Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (13): 2655-2667.doi: 10.3864/j.issn.0578-1752.2013.13.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Research on Hyperspectral Differences and Monitoring Model of Leaf Nitrogen Content in Wheat Based on Different Soil Textures

 DI  Qing-Yun, ZHANG  Juan-Juan, XIONG  Shu-Ping, LIU  Juan, YANG  Yang, MA  Xin-Ming   

  1. 1.College of Agronomy, Henan Agriculture University/Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou 450002
    2.College of Information and Management, Henan Agriculture University,   Zhengzhou 450002
  • Received:2012-12-04 Online:2013-07-01 Published:2013-04-18

Abstract: 【Objective】 Leaf nitrogen status is a premise for management and control of precise-using nitrogen in wheat production. Non-destructive and real-time assessment of leaf nitrogen content (LNC) has an important significance for production and management of wheat.【Method】Two field experiments were conducted with three different soil textures (sand, loam and clay), five different nitrogen levels (0, 120, 225, 330 and 435 kg•hm-2) and 3 main wheat cultivars in Henan (Aikang58, Zhoumai22 and Zhengmai366) across growing seasons. High spectral reflectance and LNC of canopy were taken by synchronous measurement during main growth stages of wheat. Compared with the high spectral response differences of canopy LNC in wheat under the three different soil textures, several kinds of hyperspectral indices including difference spectral indices (DSI), ratio spectral indices (RSI) and normalized difference spectral indices (NDSI) with all combinations of two wavebands between 350 and 1 050 nm were calculated, their relationships with LNC were analyzed, and the estimation models were established.【Result】 The experimental results showed that there was an obvious difference in the spectra of canopy reflectance under different nitrogen levels and different growth periods, but the trend was almost consistent. Compared with the spectra of canopy reflectance in the three different soil textures, the performance was clay>loam>sand, it could reflect the real-time field growing in wheat. The quantitative relationships between the spectra of canopy reflectance and the associated LNC under the three soil textures were systematicaly analyzed, and the calculated results showed that there was a better correlation between the visible and near-infrared area with the different sensitive band intervals. NDSI (FD710, FD690),DSI (R515, R460) and RSI (R535, R715) were the best indicators to the integrated modeling of LNC in sand, loam and clay, with the predictive determination coefficient (R2) of 0.88, 0.87 and 0.87. Testing the above better spectral parameters of monitoring models with independent sample in 2010-2011, the results reconfirmed that they were the best indicators, with the predictive determination coefficient (R2) of 0.87, 0.85 and 0.77 respectively, and the root mean square error (RMSE) of 0.31, 0.32 and 0.26, respectively. 【Conclusion】 The monitoring model which used the high spectral parameter of NDSI (FD710, FD690), DSI (R515, R460) and RSI (R535, R715) as independent variables, could be used for better estimation of the LNC of wheat in sand, loam and clay soils.

Key words: wheat , soil texture , leaf nitrogen content , hyperspectral remote sensing , monitoring model

[1]胡昊, 白由路, 杨俐苹, 卢艳丽, 王磊, 王贺, 孔庆波. 不同氮营养冬小麦冠层光谱红边特征分析. 植物营养与肥料学报, 2009, 15(6): 1317-1323.

Hu H, Bai Y L, Yang L P, Lu Y L, Wang L, Wang H, Kong Q B. Red edge parameters of winter wheat canopy under different nitrogen levels. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1317-1323. (in Chinese)

[2]姚霞, 朱艳, 田永超, 冯伟, 曹卫星. 小麦叶层氮含量估测的最佳高光谱参数研究. 中国农业科学, 2009, 42(8): 2716-2725.

Yao X, Zhu Y, Tian Y C, Feng W, Cao W X. Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves. Scientia Agricultura Sinica, 2009, 42(8): 2716-2725. (in Chinese)

[3]梁亮, 杨敏华, 邓凯东, 张莲蓬, 林卉, 刘志宵. 一种估测小麦冠层氮含量的新高光谱指数. 生态学报, 2011, 31(21): 6594-6605.

Liang L, Yang M H, Deng K D, Zhang L P, Lin H, Liu Z X. A new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecolagica Sinica, 2011, 31(21): 6594-6605. (in Chinese)

[4]冯伟, 姚霞, 朱艳, 田永超, 曹卫星. 基于高光谱遥感的小麦叶片含氮量监测模型研究. 麦类作物学报, 2008, 28(5): 851-860.

Feng W, Yao X, Zhu Y, Tian Y C, Cao W X. Monitoring leaf nitrogen concentration by hyperspectral remote sensing in wheat. Journal of Triticeae Crops, 2008, 28(5): 851-860. (in Chinese)

[5]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81: 337-354.

[6]Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 1996, 148(3-4): 494-500.

[7]Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information (by gray mapping of Landsat MSS data). Photogrammetric Engineering and Remote Sensing, 1997, 43: 1541-1552.

[8]薛利红, 曹卫星, 罗卫红, 张宪. 小麦叶片氮素状况与光谱特性的相关性研究. 植物生态学报, 2004, 28(2): 172-177.

Xue L H, Cao W X, Luo W H, Zhang X. Correlation between leaf nitrogen status and canopy spectral characteristics in wheat. Acta Phytoecologica Sinica, 2004, 28(2): 172-177. (in Chinese)

[9]Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red- edge hyperspectral indices. Advances in Space Research, 2003, 32(11): 2217-2222.

[10]Marshak A, Knyazikhin Y, Davis A B, Wiscombe W J, Pilewskie P. Cloud-vegetation interaction: use of normalized difference cloud index for estimation of cloud optical thickness. Geophysical Research Letters, 2000, 27(12): 1695-1698.

[11]Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90(3): 337-352.

[12]Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyII density. Remote Sensing of Environment, 2001, 76(2): 156-172.

[13]Reyniers M, Walvoort D J J, de Baardemaaker J. A linear model to predict with a multispectral radiometer the amount of nitrogen in wheat. International Journal of Remote Sensing, 2006, 27(19): 4159-4179.

[14]Chen P F, Haboudane D, Tremblay N, Wang J, Vigneault P, Li B G. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment, 2010, 114: 1987- 1997.

[15]姚霞, 汤守鹏, 曹卫星, 田永超, 朱艳. 应用近红外光谱估测小麦叶片氮含量. 植物生态学报, 2011, 35(8): 844-852.

Yao X, Tang S P, Cao W X, Tian Y C, Zhu Y. Estimating the nitrogen content in wheat leaves by near-infrared reflectance spectroscopy. Chinese Journal of Plant Ecology, 2011, 35(8): 844-852. (in Chinese)

[16]谭昌伟, 周清波, 齐腊, 庄恒扬. 水稻氮素营养高光谱遥感诊断模型. 应用生态学报, 2008, 19(6): 1261-1268.

Tan C W, Zhou Q B, Qi L, Zhuang H Y. Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status. Chinese Journal of Applied Ecology, 2008, 19(6): 1261-1268. (in Chinese)

[17]张玉森, 姚霞, 田永超, 曹卫星, 朱艳. 应用近红外光谱预测水稻叶片氮含量. 植物生态学报, 2010, 34(6): 704-712.

Zhang Y S, Yao X, Tian Y C, Cao W X, Zhu Y. Estimating leaf nitrogen content with near infrared reflectance spectroscopy in rice. Chinese Journal of Plant Ecology, 2010, 34(6): 704-712. (in Chinese)

[18]李映雪, 朱艳, 田永超, 尤小涛, 周冬琴, 曹卫星. 小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系. 中国农业科学, 2005, 38(7): 1332-1338.

Li Y X, Zhu Y, Tian Y C, Zhou D Q, Cao W X. Relationship of grain protein content and relevant quality traits to canopy reflectance spectra in wheat. Scientia Agricultura Sinica, 2005, 38(7): 1332-1338.

[19]黄文江, 王纪华, 刘良云, 赵春江, 王锦地, 杜小鸿. 冬小麦红边参数变化规律及其营养诊断. 遥感技术与应用, 2008, 18(4): 206-211.  

Huang W J, Wang J H, Liu L Y, Zhao C J, Wang J D, Du X H. The red edge parameters diversification disciplinarian and its application for nutrition diagnosis. Remote Sensing Technology and Application, 2008, 18(4): 206-211. (in Chinese)

[20]王渊, 黄敬峰, 王福民, 刘占宇. 油菜叶片和冠层水平氮素含量的高光谱反射率估算模型. 光谱学与光谱分析, 2008, 28(2): 273-277.  

Wang Y, Huang J F, Wang F M, Liu Z Y. Predicting nitrogen concentrations from hyperspectral reflectance at leaf and canopy for rape. Spectroscopy and Spectral Analysis, 2008, 28(2): 273-277. (in Chinese)

[21]李映雪, 朱艳, 田永超, 姚霞, 秦晓东, 曹卫星. 小麦叶片氮含量与冠层反射光谱指数的定量关系. 作物学报, 2006, 32(3): 358-362.

Li Y X, Zhu Y, Tian Y C, Yao X, Qin X D, Cao W X. Quantitative realationship between leaf nitrogen concentration and canopy reflectance spectra. Acta Agronomica Sinica, 2006, 32(3): 358-362. (in Chinese)

[22]冯伟, 姚霞, 田永超, 朱艳, 李映雪, 曹卫星. 基于高光谱遥感的小麦叶片糖氮比监测. 中国农业科学, 2008, 41(6): 1630-1639.

Feng W, Yao X, Tian Y C, Zhu Y, Li Y X, Cao W X. Monitoring the sugar to nitrogen ratio in wheat leaves with hyperspectral remote sensing. Scientia Agricultura Sinica, 2008, 41(6): 1630-1639. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!