11] BALMER A, PASTOR V, GAMIR J, FLORS V, MAUCH-MANI B. The ‘prime-ome’: Towards a holistic approach to priming. Trends in Plant Science, 2015,20(7):443-452.
doi: 10.1016/j.tplants.2015.04.002
[12] MOLINIER J, RIES G, ZIPFEL C, HOHN B. Transgeneration memory of stress in plants. Nature, 2006,442(7106):1046-1049.
doi: 10.1038/nature05022
[13] LäMKE J, BäURLE I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 2017,18(1):124.
doi: 10.1186/s13059-017-1263-6
[14] CONRATH U, PIETERSE C M J, MAUCH-MANI B. Priming in plant-pathogen interactions. Trends in Plant Science, 2002,7(5):210-216.
doi: 10.1016/S1360-1385(02)02244-6
[15] HILKER M, SCHWACHTJE J, BAIER M, BALAZADEH S, BAURLE I, GEISELHARDT S, HINCHA D K, KUNZE R, MUELLER-ROEBER B, RILLIG M C, ROLFF J, ROMEIS T, SCHMULLING T, STEPPUHN A, VAN DONGEN J, WHITCOMB S J, WURST S, ZUTHER E, KOPKA J. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews of the Cambridge Philosophical Society, 2016,91(4):1118-1133.
doi: 10.1111/brv.2016.91.issue-4
[16] CONRATH U, BECKERS G J M, FLORS V, GARCíA-AGUSTíN P, JAKAB G, MAUCH F, NEWMAN M-A, PIETERSE C M J, POINSSOT B, POZO M J, PUGIN A, SCHAFFRATH U, TON J, WENDEHENNE D, ZIMMERLI L, MAUCH-MANI B. Priming: Getting ready for battle. Molecular Plant-microbe Interactions: MPMI, 2006,19(10):1062-1071.
doi: 10.1094/MPMI-19-1062
[17] ENGELBERTH J, ALBORN H T, SCHMELZ E A, TUMLINSON J H. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the USA, 2004,101(6):1781-1785.
[18] TON J, D’ALESSANDRO M, VIOLAINE JOURDIE1 G J, DANIELLE KARLEN1 M H, MAUCH-MANI B, TURLINGS1 T C J. Priming by airborne signals boosts direct and indirect resistance in maize. The Plant Journal, 2007,49(1):16-26.
doi: 10.1111/tpj.2007.49.issue-1
[19] BECKERS G J, JASKIEWICZ M, LIU Y, UNDERWOOD W R, HE S Y, ZHANG S, CONRATH U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. The Plant Cell, 2009,21(3):944-953.
doi: 10.1105/tpc.108.062158
[20] WANG X, LIU F, JIANG D. Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture, 2017,16(12):60345-60347.
[21] CHINNUSAMY V, ZHU J K. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009,12(2):133-139.
doi: 10.1016/j.pbi.2008.12.006
[22] ZHENG X, CHEN L, XIA H, WEI H, LOU Q, LI M, LI T, LUO L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Scientific Reports, 2017,7(1):1-13.
doi: 10.1038/s41598-016-0028-x
[23] MIGICOVSKY Z, YAO Y, KOVALCHUK I. Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signaling and Behavior, 2014,9(2):e27971.
doi: 10.4161/psb.27971
[24] HAUSER M T, AUFSATZ W, JONAK C, LUSCHNIG C. Transgenerational epigenetic inheritance in plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2011,1809(8):459-468.
[25] ZHANG X, ZHOU Q, WANG X, CAI J, DAI T, CAO W, JIANG D. Physiological and transcriptional analyses of induced post-anthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany, 2016,131:181-189.
doi: 10.1016/j.envexpbot.2016.08.002
[26] WANG X, CAI J, JIANG D, LIU F, DAI T, CAO W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 2011,168(6):585-593.
doi: 10.1016/j.jplph.2010.09.016
[27] WANG X, CAI J, LIU F, DAI T, CAO W, WOLLENWEBER B, JIANG D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry, 2013,74:185-192.
doi: 10.1016/j.plaphy.2013.11.014
[28] WANG X, CAI J, LIU F, JIN M, YU H, JIANG D, WOLLENWEBER B, DAI T, CAO W. Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. Journal of Cereal Science, 2012,55(3):331-336.
doi: 10.1016/j.jcs.2012.01.004
[29] CHARNG Y Y, LIU H C, LIU N Y, CHI W T, WANG C N, CHANG S H, WANG T T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology, 2007,143(1):251-262.
doi: 10.1104/pp.106.091322
[30] SEDAGHATMEHR M, MUELLER-ROEBER B, BALAZADEH S. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature Communications, 2016,7:12439.
doi: 10.1038/ncomms12439
[31] 陈威, 杨颖增, 陈锋, 周文冠, 舒凯. 表观遗传修饰介导的植物胁迫记忆. 植物学报, 2019,54(6):779-785.
doi: 10.11983/CBB19137
CHEN W, YANG Y Z, CHEN F, ZHOU W G, SHU K. Stress memory mediated by epigenetic modification in plants. Chinese Bulletin of Botany, 2019,54(6):779-785. (in Chinese)
doi: 10.11983/CBB19137
[32] 李青芝, 李成伟, 杨同文. DNA甲基化介导的植物逆境应答和胁迫记忆. 植物生理学报, 2014,50(6):725-734.
LI Q Z, LI C W, YANG T W. Stress response and memory mediated by DNA methylation in plants. Plant Physiology Journal, 2014,50(6):725-734. (in Chinese)
[33] LäMKE J, BRZEZINKA K, ALTMANN S, BäURLE I. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO Journal, 2016,35(2):162-175.
doi: 10.15252/embj.201592593
[34] STIEF A, ALTMANN S, HOFFMANN K, PANT B D, SCHEIBLE W R, BäURLE I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 2014,26(4):1792-1807.
doi: 10.1105/tpc.114.123851
[35] LING Y, SERRANO N, GAO G, ATIA M, MOKHTAR M, WOO Y H, BAZIN J, VELUCHAMY A, BENHAMED M, CRESPI M, GEHRING C, REDDY A S N, MAHFOUZ M M. Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany, 2018,69(10):2659-2675.
doi: 10.1093/jxb/ery062
[36] WANG W, WANG X, ZHANG J, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regulation, 2020,90(1):109-121.
doi: 10.1007/s10725-019-00553-8
[37] LI X, CAI J, LIU F, DAI T, CAO W, JIANG D. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 2014,82:34-43.
doi: 10.1016/j.plaphy.2014.05.005
[38] 简令成, 卢存福, 李积宏. 适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础. 作物学报, 2005,31(8):971-976.
JIAN L S, LU C F, LI J H. Increment of chilling tolerance and its physiological basis in chilling-sensitive corn sprouts and tomato seedlings after cold-hardening at optimum temperatures. Acta Agronomica Sinica, 2005,31(8):971-976. (in Chinese)
[39] WANG W, WANG X, HUANG M, CAI J, ZHOU Q, DAI T, CAO W, JIANG D. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 2018,9:1137.
doi: 10.3389/fpls.2018.01137
[40] ZUTHER E, SCHAARSCHMIDT S, FISCHER A, ERBAN A, PAGTER M, MUBEEN U, GIAVALISCO P, KOPKA J, SPRENGER H, HINCHA D K. Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell and Environment, 2019,42(3):854-873.
[41] ZHAO M G, CHEN L, ZHANG L L, ZHANG W H. Nitric reductase- dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology, 2009,151(2):755-767.
doi: 10.1104/pp.109.140996
[42] 黄国宾, 张晓海, 杨双龙, 李军营, 徐超华, 荣智媛, 杨利云, 龚明. 渗透调节参与循环干旱锻炼提高烟草植株抗旱性的形成. 植物生理学报, 2012,48(5):465-471.
HUANG G B, ZHANG X H, YANG S L, LI J Y, XU C H, RONG Z Y, YANG L Y, GONG M. Involvement of osmotic regulation in enhancement of drought resistance in tobacco (Nicotiana tabacum L.) plants through circular drought-hardening. Plant Physiology Journal, 2012,48(5):465-471. (in Chinese)
[43] SELOTE D S, KHANNA-CHOPRA R. Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiologia Plantarum, 2006,127(3):494-506.
doi: 10.1111/j.1399-3054.2006.00678.x
[44] WANG X, VIGNJEVIC M, JIANG D, JACOBSEN S, WOLLENWEBER B. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of Experimental Botany, 2014,65(22):6441-6456.
doi: 10.1093/jxb/eru362
[45] BAHUGUNA R N, TAMILSELVAN A, MUTHURAJAN R, SOLIS C A, JAGADISH S V K. Mild preflowering drought priming improves stress defences, assimilation and sink strength in rice under severe terminal drought. Functional Plant Biology, 2018,45(8):827-839.
doi: 10.1071/FP17248
[46] 陈晓远, 罗远培. 开花期复水对受旱冬小麦的补偿效应研究. 作物学报, 2001,27(4):512-516.
CHEN X Y, LUO Y P. Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat. Acta Agronomica Sinica, 2001,27(4):512-516. (in Chinese)
[47] 陈晓远, 罗远培. 不同生育期复水对受旱冬小麦的补偿效应研究. 中国生态农业学报, 2002,10(1):35-37.
CHEN X Y, LUO Y P. Compensatory effects of water-recovery during different growth durations on winter wheat under water stress. Chinese Journal of Eco-Agriculture, 2002,10(1):35-37. (in Chinese)
[48] WANG X, MAO Z, ZHANG J, HEMAT M, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2019,166:103804.
doi: 10.1016/j.envexpbot.2019.103804
[49] LI P, YANG H, WANG L, LIU H, HUO A H, ZHANG C, LIU A, ZHU A, HU J, LIN Y. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Frontiers in Genetics, 2019,10:55.
doi: 10.3389/fgene.2019.00055
[50] HARB A, KRISHNAN A, AMBAVARAM M M, PEREIRA A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology, 2010,154(3):1254-1271.
doi: 10.1104/pp.110.161752
[51] VIRLOUVET L, FROMM M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytologist, 2015,205(2):596-607.
doi: 10.1111/nph.2014.205.issue-2
[52] LIU N, AVRAMOVA Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics and Chromatin, 2016,9(1):8.
doi: 10.1186/s13072-016-0057-5
[53] WANG X, LI Q, XIE J, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Abscisic acid and jasmonic acid are involved in drought priming- induced tolerance to drought in wheat. The Crop Journal, 2020,9(1):120-132.
doi: 10.1016/j.cj.2020.06.002
[54] DUAN H, LI J, ZHU Y, JIA W, WANG H, JIANG L, ZHOU Y. Responsive changes of DNA methylation in wheat (Triticum aestivum) under water deficit. Scientific Reports, 2020,10(1):7938.
doi: 10.1038/s41598-020-64660-7
[55] DING Y, FROMM M, AVRAMOVA Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nature Communications, 2012,3:740.
doi: 10.1038/ncomms1732
[56] KIM J M, TO T K, ISHIDA J, MATSUI A, KIMURA H, SEKI M. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant and Cell Physiology, 2012,53(5):847-856.
doi: 10.1093/pcp/pcs053
[57] LI C, JIANG D, WOLLENWEBER B, LI Y, DAI T, CAO W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science, 2011,180(5):672-678.
doi: 10.1016/j.plantsci.2011.01.009
[58] 李诚永, 蔡剑, 姜东, 戴廷波, 曹卫星. 花前渍水预处理对花后渍水逆境下扬麦9号籽粒产量和品质的影响. 生态学报, 2011,31(7):1904-1910.
LI C Y, CAI J, JIANG D, DAI T B, CAO W X. Effects of hardening by pre-anthesis waterlogging on grain yield and quality of post- anthesis waterlogged wheat (Triticum aestivum L. cv Yangmai 9). Acta Ecologica Sinica, 2011,31(7):1904-1910. (in Chinese)
[59] KATO-NOGUCHI H. Anoxia tolerance in rice roots acclimated by several different periods of hypoxia. Journal of Plant Physiology, 2003,160(5):565-568.
doi: 10.1078/0176-1617-00868
[60] GARNCZARSKA M, RATAJCZAK L. Hypoxia induces anoxia tolerance in roots and shoots of lupine seedlings. Acta Physiologiae Plantarum, 2003,25(1):47-53.
doi: 10.1007/s11738-003-0035-y
[61] SAGLIO P H, DREW M C, PRADET A. Metabolic acclimation to anoxia induced by low (2-4 kpa partial-pressure) oxygen pretreatment (hypoxia) in root-tips of Zea-mays. Plant Physiology, 1988,86(1):61-66.
doi: 10.1104/pp.86.1.61
[62] WANG X, HUANG M, ZHOU Q, CAI J, DAI T, CAO W, JIANG D. Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2016,132:175-182.
doi: 10.1016/j.envexpbot.2016.09.003
[63] 周人纲, 樊志和, 李晓芝, 王占武, 韩炜. 高温锻炼对小麦细胞膜热稳定性的影响. 华北农学报, 1993,10(1):33-37.
ZHOU R G, FAN Z H, LI X Z, WANG Z W, HAN W. The effect of heat acclimation on cellular membrane thermostability in wheat. Chinese Journal of Pesticide Science, 1993,10(1):33-37. (in Chinese)
[64] VAN BUER J, CVETKOVIC J, BAIER M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biology, 2016,16(1):163-163.
doi: 10.1186/s12870-016-0856-7
[65] LEUENDORF J E, FRANK M, SCHMüLLING T. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Scientific Reports, 2020,10(1):689.
doi: 10.1038/s41598-019-56797-x
[66] 李同华, 王笑, 蔡剑, 周琴, 戴廷波, 姜东, 不同小麦品种对干旱锻炼响应的综合评价. 麦类作物学报. 2018,38(1):65-73.
LI T H, WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Comprehensive evaluation of drought priming on plant tolerance in different wheat cultivars. Journal of Triticeae Crops, 2018,38(1):65-73. (in Chinese)
[67] MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics. 2005,444(2):139-158.
[68] 康建宏, 吴宏亮, 黄灵丹. 干旱预处理的玉米幼苗对逆境的交叉适应研究. 干旱地区农业研究, 2008(6):143-148.
KANG J H, WU H L, HUANG L D. Cross adaptation of stress on maize seedlings under drought induced. Agricultural Research in the Arid Areas, 2008(6):143-148. (in Chinese)
[69] WANG X, VIGNJEVIC M, LIU F, JACOBSEN S, JIANG D, WOLLENWEBER B. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regulation, 2015,75(3):677-687.
doi: 10.1007/s10725-014-9969-x
[70] ZHANG X, WANG X, ZHUANG L, GAO Y, HUANG B. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiologia Plantarum, 2019,167(4):488-501.
doi: 10.1111/ppl.v167.4
[71] ZHANG X, XU Y, HUANG B. Lipidomic reprogramming associated with drought stress priming enhanced heat tolerance in tall fescue (Festuca arundinacea). Plant, Cell and Environment, 2019,42(3):947-958.
doi: 10.1111/pce.v42.3
[72] SIMINOVITCH D. Twenty-four-hour induction of freezing and drought tolerance in plumules of winter rye seedlings by desiccation stress at room temperature in the dark. Plant Physiology, 1982,69(1):250-255.
doi: 10.1104/pp.69.1.250
[73] AROCA R, IRIGOYEN J J, SáNCHEZ-DíAZ M J P P. Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiologia Plantarum, 2003,117(4):540-549.
doi: 10.1034/j.1399-3054.2003.00065.x
[74] LI X, TOPBJERG H, JIANG D, LIU F. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant and Soil, 2015,393:307-318.
doi: 10.1007/s11104-015-2499-0
[75] H X, Z L, Z T, F H, X L. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biology, 2020,20(1):15.
doi: 10.1186/s12870-019-2233-9
[76] SI T, WANG X, ZHAO C, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. The role of hydrogen peroxide in mediating the mechanical wounding-induced freezing tolerance in wheat. Frontiers in Plant Science, 2018,9:327-327.
doi: 10.3389/fpls.2018.00327
[77] MEI Y Q, SONG S Q. Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination. Journal of Zhejiang University Science B, 2010,11(12):965-972.
doi: 10.1631/jzus.B1000147
[78] LI S L, XIA Y Z, SUN Z Q. Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2016,27(2):477-483.
[79] KUZNETSOV V, RAKITIN V, ZHOLKEVICH V. Effects of preliminary heat‐shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiologia Plantarum, 2002,107(4):399-406.
doi: 10.1034/j.1399-3054.1999.100405.x
[80] GAO J, LUO Q, SUN C, HU H, WANG F, TIAN Z, JIANG D, CAO W, DAI T. Low nitrogen priming enhances photosynthesis adaptation to water-deficit stress in winter wheat (Triticum aestivum L.) seedlings. Frontiers in Plant Science, 2019,10:818.
doi: 10.3389/fpls.2019.00818
[81] GANGULY D R, CRISP P A, EICHTEN S R, POGSON B J. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiology, 175(2017) 1893-1912.
doi: 10.1104/pp.17.00744
[82] RACETTE K, ZURWELLER B, TILLMAN B, ROWLAND D. Transgenerational stress memory of water deficit in peanut production. Field Crops Research, 2020,248:107712.
doi: 10.1016/j.fcr.2019.107712
[83] DERNER J D, TISCHLER C R, POLLEY H W, JOHNSON H B. Intergenerational above- and belowground responses of spring wheat (Triticum aestivum L.) to elevated CO2. Basic and Applied Ecology, 2004,5(2):145-152.
doi: 10.1078/1439-1791-00217
[84] WHITTLE C, OTTO S, JOHNSTON M O, KROCHKO J. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany, 2009,87(6):650-657.
doi: 10.1139/B09-030
[85] LIU J, FENG L, GU X, DENG X, QIU Q, LI Q, ZHANG Y, WANG M, DENG Y, WANG E. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research, 2019,29(5):379-390.
doi: 10.1038/s41422-019-0145-8
[86] WANG X, XIN C, CAI J, ZHOU Q, DAI T, CAO W, JIANG D. Heat priming induces trans-generational tolerance to high temperature stress in wheat. Frontiers in Plant Science, 2016,7:501.
[87] TAO Z, SHEN L, GU X, WANG Y, YU H, HE Y. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 2017,551:124-128.
doi: 10.1038/nature24300
[88] MICHAELS S, AMASINO R. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous mutations but not responsiveness to vernalization. The Plant Cell, 2001,13(4):935-941.
doi: 10.1105/tpc.13.4.935
[89] GAZZANI S, GENDALL A, LISTER C, DEAN C. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiology, 2003,132(2):1107-1114.
doi: 10.1104/pp.103.021212
[90] MICHAELS S, HE Y, SCORTECCI K, AMASINO R. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003,100:10102-10107.
[91] YUAN W, LUO X, LI Z, YANG W, WANG Y, LIU R, DU J, HE Y. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nature Genetics, 2016,48:1527-1534.
doi: 10.1038/ng.3712
[92] OLIVER S, FINNEGAN E, DENNIS E, PEACOCK W, TREVASKIS B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(20):8386-8391.
NOSALEWICZ A, SIECIŃSKA J, ŚMIECH M, NOSALEWICZ M, WIĄCEK D, PECIO A, WACH D. Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environmental and Experimental Botany, 2016,131:120-127.
[94] WANG X, ZHANG X, CHEN J, WANG X, CAI J, ZHOU Q, DAI T, CAO W, JIANG D. Parental drought-priming enhances tolerance to post-anthesis drought in offspring of wheat. Frontiers in Plant Science, 2018,9:261.
doi: 10.3389/fpls.2018.00261
[95] ZHANG C, WANG N, ZHANG Y, FENG Q, YANG C, LIU B. DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genetics and Molecular Research, 2013,12(2):1269-1277.
doi: 10.4238/2013.April.17.5
[96] ZHANG X, WANG X, ZHONG J, ZHOU Q, WANG X, CAI J, LI X, CAO W, JIANG D. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 2016,127:26-36.
doi: 10.1016/j.envexpbot.2016.03.004
[97] TABASSUM T, FAROOQ M, AHMAD R, ZOHAIB A, WAHID A. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiology and Biochemistry, 2017,118:362-369.
doi: 10.1016/j.plaphy.2017.07.007
[98] LI Y, LI X, YU J, LIU F. Effect of the transgenerational exposure to elevated CO2 on the drought response of winter wheat: Stomatal control and water use efficiency. Environmental and Experimental Botany, 2017,136:78-84.
doi: 10.1016/j.envexpbot.2017.01.006
[99] LI X, BRESTIC M, TAN D X, ZIVCAK M, ZHU X, LIU S, SONG F, REITER R J, LIU F. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research, 2018,64(1):e12453.
doi: 10.1111/jpi.2018.64.issue-1
[100] LI X, JIANG H, LIU F, CAI J, DAI T, CAO W, JIANG D. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation, 2013,71(1):31-40.
doi: 10.1007/s10725-013-9805-8
[101] 谢静静, 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 苗期外源脱落酸和茉莉酸缓减小麦花后干旱胁迫的效应及其生理机制. 麦类作物学报, 2018,38(2):221-229.
XIE J J, WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Effect of exogenous application of abscisic acid and jasmonic acid at seedling stage on post-anthesis drought stress and physiological mechanisms in wheat. Journal of Triticeae Crops, 2018,38(2):221-229. (in Chinese)
[102] WANG X, ZHANG J, SONG J, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Abscisic acid and hydrogen peroxide are involved in drought priming‐induced drought tolerance in wheat (Triticum aestivum L.). Plant Biology, 2020,22(6). doi: 10.1111/plb.13143.
doi: 10.1111/plb.13143
[103] LV Z, DIAO M, LI W, CAI J, ZHOU Q, WANG X, DAI T, CAO W, JIANG D. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system. Agricultural Water Management, 2019,212:252-261.
doi: 10.1016/j.agwat.2018.09.015
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[3] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[4] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[5] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[6] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[7] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[8] ZHAO JinFeng,DU YanWei,WANG GaoHong,LI YanFang,ZHAO GenYou,WANG ZhenHua,CHENG Kai,WANG YuWen,YU AiLi. Identification NADP-ME Gene of Foxtail Millet and Its Response to Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 3950-3963.
[9] DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia. Genome-Wide Identification and Expression Analysis of SAP Family in Grape [J]. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514.
[10] GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang. Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops [J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181.
[11] ZHAO QiuFang, MA HaiYang, JIA LiQiang, CHEN Shu, CHEN HongLiang. Genome-Wide Identification and Expression Analysis of SRO Genes Family in Maize [J]. Scientia Agricultura Sinica, 2018, 51(15): 3009-3019.
[12] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[13] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
[14] XUAN Ning, LIU Xu, ZHANG Hua, CHEN Gao, LIU Guo-xia, BIAN Fei, YAO Fang-yin. The Response of a Putative Maize Zinc-Finger Protein Gene ZmAN14 in Transgenic Tabacco to Abiotic Stress [J]. Scientia Agricultura Sinica, 2015, 48(5): 841-850.
[15] LI Yue, LIU Xiao-dong, XIE Zong-ming, DONG Yong-mei, WU Dong-mei, CHEN Shou-yi. Cloning and Function Analysis of Cotton Transcription Factor GhGT-2 [J]. Scientia Agricultura Sinica, 2015, 48(24): 4872-4884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!