Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 743-754.doi: 10.3864/j.issn.0578-1752.2022.04.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields

YANG BinJuan(),LI Ping,HU QiLiang,HUANG GuoQin()   

  1. College of Agronomy, Jiangxi Agricultural University/Research Center on Ecological Science Jiangxi Agricultural University, Nanchang 330045
  • Received:2021-01-21 Accepted:2021-05-14 Online:2022-02-16 Published:2022-02-23
  • Contact: GuoQin HUANG E-mail:yangbinjuan@jxau.edu.cn;hgqjxes@sina.com

Abstract:

【Objective】The aim of this study was to determine how a green manure mixted-cropping affected nitrous oxide (N2O) emissions from soil and the abundance of related functional genes in paddy field soil. The ultimate aim of this research was to identify a green manure mixted-cropping that had high and stable yields and reduces emissions, and was suitable for cultivation in the double-rice areas of southern China. 【Method】The effects of mixted-cropping of Chinese milk vetch and rape at different ratios (single Chinese milk vetch, single rape, 3/4 Chinese milk vetch +1/4 rape, 1/2 Chinese milk vetch +1/2 rape, and 1/4 Chinese milk vetch +3/4 rape) on N2O emissions and the abundance of related functional genes in paddy field soil were determined and compared. 【Result】(1) The crop species affected N2O emissions. The N2O emissions were similar among the different treatments. Among them the N2O emissions from winter crop soil were mainly concentrated at its flowering stage, and those during the rice growing period were concentrated at the tillering, filling, and maturity stages of early and late rice crops. On the whole, the N2O emissions from paddy fields were lower N2O in the early rice season than that in the late rice season. The overall N2O emissions flux in the paddy fields was higher in 2018 than that in 2019. (2) There was no significant difference in N2O cumulative emission of early rice under different treatments. The cumulative N2O emissions from a single seeding treatment were lower than those from mixed treatments over two consecutive years. The annual cumulative N2O emissions were lowest under CK1 in 2019. Among all the mixed treatments, the 3/4 Chinese milk vetch +1/4 rape treatment had the lowest annual cumulative N2O emissions. (3) In general, the copy number of amoA-AOA and amoA-AOB genes was higher in the soil of late rice than that in the soil of early rice, and the copy number of AmoA-AOA was up to two orders of magnitude higher in late rice soil than in early rice soil. The copy numbers of nirS, nirK and nosZ were higher in the soil of late rice crops than that in the soil of early rice crops, and the copy number of nirS was up to two orders of magnitude higher than those of nirK and nosZ in late rice soil. The mixted-cropping of Chinese milk vetch and rape increased the abundance amoA-AOA and amoA-AOB genes in soil, and amoA-AOA was the dominant functional gene. It also increased the abundance of nirS, nirK and nosZ genes in soil, and nirS gene was the dominant gene. The copy number of genes related to denitrification was one to three orders of magnitude higher than the copy number of genes related to nitrification, indicating that denitrification made a larger contribution to N2O emissions. 【Conclusion】Overall, the 3/4 Chinese milk vetch + 1/4 rape-early rice-late rice was the best mixed planting system, because it had the best combination of low N2O emissions as well as high yield and high fertility.

Key words: Chinese milk vetch, rape, green manure mixted-cropping, nitrous oxide, functional gene, paddy fields

Table 1

The amplification primer of quantitative PCR"

基因名
Gene
引物名称
Primer
引物序列
Primer sequences (5′-3′)
定量PCR反应程序
Quantitative PCR reaction procedure
amoA-AOAamoAFSTAATGGTCTGGCTTAGACG[17]995℃ 5 min 95℃ 30s
amoARGCGGCCATCCATCTGTATGT[17]58℃ 30 s
amoA-AOBamoA-1FGGGGTTTCTACTGGTGGT[18]72℃ 30 s
amoA-2RCCCCTCKGSAAAGCCTTCTTC[18]72℃ 5 min
nirSnirs-cd3aFGTSAACGTSAAGGARACSGG[19]16℃ 1 min
nirS-R3cdGASTTCGGRTGSGTCTTGA[19]35 cycle
nirKnirK1040GCCTCGATCAGRTTRTGGTT[20]
nirK876ATYGGCGGVCAYGGCGA[20]
nosZNosZ2FCGCRACGGCAASAAGGTSMSSGT[21]
NosZ2RCAKRTGCAKSGCRTGGCAGAA[21]

Fig. 1

Dynamic changes of N2O emission fluxes under different treatments in 2018The data is between winter crop in 2017 and harvest of the late rice in 2018"

Fig. 2

Dynamic changes of N2O emission fluxes under different treatments in 2019The data is between winter crop in 2018 and harvest of the late rice in 2019"

Table 2

Cumulative emissions of CH4 and N2O during the annual under different treatments"

年份
Year
处理
Treatment
N2O累积排放量Cumulative N2O emission (kg·hm-2)
冬作季Winter crop season早稻季Early rice season晚稻季Late rice season总计Total
2018CK10.17±0.03 c0.15±0.03 a0.22±0.10 a0.55±0.08 a
CK20.26±0.06 b0.13±0.02 a0.15±0.12 a0.54±0.17 a
3/4M+1/4R0.18±0.08 c0.22±0.06 a0.28±0.05 a0.68±0.08 a
1/2M+1/2R0.33±0.08 a0.19±0.06 a0.22±0.02 a0.74±0.01 a
1/4M+3/4R0.24±0.09 b0.17±0.05 a0.29±0.05 a0.70±0.05 a
2019CK1-0.11±0.02 b0.10±0.05 a0.24±0.02 cd0.23±0.08 b
CK2-0.02±0.02 a0.13±0.02 a0.16±0.01 d0.27±0.05 b
3/4M+1/4R-0.04±0.02 a0.16±0.03 a0.27±0.02 bc0.39±0.05 b
1/2M+1/2R-0.01±0.02 a0.19±0.03 a0.41±0.01 a0.59±0.02 a
1/4M+3/4R0.01±0.01 a0.20±0.02 a0.35±0.06 ab0.56±0.02 a

Fig. 3

Change of amoA-AOA gene abundance in soil"

Fig. 4

Change of amoA-AOB gene abundance in soil"

Fig. 5

Change of nirS gene abundance in soil"

Fig. 6

Change of nirK gene abundance in soil"

Fig. 7

Change of nosZ gene abundance in soil"

[1] 黄国勤. 长江经济带稻田耕作制度绿色发展探讨. 中国生态农业学报(中英文), 2020,28(1):1-7. doi:10.13930/j.cnki.cjea.190500.
HUANG G Q. Green development of paddy field farming systems in the Yangtze River Economic Belt. Chinese Journal of Eco-Agriculture, 2020,28(1):1-7. doi:10.13930/j.cnki.cjea.190500. (in Chinese)
[2] 杨滨娟, 黄国勤. 双季稻田冬种紫云英“双减双增”绿色高效循环农业模式. 江苏农业科学, 2018,46(16):51-56.
YANG B J, HUANG G Q. A green and efficiency recycling agriculture mode of milk vetch with “double-reduction and double- increment”. Jiangsu Agricultural Sciences, 2018,46(16):51-56. (in Chinese)
[3] 张永亮, 潘东, 吴明浩. 苜蓿+禾草混播方式对二龄混播草地牧草产量的影响. 草业科学, 2018,35(9):2210-2219.
ZHANG Y L, PAN D, WU M H. Effect of mixed alfalfa and grass cultivation on the forage yield of grasslands after two-year mixed sowing. Pratacultural Science, 2018,35(9):2210-2219. (in Chinese)
[4] 王家琴, 王仕玥, 陆家环, 杨绍华. 非豆科绿肥与豆科绿肥混播对绿肥鲜草生长的影响. 现代农业科技, 2010(12):250-253.
WANG J Q, WANG S Y, LU J H, YANG S H. Effects of mixed planting of non-leguminous green manure and leguminous green manure on the growth of green manure. Modern Agricultural Science and Technology, 2010(12):250-253. (in Chinese)
[5] 杨滨娟, 孙松, 陈洪俊, 黄国勤. 稻田水旱轮作系统的能值分析和可持续评价. 生态科学, 2017,36(1):123-131.
YANG B J, SUN S, CHEN H J, HUANG G Q. Research on emergy analysis and sustainability evaluation under paddy-upland rotation systems. Ecological Science, 2017,36(1):123-131. (in Chinese)
[6] 张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011,19(4):966-975.
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011,19(4):966-975. (in Chinese)
[7] IPCC. Intergovernmental Panel on Climate Change 2007: The Physical Science Basis. Cambridge University Press, 2007.
[8] ZOU J W, HUANG Y, ZHENG X H, WANG Y S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 2007,41:8030-8042.
[9] YOSHIDA M, ISHII S, FUJII D, OTSUKA S, SENOO K. Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes and Environments, 2012,27:456-461.
[10] OLSSON P A, HANSSON M C, BURLEIGH S H. Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Applied and Environmental Microbiology, 2006,72:4115-4120.
[11] TEJADA M, GONZALEZ J L, GARCIA-MARTINEZ A M, PARRADO J. Effects of different green manures on soil biological properties and maize yield. Bioresource Technology, 2008,99(6):1758-1767.
[12] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016,24(4):403-415. doi:10.13930/j.cnki.cjea.160061.
LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco-Agriculture, 2016,24(4):403-415. doi:10.13930/j.cnki.cjea.160061. (in Chinese)
[13] 王艳秋, 高嵩涓, 曹卫东, 李景环, 聂军, 徐昌旭, 白金顺, 曾闹华, 周国朋. 多年冬种紫云英对两种典型双季稻田土壤肥力及硝化特征的影响. 草业学报, 2017,26(2):180-189. doi:10.11686/cyxb2016281.
WANG Y Q, GAO S J, CAO W D, LI J H, NIE J, XU C X, BAI J S, ZENG N H, ZHOU G P. Fertility and nitrification characteristics of two typical paddy soils after application of milk vetch (Astragalus sinicus) for 8 years. Acta Prataculturae Sinica, 2017,26(2):180-189. doi:10.11686/cyxb2016281. (in Chinese)
[14] 高嵩涓. 冬绿肥—水稻模式下的土壤微生物特征及硝化作用调控机制[D]. 北京: 中国农业大学, 2018.
GAO S J. Soil microbial community and the regulation mechanisms of nitrification in winter green manure-rice cropping system[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[15] LIU G, MA J, YANG Y T, YU H Y, ZHANG G B, XU H. Effects of straw incorporation methods on nitrous oxide and methane emissions from a wheat-rice rotation system. Pedosphere, 2019,29(2):204-215. doi:10.1016/S1002-0160(17)60410-7.
[16] CHEN Z M, DING W X, XU Y H, MÜLLER C, YU H Y, FAN J L. Increased N2O emissions during soil drying after waterlogging and spring thaw in a record wet year. Soil Biology and Biochemistry, 2016,101:152-164. doi:10.1016/j.soilbio.2016.07.016.
[17] FRANCIS C A, ROBERTS K J, BEMAN J M, SANTORO A E, OAKLEY B B. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(41):14683-14688. doi:10.1073/pnas.0506625102.
[18] ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene AmoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997,63(12):4704-4712. doi:10.1128/aem.63.12.4704-4712.1997.
[19] THROBÄCK I N, ENWALL K, JARVIS Å, HALLIN S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004,49(3):401-417. doi:10.1016/j.femsec.2004.04.011.
[20] BRAKER G, FESEFELDT A, WITZEL K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 1998,64(10):3769-3775. doi:10.1128/AEM.64.10.3769-3775.1998.
[21] HENRY S, BRU D, STRES B, HALLET S, PHILIPPOT L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and Environmental Microbiology, 2006,72(8):5181-5189. doi:10.1128/AEM.00231-06.
[22] 王晓萌, 孙羽, 王麒, 宋秋来, 曾宪楠, 冯延江. 稻田温室气体排放与减排研究进展. 黑龙江农业科学, 2018(7):149-154. doi:10.11942/j.issn1002-2767.2018.07.0149.
WANG X M, SUN Y, WANG Q, SONG Q L, ZENG X N, FENG Y J. Research progress on greenhouse gas emission and emission reduction in rice fields. Heilongjiang Agricultural Sciences, 2018(7):149-154. doi:10.11942/j.issn1002-2767.2018.07.0149. (in Chinese)
[23] 李虎, 邱建军, 王立刚, 任天志. 中国农田主要温室气体排放特征与控制技术. 生态环境学报, 2012,21(1):159-165. doi:10.16258/j.cnki.1674-5906.2012.01.025.
LI H, QIU J J, WANG L G, REN T Z. The characterization of greenhouse gases fluxes from croplands of China and mitigation technologies. Ecology and Environmental Sciences, 2012,21(1):159-165. doi:10.16258/j.cnki.1674-5906.2012.01.025. (in Chinese)
[24] 唐海明, 肖小平, 孙继民, 汤文光, 汪柯, 李微艳, 杨光立. 种植不同冬季作物对稻田甲烷、氧化亚氮排放和土壤微生物的影响. 生态环境学报, 2014,23(5):736-742. doi:10.16258/j.cnki.1674-5906.2014.05.022.
TANG H M, XIAO X P, SUN J M, TANG W G, WANG K, LI W Y, YANG G L. Effects of different winter covering crops cultivation on methane and nitrous oxide emission fluxes and soil microorganism in double-cropping paddy field. Ecology and Environmental Sciences, 2014,23(5):736-742. doi:10.16258/j.cnki.1674-5906.2014.05.022. (in Chinese)
[25] 胡玉麟, 汤水荣, 陶凯, 何秋香, 田伟, 秦兴华, 伍延正, 孟磊. 优化施肥模式对我国热带地区水稻-豇豆轮作系统N2O和CH4排放的影响. 环境科学, 2019,40(11):5182-5190. doi:10.13227/j.hjkx.201905095.
HU Y L, TANG S R, TAO K, HE Q X, TIAN W, QIN X H, WU Y Z, MENG L. Effects of optimizing fertilization on N2O and CH4 emissions in a paddy-cowpea rotation system in the tropical region of China. Environmental Science, 2019,40(11):5182-5190. doi:10.13227/j.hjkx.201905095. (in Chinese)
[26] 王肖娟, 王永强, 赵双玲, 李丽, 苏天潮, 刘小武. 不同灌溉方式及施肥量对稻田土壤N2O排放的影响. 大麦与谷类科学, 2018,35(3):1-4, 21. doi:10.14069/j.cnki.32-1769/s.2018.03.001.
WANG X J, WANG Y Q, ZHAO S L, LI L, SU T C, LIU X W. Effects of drip irrigation and flood irrigation under different application rates of nitrogen fertilizer on N2O emission in rice field. Barley and Cereal Sciences, 2018,35(3):1-4, 21. doi:10.14069/j.cnki.32-1769/s.2018.03.001. (in Chinese)
[27] 张岳芳, 周炜, 王子臣, 陈留根, 朱普平, 盛婧, 郑建初. 氮肥施用方式对油菜生长季氧化亚氮排放的影响. 农业环境科学学报, 2013,32(8):1690-1696.
ZHANG Y F, ZHOU W, WANG Z C, CHEN L G, ZHU P P, SHENG J, ZHENG J C. Effects of nitrogen fertilizer application modes on nitrous oxide emissions during growing season of oilseed rape(Brassica napus). Journal of Agro-Environment Science, 2013,32(8):1690-1696. (in Chinese)
[28] 田伟, 伍延正, 汤水荣, 胡玉麟, 赖倩倩, 文冬妮, 孟磊, 吴川德. 不同施肥模式对热区晚稻水田CH4和N2O排放的影响. 环境科学, 2019,40(5):2426-2434. doi:10.13227/j.hjkx.201808221.
TIAN W, WU Y Z, TANG S R, HU Y L, LAI Q Q, WEN D N, MENG L, WU C D. Effects of different fertilization modes on greenhouse gas emission characteristics of paddy fields in hot areas. Environmental Science, 2019,40(5):2426-2434. doi:10.13227/j.hjkx.201808221. (in Chinese)
[29] GOLDBERG S D, GEBAUER G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biology and Biochemistry, 2009,41(9):1986-1995. doi:10.1016/j.soilbio.2009.07.001.
[30] 常单娜, 刘春增, 李本银, 吕玉虎, 潘兹亮, 高嵩涓, 曹卫东. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响. 草业学报, 2018,27(12):133-144. doi:10.11686/cyxb2018029.
CHANG D N, LIU C Z, LI B Y, LÜ Y H, PAN Z L, GAO S J, CAO W D. Effects of incorporating Chinese milk vetch on reductive material characteristics and greenhouse gas emissions in paddy soil. Acta Prataculturae Sinica, 2018,27(12):133-144. doi:10.11686/cyxb2018029. (in Chinese)
[31] 聂江文, 王幼娟, 吴邦魁, 刘章勇, 朱波. 紫云英还田对早稻直播稻田温室气体排放的影响. 农业环境科学学报, 2018,37(10):2334-2341. doi:10.11654/jaes.2018-0195.
NIE J W, WANG Y J, WU B K, LIU Z Y, ZHU B. Effect of Chinese milk vetch incorporation on greenhouse gas emissions from early-rice direct-seeding paddy fields. Journal of Agro-Environment Science, 2018,37(10):2334-2341. doi:10.11654/jaes.2018-0195. (in Chinese)
[32] 唐海明, 肖小平, 帅细强, 汤文光, 林叶春, 汤海涛, 杨光立. 双季稻田种植不同冬季作物对甲烷和氧化亚氮排放的影响. 生态学报, 2012,32(5):1481-1489. doi:10.5846/stxb201101230115.
TANG H M, XIAO X P, SHUAI X Q, TANG W G, LIN Y C, TANG H T, YANG G L. Effects of different winter covering crops cultivation on methane(CH4)and nitrous oxide(N2O)emission fluxes from double-cropping paddy field. Acta Ecologica Sinica, 2012,32(5):1481-1489. doi:10.5846/stxb201101230115. (in Chinese)
[33] 魏云霞. 紫云英与油菜、黑麦草混播种植和利用效应研究[D]. 武汉: 华中农业大学, 2013.
WEI Y X. Study on cultivation and utilization of the mixture cropping of Chinese milk vetch with rape and ryegrass[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[34] 朱波, 易丽霞, 胡跃高, 曾昭海, 唐海明, 肖小平, 杨光立. 黑麦草鲜草翻压还田对双季稻CH4与N2O排放的影响. 农业工程学报, 2011,27(12):241-245. doi:10.3969/j.issn.1002-6819.2011.12.045.
ZHU B, YI L X, HU Y G, ZENG Z H, TANG H M, XIAO X P, YANG G L. Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(12):241-245. doi:10.3969/j.issn.1002-6819.2011.12.045. (in Chinese)
[35] 纪钦阳, 张璟钰, 王维奇. 施肥量对福州平原稻田CH4和N2O通量的影响. 亚热带农业研究, 2015,11(4):246-253. doi:10.13321/j.cnki.subtrop.agric.res.2015.04.006.
JI Q Y, ZHANG J Y, WANG W Q. Effect of fertilization rate on CH4 and N2O emission in paddy fields in Fuzhou plain. Subtropical Agriculture Research, 2015,11(4):246-253. doi:10.13321/j.cnki.subtrop.agric.res.2015.04.006. (in Chinese)
[36] 钟川, 杨滨娟, 张鹏, 李萍, 黄国勤. 基于冬种不同作物的水旱轮作模式对水稻产量及稻田CH4、N2O排放的影响. 核农学报, 2019,33(2):379-388. doi:10.11869/j.issn.100-8551.2019.02.0379.
ZHONG C, YANG B J, ZHANG P, LI P, HUANG G Q. Effect of paddy-upland rotation with different winter corps on rice yield and CH4 and N2O emissions in paddy fields. Journal of Nuclear Agricultural Sciences, 2019,33(2):379-388. doi:10.11869/j.issn.100-8551.2019.02.0379. (in Chinese)
[37] 秦红灵, 陈安磊, 盛荣, 张文钊, 邢肖毅, 魏文学. 稻田生态系统氧化亚氮(N2O)排放微生物调控机制研究进展及展望. 农业现代化研究, 2018,39(6):922-929. doi:10.13872/j.1000-0275.2018.0092.
QIN H L, CHEN A L, SHENG R, ZHANG W Z, XING X Y, WEI W X. A review on the microbial regulation mechanism of N2O production and emission of rice paddy ecosystems. Research of Agricultural Modernization, 2018,39(6):922-929. doi:10.13872/j.1000-0275.2018.0092. (in Chinese)
[38] 李双双, 陈晨, 段鹏鹏, 许欣, 熊正琴. 生物质炭对酸性菜地土壤N2O排放及相关功能基因丰度的影响. 植物营养与肥料学报, 2018,24(2):414-423. doi:10.11674/zwyf.17272.
LI S S, CHEN C, DUAN P P, XU X, XIONG Z Q. Effects of biochar application on N2O emissions and abundance of nitrogen related functional genes in an acidic vegetable soil. Plant Nutrition and Fertilizer Science, 2018,24(2):414-423. doi:10.11674/zwyf.17272. (in Chinese)
[39] 谭立山. 农业土壤N2O产生途径及其影响因素研究进展. 亚热带农业研究, 2017,13(3):196-204. doi:10.13321/j.cnki.subtrop.agric.res.2017.03.011.
TAN L S. Advances in N2O generation pathway in agricultural soils and major influencing factors. Subtropical Agriculture Research, 2017,13(3):196-204. doi:10.13321/j.cnki.subtrop.agric.res.2017.03.011. (in Chinese)
[40] LIMMER A W, STEELE K W. Denitrification potentials: measurement of seasonal variation using a short-term anaerobic incubation technique. Soil Biology and Biochemistry, 1982,14(3):179-184. doi:10.1016/0038-0717(82)90020-7.
[41] 李萍. 紫云英与油菜混播对稻田土壤肥力、N2O排放及相关功能基因丰度的影响[D]. 南昌: 江西农业大学, 2020.
LI P. Effects of the mixture of Chinese milk vetch and rape on soil fertility, N2O emission and abundance of related functional genes in paddy fields[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese)
[42] 李勇先. 稻田土壤中氧化亚氮的释放机制及控制[D]. 杭州: 浙江大学, 2003.
LI Y X. Mechanism and control of N2O emission from paddy soils[D]. Hangzhou: Zhejiang University, 2003. (in Chinese)
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[7] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[8] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[9] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[10] BAI Fei,BAI GuiPing,WANG ChunYun,LI Zhen,GONG DePing,HUANG Wei,CHENG YuGui,WANG Bo,WANG Jing,XU ZhengHua,KUAI Jie,ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[11] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[12] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[13] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[14] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[15] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!