Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4144-4157.doi: 10.3864/j.issn.0578-1752.2022.21.005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
HUANG Chong1,3(),HOU XiangJun1,2
[1] | 张佳华, 胡小夏, 刘学锋, 何贞铭. 基于MODIS数据提取华北典型区冬小麦种植面积. 中国科学院大学学报, 2013, 30(5): 637-643. |
ZHANG J H, HU X X, LIU X F, HE Z M. Extraction of winter wheat planting areas based on the time-series MODIS data in typical region of North China. Journal of University of Chinese Academy of Sciences, 2013, 30(5): 637-643. (in Chinese) | |
[2] | 史舟, 梁宗正, 杨媛媛, 郭燕. 农业遥感研究现状与展望. 农业机械学报, 2015, 46(2): 247-260. |
SHI Z, LIANG Z Z, YANG Y Y, GUO Y. Status and prospect of agricultural remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 247-260. (in Chinese) | |
[3] | 陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 农业遥感研究应用进展与展望. 遥感学报, 2016, 20(5): 748-767. |
CHEN Z X, REN J Q, TANG H J, SHI Y, LENG P, LIU J, WANG L M, WU W B, YAO Y M, HASI T Y. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing, 2016, 20(5): 748-767. (in Chinese) | |
[4] | DE CASTRO A I, TORRES-SÁNCHEZ J, PENA J M, JIMENEZ- BRENES F M, CSILLIK O, LOPEZ-GRANADOS F. An automatic Random Forest-OBIA algorithm for early weed mapping between and within crop rows using UAV Imagery. Remote Sensing, 2018, 10(2): 285. |
[5] | 郝鹏宇, 唐华俊, 陈仲新, 牛铮. 基于历史增强型植被指数时序的农作物类型早期识别. 农业工程学报, 2018, 34(13): 179-186. |
HAO P Y, TANG H J, CHEN Z X, NIU Z. Early season crop type recognition based on historical EVI time series. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 179-186. (in Chinese) | |
[6] | AZAR R, VILLA P, STROPPIANA D, CREMA A, BOSCHETTI M, BRIVIO P A. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy. European Journal of Remote Sensing, 2016, 49(1): 361-380. |
[7] | 赵丽花, 李卫国, 杜培军. 基于多时相HJ卫星的冬小麦面积提取. 遥感信息, 2011, 26(2): 41-45, 50. |
ZHAO L H, LI W G, DU P J. The area extraction of winter wheat based on multi-temporal HJ remote sensing satellite images. Remote Sensing Information, 2011, 26(2): 41-45, 50. (in Chinese) | |
[8] | YOU N S, DONG J W. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 109-123. |
[9] | REN T W, LIU Z, ZHANG L, LIU D Y, XI X J, KANG Y H, ZHAO Y Y, ZHANG C, LI S M, ZHANG X D. Early identification of seed maize and common maize production fields using sentinel-2 images. Remote Sensing, 2020, 12(13): 2140. |
[10] | VRIELING A, MERONI M, DARVISHZADEH R, SKIDMORE A K, WANG T J, ZURITA-MILLA R, OOSTERBEEK K, O’CONNOR B, PAGANINI M. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 2018, 215: 517-529. |
[11] | SUN Z H, DI L P, FANG H. Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. International Journal of Remote Sensing, 2019, 40(2): 593-614. |
[12] | WANG Y M, ZHANG Z, FENG L W, MA Y C, DU Q Y. A new attention-based CNN approach for crop mapping using time series Sentinel-2 images. Computers and Electronics in Agriculture, 2021, 184: 106090. |
[13] | QU Y, ZHAO W Z, YUAN Z L, CHEN J G. Crop mapping from sentinel-1 polarimetric time-series with a deep neural network. Remote Sensing, 2020, 12(15): 2493. |
[14] | 杨丽, 吴雨茜, 王俊丽, 刘义理. 循环神经网络研究综述. 计算机应用, 2018, 38(S2): 1-6, 26. |
YANG L, WU Y X, WANG J L, LIU Y L. Research on recurrent neural network. Journal of Computer Applications, 2018, 38(S2): 1-6, 26. (in Chinese) | |
[15] | LUO C, MENG S Y, HU X, WANG X Y, ZHONG Y F. Cropnet: Deep Spatial-Temporal-Spectral Feature Learning Network for crop classification from Time-Series Multi-Spectral Images// Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, 4187-4190. |
[16] | KUSSUL N, LAVRENIUK M, SHUMILO L. Deep Recurrent Neural Network for crop classification task based on Sentinel-1 and Sentinel-2 imagery// Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, 6914-6917. |
[17] | ZHOU Y N, LUO J C, FENG L, YANG Y P, CHEN Y H, WU W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience & Remote Sensing, 2019, 56(8): 1170-1191. |
[18] | SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. |
[19] | KWAK G H, PARK M G, PARK C W, LEE K D, NA S I, AHN H Y, PARK N W. Combining 2D CNN and bidirectional LSTM to consider spatio-temporal features in crop classification. Korean Journal of Remote Sensing, 2019, 35(51): 681-692. |
[20] | 毕恺艺, 牛铮, 黄妮, 康峻, 裴杰. 基于Sentinel-2A时序数据和面向对象决策树方法的植被识别. 地理与地理信息科学, 2017, 33(5): 16-20, 27, 127. |
BI K Y, NIU Z, HUANG N, KANG J, PEI J. Identifying vegetation with decision tree model based on object-oriented method using multi-temporal sentinel-2A images. Geography and Geo-Information Science, 2017, 33(5): 16-20, 27, 127. (in Chinese) | |
[21] | SANCHEZ A H, PICOLI M C A, CAMARA G, ANDRADE P R, CHAVES M E D, LECHLER S, SOARES A R, MARUJO R E B, SIMBES R E O, FERREIRA K R, QUEIROZ G R. Comparison of Cloud cover detection algorithms on sentinel-2 images of the amazon tropical forest. Remote Sensing, 2020, 12(8): 1284. |
[22] | JIMéNEZ-MUñOZ J C, SOBRINO J A, PLAZA A, GUANTER L, MORENO J, MARTINEZ P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors, 2009, 9(2): 768-793. |
[23] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780. |
[24] | CHO K, VAN MERRIENBOER B V, BAHDANAU D, BENGIO Y. On the properties of neural machine translation:Encoder-decoder approaches// Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014, 103-111. |
[25] | 赵红伟, 陈仲新, 刘佳. 深度学习方法在作物遥感分类中的应用和挑战. 中国农业资源与区划, 2020, 41(2): 35-49. |
ZHAO H W, CHEN Z X, LIU J. Deep learning for crop classification of remote sensing data: Applications and challenges. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(2):35-49. (in Chinese) | |
[26] | ZHAO S, LIU X N, DING C, LIU S Y, WU C S, WU L. Mapping rice paddies in complex landscapes with convolutional neural networks and phenological metrics. GIScience & Remote Sensing, 2020, 57(1): 37-48. |
[27] | KWAK G H, PARK C W, AHN H Y, NA S I, LEE K D, PARK N W. Potential of bidirectional long short-term memory networks for crop classification with multitemporal remote sensing images. Korean Journal of Remote Sensing, 2020, 36(4): 515-525. |
[28] | RUSSWURM M, KÖRNER M. Self-attention for raw optical satellite time series classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 421-435. |
[29] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning. Massachusetts: MIT Press, 2016. |
[30] | QUIñONERO-CANDELA J, SUGIYAMA M, SCHWAIGHOFER A, LAWRENCE N D. Dataset Shift in Machine Learning. Massachusetts: MIT Press, 2009. |
[31] | 潘海珠. 基于作物多模型遥感数据同化的区域冬小麦生长模拟研究[D]. 北京: 中国农业科学院, 2020. |
PAN H Z. Winter wheat growth simulation based on multiple crop models and remote sensing data assimilation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese) | |
[32] | ZENG L L, WARDLOW B D, XIANG D X, HU S, LI D R. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 2020, 237: 111511. |
[33] | XU J F, ZHU Y, ZHONG R H, LIN Z X, XU J L, JIANG H, HUANG J F, LI H F, LIN T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sensing of Environment, 2020, 247: 111946. |
[34] | LAKSHMINARAYANAN S K, MCCRAE J P. A comparative study of SVM and LSTM deep learning algorithms for stock market prediction// Proceedings of the AICS, 2019, 446-457. |
[35] | 庞敏. 基于LSTM混合模型的时间序列预测[D]. 武汉: 华中科技大学, 2019. |
PANG M. Time series forecasting based on LSTM hybrid model[D]. Wuhan: Huazhong University of Science & Technology, 2019. (in Chinese) | |
[36] | CHEN P H, LIN C J, SCHÖLKOPF B. A tutorial on ν-support vector machines. Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136. |
[1] | MI XiaoTian,SHI Lei,HE Gang,WANG ZhaoHui. Fertilizer Reduction Potential and Economic Benefits of Crop Production for Smallholder Farmers in Shaanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(20): 4370-4384. |
[2] | LIU HuanJun, YU ShengNan, ZHANG XinLe, GUO Dong, YIN JiXian. Timeliness Analysis of Crop Remote Sensing Classification One Crop A Year [J]. Scientia Agricultura Sinica, 2017, 50(5): 830-839. |
|