Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (13): 2668-2676.doi: 10.3864/j.issn.0578-1752.2013.13.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Remote Sensing Based Dynamic Changes Analysis of Crop Distribution Pattern —Taking Northeast China as an Example

 HUANG  Qing, TANG  Hua-Jun, WU  Wen-Bin, LI  Dan-Dan, LIU  Jia   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agri-Informatics, Ministry of Agriculture, Beijing 100081
  • Received:2012-10-16 Online:2013-07-01 Published:2013-04-15

Abstract: 【Objective】Recently, researches on identifications and dynamic changes of landscapes and land use types by using remote sensing techniques have been a hot topic. However, the vast majority of studies have taken farmland as a “single” land type; the spatial distribution and variation of different crops inside the farmland have been neglected. This paper aims to explore the extraction methods of large scale crop acreage and distribution pattern by using remote sensing and the application of landscape pattern indices in crop pattern dynamics. 【Method】 Based on the full coverage MODIS images and NDVI data during the crop growing periods of 2005 and 2010, by analyzing the planting structure, phenology calendar and NDVI time series curve characteristics, different area extracting models were established and were used to extract the spatial distribution of main crops (spring maize, soybean and paddy) by using RS and GIS techniques in Northeast China. Meanwhile, some landscape pattern indices were used to describe the characteristics and rules of crop pattern dynamic changes.【Result】Compared with the average statistical data of several years, the overall areas extraction accuracies of these two years were more than 90%. The main crop planting structure changed a lot from 2005 to 2010 in Northeast China. Soybean area decreased obviously, its dynamic degree reached -4.47%, and the average patch area reduced by 0.05 km2. Change range of paddy and spring maize reached 22.37% and 22.82%, respectively, during the 5 years. And the average patch area also increased. 【Conclusion】 Increasing planting costs and decreasing relative benefits were main reasons for these changes. It is technically feasible for large scale crop acreage extraction by using medium resolution remote sensing data. Landscape ecology pattern index can be used to analyze crop pattern dynamic changes.

Key words: remote sensing , NDVI , pattern change , paddy , spring maize , soybean , Northeast China

[1]刘颂, 郭菲菲, 李倩. 我国景观格局研究进展及发展趋势. 东北农业大学学报, 2010, 41(6): 144-151.

Liu S, Guo F F, Li Q. Research status and development trend of landscape pattern in China. Journal of Northeast Agricultural University, 2010, 41(6): 144-151. (in Chinese)

[2]张景华, 封志明, 姜鲁光. 土地利用/土地覆被分类系统研究进展. 资源科学, 2011, 33(6): 1195-1203.

Zhang J H, Feng Z M, Jiang L G. Progress on studies of land use/land cover classification systems. Resources Science, 2011, 33(6): 1195-1203. (in Chinese)

[3]郝慧梅, 郝永利, 任志远. 近20年关中地区土地利用/覆盖变化动态与格局. 中国农业科学, 2011, 44(21): 4525-4536.

Hao H M, Hao Y L, Ren Z Y. Analysis on dynamic and pattern of land use/cover change in Guanzhong area. Scientia Agricultura Sinica, 2011, 44(21): 4525-4536. (in Chinese)

[4]Rogan J, Chen D M. Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 2004, 61: 301-324.

[5]Garedew E, Sandewall M, Söderberg U, Campbell B M. Land-use and land-cover dynamics in the central rift valley of Ethiopia. Environmental Management, 2009, 44(4): 683-694.

[6]祝锦霞, 郭庆华, 王珂. 湿地高分辨率遥感影像的变化检测. 中国农业科学, 2012, 45(21): 4369-4376.

Zhu J X, Guo Q H, Wang K. Change detection on wetlands using high spatial resolution imagery. Scientia Agricultura Sinica, 2012, 45(21): 4369-4376. (in Chinese)

[7]李存军, 王纪华, 刘良云, 宋晓宇, 王人潮. 利用多时相Landsat近红外波段监测冬小麦和苜蓿种植面积. 农业工程学报, 2005, 21(2): 96-101.

Li C J, Wang J H, Liu L Y, Song X Y, Wang R C. Land cover mapping of winter wheat and clover using multi-temporal Landsat NIR band in a growing season. Transactions of the CSAE, 2005, 21(2): 96-101. (in Chinese)

[8]唐华俊, 吴文斌, 杨鹏, 周清波, 陈仲新. 农作物空间格局遥感监测研究进展. 中国农业科学, 2010, 43(14): 2879-2888.

Tang H J, Wu W B, Yang P, Zhou Q B, Chen Z X. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. (in Chinese)

[9]邬建国. 景观生态学-格局、过程、尺度与等级(第二版). 北京: 高等教育出版社, 2007.

Wu J G. Landscape Ecology: Pattern, Process, Scale and Hierarchy. 2nd ed. Beijing: Higher Education Press, 2007. (in Chinese)

[10]Frondoni R, Mollo B, Capotorti G. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landscape and Urban Planning, 2011, 100: 117-128.

[11]冉盈盈, 王卷乐, 张永杰, 李玉洁, 周玉洁. 鄱阳湖地区土地覆盖空间分布格局与景观特征分析. 地球信息科学学报, 2012, 14(3): 327-337.

Ran Y Y, Wang J L, Zhang Y J, Li Y J, Zhou Y J. Quantitative analysis on spatial distribution of land cover pattern and landscape features in Poyang Lake region. Journal of Geo-Information Science, 2012, 14(3): 327-337. (in Chinese)

[12]佴军, 张洪程, 陆建飞. 江苏省水稻生产30年地域格局变化及影响因素分析. 中国农业科学, 2012, 45(16): 3446-3452.

Nai J, Zhang H C, Lu J F. Regional pattern changes of rice production in thirty years and its influencing factors in Jiangsu province. Scientia Agricultura Sinica, 2012, 45(16): 3446-3452. (in Chinese)

[13]占车生, 乔晨, 徐宗学, 尹剑. 基于遥感的渭河关中地区生态景观格局变化研究. 资源科学, 2011, 33(12): 2349-2355.

Zhan C S, Qiao C, Xu Z X, Yin J. Ecological landscape patterns in Guanzhong part of the Weihe River basin based on remote sensing. Resources Science, 2011, 33(12): 2349-2355. (in Chinese)

[14]肖笃宁, 王根绪, 王让会. 中国干旱区景观生态学研究进展. 乌鲁木齐: 新疆人民出版社, 2003.

Xiao D N, Wang G X, Wang R H. Progress of landscape ecology in arid land of China. Urumuqi: Xinjiang People’s Press, 2003. (in Chinese)

[15]Omkar S N, Senthilnath J, Mudigere D, Manoj K M. Crop classification using biologically-inspired techniques with high resolution satellite image. Journal of the Indian Society of Remote Sensing, 2008, 36(2): 175-182.

[16]Turner M D, Congalton R G. Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain. International Journal of Remote Sensing, 1998, 19: 21-41.

[17]徐新刚, 李强子, 周万村, 吴炳方. 应用高分辨率遥感影像提取作物种植面积. 遥感技术与应用, 2008, 23(1): 17-23.

Xu X G, Li Q Z, Zhou W C, Wu B F. Classification application of QuickBird imagery to obtain crop planting area. Remote Sensing Technology and Application, 2008, 23(1): 17-23. (in Chinese)

[18]韩立建, 潘耀忠, 贾斌, 朱秀芳, 刘旭拢, 王双, 张锦水. 基于多时相IRS-P6卫星AWIFS影像的水稻种植面积提取方法. 农业工程学报, 2007, 23(5): 137-143.

Han L J, Pan Y Z, Jia B, Zhu X F, Liu X L, Wang S, Zhang J S. Acquisition of paddy rice coverage based on multi temporal IRS-P6  satellite AWIFS RS data. Transactions of the CSAE, 2007, 23(5): 137-143. (in Chinese)

[19]杨小唤, 张香平, 江东. 基于MODIS时序NDVI特征值提取多作物播种面积的方法. 资源科学, 2004, 26(6): 17-22.

Yang X H, Zhang X P, Jiang D. Extraction of multi-crop planting areas from MODIS data. Resources Science, 2004, 26(6): 17-22. (in Chinese)

[20]吴文斌, 杨鹏, 唐华俊, Shibasaki Ryosuke, 周清波, 张莉. 基于NDVI数据的华北地区耕地物候空间格局. 中国农业科学, 2009, 42(2): 552-560.

Wu W B, Yang P, Tang H J, Ryosuke S, Zhou Q B, Zhang L. Monitoring spatial patterns of cropland phenology in North China based on NOAA NDVI data. Scientia Agricultura Sinica, 2009, 42(2): 552-560. (in Chinese)

[21]林文鹏, 王长耀, 储德平, 牛铮, 钱永兰. 基于光谱特征分析的主要秋季作物类型提取研究. 农业工程学报, 2006, 22(9): 128-132.

Lin W P, Wang C Y, Chu D P, Niu Z, Qian Y L. Extraction of fall crop types based on spectral analysis. Transactions of the CSAE, 2006, 22(9): 128-132. (in Chinese)

[22]黄青, 唐华俊, 周清波, 吴文斌, 王利民, 张莉. 东北地区主要作物种植结构遥感提取及长势监测. 农业工程学报, 2010, 26(9): 218-223.

Huang Q, Tang H J, Zhou Q B, Wu W B, Wang L M, Zhang L. Remote-sensing based monitoring of planting structure and growth condition of major crops in Northeast China. Transactions of the CSAE, 2010, 26(9): 218-223. (in Chinese)

[23]黄 青. 塔里木河干流景观格局与生态水文过程的耦合分析[D]. 乌鲁木齐: 中国科学院新疆生态与地理研究所, 2007.

Huang Q. Coupling relations between landscape pattern and eco-hydrology process in inland river basin in arid zone - taking Tarim River as an example[D]. Urumqi: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 2007. (in Chinese)

[24]陈佑启, 姚艳敏, 何英彬, 石淑琴, 李志斌. 中国区域性耕地资源变化影响评价与粮食安全预警研究. 北京: 中国农业科学技术出版社, 2010.

Chen Y Q, Yao Y M, He Y B, Shi S Q, Li Z B. China Regional Arable Land Resources Change and Impact Assessment and Food Security Early Warning Analysis. Beijing: China Agricultural Science and Technology Press, 2010. (in Chinese)

[25]冯锐, 张玉书, 钱永兰, 于文颖, 纪瑞鹏, 武晋雯, 陈鹏狮. 基于多时相MODIS数据的东北地区一季稻面积提取. 生态学杂志, 2011, 30(11): 2570-2576.

Feng R, Zhang Y S, Qian Y L, Yu W Y, Ji R P, Wu J W, Chen P S. Extraction of single cropping rice area in Northeast China based on multi-temporal MODIS data. Chinese Journal of Ecology, 2011, 30(11): 2570-2576. (in Chinese)

[26]邬明权, 王长耀, 牛铮. 利用多源时序遥感数据提取大范围水稻种植面积. 农业工程学报, 2010, 26(7): 240-244.

Wu M Q, Wang C Y, Niu Z. Mapping paddy fields in large areas based on time series multi-sensors data. Transactions of the CSAE, 2010, 26(7): 240-244.(in Chinese)

[27]Gusso A, Formaggio A R, Rizzi R, Adami M, Rudorff B F T. Soybean crop area estimation by MODIS/EVI data. Pesquisa Agropecuaria Brasileira, 2012,47(3): 425-435.

[28]陈健, 刘云慧, 宇振荣. 基于时序MODIS-EVI数据的冬小麦种植信息提取. 中国农学通报, 2011, 27(1): 446-450.

Chen J, Liu Y H, Yu Z R. Planting information extraction of winter wheat based on the time-series MODIS-EVI. Chinese Agricultural Science Bulletin, 2011, 27(1): 446-450. (in Chinese)

[29]郝卫平, 梅旭荣, 蔡学良, 杜建涛, 刘勤. 基于多时相遥感影像的东北三省作物分布信息提取. 农业工程学报, 2011, 27(1): 201-207.

Hao W P, Mei X R, Cai X L, Du J T, Liu Q. Crop planting extraction based on multi-temporal remote sensing data in Northeast China. Transactions of the CSAE, 2011, 27(1): 201-207. (in Chinese)

[30]陈思宁, 赵艳霞, 申双和. 基于波谱分析技术的遥感作物分类方 法. 农业工程学报, 2012, 28(5): 154-160.

Chen S N, Zhao Y X, Shen S H. Crop classification by remote sensing based on spectral analysis. Transactions of the CSAE, 2012, 28(5): 154-160. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[8] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[9] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[10] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[11] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[12] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[13] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[14] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[15] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!