Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2377-2388.doi: 10.3864/j.issn.0578-1752.2021.11.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas

ZHOU YiFan(),YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan()   

  1. College of Resources and Environment, Southwest University/Interdisciplinary Research Center for Agricultural Green Development in Yangtze River Basin, Chongqing 400715
  • Received:2020-08-03 Accepted:2021-01-06 Online:2021-06-01 Published:2021-06-09
  • Contact: Yan DENG E-mail:evanzhou@email.swu.edu.cn;dengyancau@163.com

Abstract:

【Objective】Although China is the third biggest country in sugarcane planting areas and total production in the world, the sugarcane yield per hectare in China is much lower than the other high-yield sugarcane producing countries. This paper studied sugarcane yield potentials and current yield gaps in different sugarcane producing areas in China, and then the potential to reduce yield gap by optimizing yield-limiting factors was discussed, and thus to provide reference for increasing yield and efficiency in sugarcane production. 【Method】This study was based on data collection including statistical data and experiment data from literatures. A total of 147 data sets of sugarcane yield and planting areas from 1999 to 2018 in different provinces (autonomous regions, cities) were obtained from the national statistics database. Based on the database of CNKI and Web of Science, experiment data about planting density, fertilization rate, variety and yield from 93 papers were collected for main sugarcane producing areas, including 54 papers in Guangxi, 14 papers in Yunnan, and 25 papers in Guangdong. In each producing area, the mean of upper 5% experimental yields was used as yield potential, and the mean of statistical data as farmer’s yield, and yield gap was calculated as the difference between yield potential and farmer’s yield. Then the relationships between yield and fertilization rate, planting density and variety were analyzed, and therefore recommendations of optimized fertilization rate, planting density, variety and the potential to reduce yield gap were obtained. 【Result】Guangxi, Yunnan and Guangdong were the three main sugarcane producing areas in China. The sugarcane yield potentials were 137.1 t·hm-2in Guangxi, 147.2 t·hm-2in Yunnan, and 145.8 t·hm-2in Guangdong, respectively; while farmer’s yield were 74.2, 62.0, 78.3 t·hm-2, respectively, only achieving 54.1%, 42.1%, and 53.7% yield potential for each area, respectively. Fertilization rate, planting density and variety had significant effects on sugarcane yield, and there was big potential to optimize these yield-limiting factors. The fertilization recommendations were 270 kg N·hm-2, 99 kg P2O5·hm-2, 208 kg K2O·hm-2 in Guangxi, 228 kg N·hm-2, 117 kg P2O5·hm-2, 281 kg K2O·hm-2 in Yunnan, and 240 kg N·hm-2, 71 kg P2O5·hm-2, 193 kg K2O·hm-2 in Guangdong. The recommended planting density in Guangxi, Yunnan, Guangdong was 8×104-10×104, 10×104-12×104, 8×104-10×104 buds/hm2, respectively, and the varieties with high yields were GF series, GT series and YT series, respectively. 【Conclusion】According to the results, the potentials of yield increase in Guangxi, Yunnan, Guangdong were 62.9, 85.2, and 67.5 t·hm-2, respectively. Fertilization optimization could increase yield 16.9, 28.4, and 25.3 t·hm-2 for each area. Optimizing planting density could increase yield 23.6, 27.9, 22.1 t·hm-2, and optimizing sugarcane variety could increase yield 26.8, 42.4, and 15.1 t·hm-2, respectively.

Key words: sugarcane, main sugarcane production areas, yield gaps, fertilization, planting density, variety, potential yield

Fig. 1

Sugarcane production in China from 1999 to 2018"

Table 1

Sugarcane planting in different provinces (autonomous regions, municipalities) in China"

省(自治区、直辖市)
Province (autonomous region, municipality)
产量
Yield (×104 t)
种植面积
Planting area (×103 hm2)
单位产量
Unit yield (t·hm-2)
广西 Guangxi 7292.8 886.4 82.3
云南 Yunnan 1640.1 260.1 63.1
广东 Guangdong 1412.7 172.6 81.9
海南 Hainan 132.5 20.8 63.8
江西 Jiangxi 64.6 14.3 45.0
贵州 Guizhou 62.5 10.6 59.1
浙江 Zhejiang 40.6 6.2 66.0
四川 Sichuan 36.2 9.3 38.7
湖南 Hunan 33.8 7.4 45.8
湖北 Hubei 27.7 6.5 43.0
福建 Fujian 26.1 4.9 53.3
河南 Henan 15.4 2.0 75.8
安徽 Anhui 10.1 1.7 58.1
重庆 Chongqing 9.1 2.2 41.5
江苏 Jiangsu 5.3 0.9 61.9
上海 Shanghai 0.2 0.1 34.3
陕西 Shaanxi 0.1 0.0 25.0

Fig. 2

Sugarcane yield changes in China’s main sugarcane production areas from 2010 to 2018"

Fig. 3

Yield potentials and farmer’s yields of main sugarcane production areas in China Farmers’ yield is calculated from statistical data, while the potential yields of Guangxi, Yunnan and Guangdong are the average of the top 5% of the literature yield data"

Fig. 4

Relationships between fertilization rates and sugarcane yields in Guangxi"

Fig. 5

Relationships between fertilization rates and sugarcane yields in Yunnan"

Fig. 6

Relationships between fertilization rates and sugarcane yields in Guangdong"

Fig. 7

Relationships between planting density and sugarcane yield in main sugarcane production areas in China"

Fig. 8

Relationship between varieties and sugarcane yield in main sugarcane production areas in China"

[1] 王学清, 张静. 中国甘蔗产业支持政策及相关发展思路. 农业展望, 2018,14(1):43-48, 53.
WANG X Q, ZHANG J. Support policy and relevant development ideas of China’s sugarcane industry. Agricultural Outlook, 2018,14(1):43-48, 53. (in Chinese)
[2] 徐雪, 夏海龙. 中国食糖未来10年产需形势展望. 世界农业, 2014(7):95-99.
XU X, XIA H L. China’s sugar production and demand outlook in the next 10 years. World Agriculture, 2014(7):95-99. (in Chinese)
[3] 王继华, 商贺阳, 杨少海. 我国甘蔗养分高效利用的研究进展. 中国糖料, 2018,40(6):66-68, 72.
WANG J H, SHANG H Y, YANG S H. Research progress on nutrient efficient utilization of sugarcane in China. Sugar Crops of China, 2018,40(6):66-68, 72. (in Chinese)
[4] SHEN J B, ZHU Q C, JIAO X Q. Agriculture green development: a model for China and the world. Frontiers of Agricultural Science and Engineering, 2020,7(1):5-13.
doi: 10.15302/J-FASE-2019300
[5] EVANS L T. Crop evolution, adaptation and yield. Photosynthetica, 1998,34(1):56-56.
doi: 10.1023/A:1006889901899
[6] DE DATTA S K. Principles and Practices of Rice Production. New York: John Wiley & Sons, 1981.
[7] 杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014,47(14):2731-2741.
YANG X G, LIU Z J. Advances in research on crop yield gaps. Scientia Agricultura Sinica, 2014,47(14):2731-2741. (in Chinese)
[8] 魏志标, 柏兆海, 马林, 张福锁. 中国苜蓿、黑麦草和燕麦草产量差及影响因素. 中国农业科学, 2018,51(3):507-522.
WEI Z B, BO Z H, MA L, ZHANG F S. Yield gap of alfalfa, ryegrass and oat grass and their influence factors in China. Scientia Agricultura Sinica, 2018,51(3):507-522. (in Chinese)
[9] MUELLER N D, GERBER J S, JOHNSTON M. Closing yield gaps through nutrient and water management. Nature, 2012,490(7419):254-257.
doi: 10.1038/nature11420
[10] 刘保花, 陈新平, 崔振岭, 孟庆锋, 赵明. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015,23(5):525-534.
LIU B H, CHEN X P, CUI Z L, MENG Q F, ZHAO M. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-Agriculture, 2015,23(5):525-534. (in Chinese)
[11] HOCHMAN Z, GOBBETT D, HOLZWORTH D. Reprint of “Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia”. Field Crops Research, 2013,143:65-75.
doi: 10.1016/j.fcr.2013.02.001
[12] LOBELL D B, CASSMAN K G, FIELD C B. Crop Yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009,34(1):179-204.
doi: 10.1146/annurev.environ.041008.093740
[13] LIANG W, CARBERRY P, WANG G. Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China. Field Crops Research, 2011,124(2):180-185.
doi: 10.1016/j.fcr.2011.07.010
[14] 王雪丽, 阮红燕, 黄智刚. 基于AEZ模型的广西甘蔗生产潜力分析. 作物杂志, 2015(1):121-126.
WANG X L, RUAN H Y, HUANG Z G. Analysis on potential productivity of sugarcane in Guangxi Province based on AEZ model. Crops, 2015(1):121-126. (in Chinese)
[15] SUMBERG J. Mind the (yield) gap(s). Food Security, 2012,4(4):509-518.
doi: 10.1007/s12571-012-0213-0
[16] 曹玉贤, 朱建强, 侯俊. 中国再生稻的产量差及影响因素. 中国农业科学, 2020,53(4):707-719.
CAO Y X, ZHU J Q, HOU J. Yield gap of ratoon rice and their influence factors in China. Scientia Agricultura Sinica, 2020,53(4):707-719. (in Chinese)
[17] 李恒锐, 蒙福山, 邱文武, 卢美瑛, 马文清, 彭崇. 甘蔗新品种(系)筛选试验. 中国糖料, 2015,37(1):11-13.
LI H R, MENG F S, QIU W W, LU M Y, MA W Q, PENG C. Selecting test of new sugarcane varieties (Strain). Sugar Crops of China, 2015,37(1):11-13. (in Chinese)
[18] 欧克纬, 卢业飞, 李佳慧, 朱鹏锦, 周全光, 吕平, 程琴, 张宇, 庞新华. 广西引进甘蔗品种(系)的比较筛选与综合评价. 福建农业学报, 2020,35(4):414-421.
OU K W, LU Y F, LI J H, ZHU P J, ZHOU Q G, LV P, CHENG Q, ZHANG Y, PANG X H. Screening and evaluation of sugarcane cultivars for germplasm collection in Guangxi. Fujian Journal of Agricultural Sciences, 2020,35(4):414-421. (in Chinese)
[19] 邓海华, 谭步清, 何树林, 唐志军, 陈祖宏, 刘亚利, 吴凯南. CP65-357适宜下种量和施肥量的初步研究. 甘蔗糖业, 1999(1):5-10.
DENG H H, TAN B Q, HE S L, TANG Z J, CHEN Z H, LIU Y L, WU K N. Preliminary studies on the rates of planting and N, P, K fertilization for CP65-357. Sugarcane and Canesugar, 1999(1):5-10. (in Chinese)
[20] 中华人民共和国国家统计局. https://data.stats.gov.cn/easyquery.htm?cn=A01, 2020.
National Bureau of Statistics. https://data.stats.gov.cn/easyquery.htm?cn=A01, 2020. (in Chinese)
[21] 联合国粮食及农业组织. http://www.fao.org/home/zh, 2020.
Food and Agriculture Organization of the United Nations. http://www.fao.org/home/zh, 2020. (in Chinese)
[22] 邓军, 李孝翠, 张跃彬. 云南甘蔗生产现状与发展对策. 甘蔗糖业, 2011(4):77-80.
DENG J, LI X C, ZHANG Y B. The Current situation and development countermeasures of sugarcane production in Yunnan. Sugarcane and Canesugar, 2011(4):77-80. (in Chinese)
[23] 串丽敏, 何萍, 赵同科. 作物推荐施肥方法研究进展. 中国农业科技导报, 2016,18(1):95-102.
CHUAN L M, HE P, ZHAO T K. Research advance on recommendation for crop fertilization methodology. Journal of Agricultural Science and Technology, 2016,18(1):95-102. (in Chinese)
[24] 李瑞民, 齐永文, 吴文龙. 雷州市甘蔗“3414”肥效试验初报. 甘蔗糖业, 2018(1):23-26.
LI R M, QI Y W, WU W L. Report on “3414” fertilizer effect experiment of sugarcane in Leizhou. Sugarcane and Canesugar, 2018(1):23-26. (in Chinese)
[25] ZENG Y, ZHOU L Q, HUANG J S. Characteristics and evaluation of soil fertility in sugarcane-producing areas in Guangxi. Agricultural Science & Technology, 2017(3):443-448, 451.
[26] 冯学娟, 张曼其, 吴刃, 梁明, 廖积贤, 陈东俊, 赵丽宏. 不同甘蔗品种在不同养分条件下的生长表现. 农家科技, 2019(3):29-30.
FENG X J, ZHANG M Q, WU R, LIANG M, LIAO J X, CHEN D J, ZHAO L H. Growth performance of different sugarcane varieties under different nutrient conditions. Farm Technology, 2019(3):29-30. (in Chinese)
[27] 郭家文, 张跃彬, 刘少春, 崔雄维. 云南甘蔗主产区土壤有机质和速效养分分布研究. 土壤通报, 2010,41(4):872-876.
GUO J W, ZHANG Y B, LIU S C, CUI X W. The distribution of soil organic matter and available nutrient of the sugar bait in Yunnan. Chinese Journal of Soil Science, 2010,41(4):872-876. (in Chinese)
[28] 郭家文, 刘少春, 张跃彬, 崔雄维, 刀静梅, 樊仙. 云南甘蔗主产区土壤pH、全氮磷钾的分布状况. 土壤, 2012,44(5):868-872.
GUO J W, LIU S C, ZHANG Y B, CUI X W, DAO J M, FAN X. Distribution of soil pH and total N, P, K in main sugarcane fields in Yunnan Province. Soils, 2012,44(5):868-872. (in Chinese)
[29] 谭显平, 周英明, 刘军, 王果, 陈政, 李刚. 不同下种量对果蔗产量和品质影响的研究. 甘蔗糖业, 2012(5):13-25.
TAN X P, ZHOU Y M, LIU J, WANG G, CHEN Z, LI G. Study on the effect of different seeding amount on fruit cane yield and quality. Sugarcane and Canesugar, 2012(5):13-25. (in Chinese)
[30] 杨俊贤, 刘福业, 张允演. 粤糖93-159播种密度和施肥水平的研究. 甘蔗糖业, 2004(2):1-3, 36.
YANG J X, LIU F Y, ZHANG Y Y. Study on the planting density and fertilization ratio for sugarcane variety Yuetang 93-159. Sugarcane and Canesugar, 2004(2):1-3, 36. (in Chinese)
[31] 陆建勋, 邓展云, 刘晓静, 李鸣, 徐林, 贤武, 刘海斌. 不同种植密度对桂糖系列甘蔗新品种农艺性状及产量的影响. 广西农业科学, 2010,41(11):1170-1172.
LU J X, DENG Z Y, LIU X J, LI M, XU L, XIAN W, LIU H B. Effects of different planting densities on yield and agronomic characters of Guitang series sugarcane varieties. Guangxi Agricultural Sciences, 2010,41(11):1170-1172. (in Chinese)
[32] 黄曲燕, 李毅杰, 梁强, 林善海, 黄海荣, 李翔. 不同甘蔗基因型在南宁蔗区的适应性表现. 广西糖业, 2018(2):10-13.
HUANG Q Y, LI Y J, LIANG Q, LIN S H, HUANG H R, LI X. Adaptability of different sugarcane genotypes in Nanning sugarcane area. Guangxi Sugar Industry, 2018(2):10-13. (in Chinese)
[33] 覃新福. 2015/2016年甘蔗新品种(系)比较试验初报. 广西糖业, 2018(1):3-6.
TAN X F. Preliminary report on comparison test of new sugarcane varieties (lines) in 2015/2016. Guangxi Sugar Industry, 2018(1):3-6. (in Chinese)
[34] 李杨瑞. 广西甘蔗生产中的主要问题及几点建议. 广西糖业, 2020(4):3-7.
LI Y R. The main problems in the sugarcane production in Guangxi and a few suggestions. Guangxi Sugar Industry, 2020(4):3-7. (in Chinese)
[35] 王伦旺, 廖江雄, 谭芳, 唐仕云, 黄家雍, 李翔, 杨荣仲, 李杨瑞, 黄海荣, 经艳, 邓宇驰. 高产高糖抗倒伏甘蔗新品种桂糖42号的选育及高产栽培技术. 南方农业学报, 2015,46(8):1361-1366.
WANG L W, LIAO J X, TAN F, TANG S Y, HUANG J Y, LI X, YANG R Z, LI Y R, HUANG H R, JING Y, DENG Y C. Breeding of new high-yield, high-sugar and lodging-resistant sugarcane variety Guitang 42 and its high-yield cultivation technique. Journal of Southern Agriculture, 2015,46(8):1361-1366. (in Chinese)
[36] 游奕来, 甘道建, 周柏权, 李伯欣, 唐拴虎, 徐培智. 控释肥料在甘蔗生产上的应用效果研究. 广东农业科学, 2008(6):18-19.
YOU Y L, GAN D J, ZHOU B Q, LI B X, TANG S H, XU P Z. Study on application effect of controlled release fertilizer in sugarcane production. Guangdong Agricultural Sciences, 2008(6):18-19. (in Chinese)
[37] 陈杨, 樊明寿, 康文钦, 秦永林. 内蒙古阴山丘陵地区马铃薯施肥现状与评价. 中国土壤与肥料, 2012 (2):104-108.
CHEN Y, FAN M S, KANG W Q, QIN Y L. Evaluation and present situation of fertilization for potato in hilly country of Yinshan in Inner Mongolia. Soil and Fertilizer Sciences in China, 2012(2):104-108. (in Chinese)
[38] 郭家文, 刘少春, 王龙, 张跃彬, 崔雄维. 25年来两类植蔗土壤肥力演变及原因分析—以云南陇川农场为例. 土壤, 2010,42(2):219-223.
GUO J W, LIU S C, WANG L, ZHANG Y B, CUI X W. Changes and mechanism of soil fertility under two kinds of sugarcane cultivations during 25 years—A case study of Longchuan Farm, Yunnan Province. Soils, 2010,42(2):219-223. (in Chinese)
[39] 张跃彬. 我国蔗糖产业安全问题与发展对策. 中国糖料, 2019,41(1):66-68.
ZHANG Y B. Safety Problems and development countermeasures of cane sugar industry in China. Sugar Crops of China, 2019,41(1):66-68. (in Chinese)
[40] 全怡吉, 武晋宇, 李如丹, 樊仙, 刀静梅, 杨绍林, 邓军. 云南省蔗糖产业发展现状分析. 中国糖料, 2019,41(4):76-80.
QUAN Y J, WU J Y, LI R D, FAN X, DAO J M, YANG S L, DENG J. Analysis on the current situation of cane sugar industry in Yunnan Province. Sugar Crops of China, 2019,41(4):76-80. (in Chinese)
[41] 朱卫江. 我国甘蔗机械化收获现状与发展路径选择. 农机质量与监督, 2019(10):30-32.
ZHU W J. Current situation of sugarcane mechanized harvesting in China and development path selection. Agricultural Machinery Quality & Supervision, 2019(10):30-32. (in Chinese)
[1] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[2] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[3] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[6] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[7] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[8] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[9] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] LI HongYan,XUE Jun,WANG YongHong,WANG KeRu,ZHAO RuLang,MING Bo,ZHANG ZhenTao,ZHANG WenJie,LI ShaoKun. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia [J]. Scientia Agricultura Sinica, 2022, 55(12): 2324-2337.
[12] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[13] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[14] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[15] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!