Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (13): 2625-2632.doi: 10.3864/j.issn.0578-1752.2013.13.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Effects of OsLTP Gene on Salt Tolerance of Transgenic Brassica napus

 DU  Kun, GAO  Ya-Nan, KONG  Yue-Qin, FAN  Yun, WANG  You-Ping   

  1. College of Bioscience and Biotechnology of Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2013-02-01 Online:2013-07-01 Published:2013-05-13

Abstract: 【Objective】 This study aimed to understand the function of OsLTP gene under salt stress. 【Method】 An efficient expression vector of pCAM2300-35S-LTP-Ocs harboring OsLTP gene from Brazilian upland rice was transferred into Brassica napus cv. Yangyou 6 via Agrobacterium-mediated genetic transformation of the rapeseed hypocotyls. 【Result】The integration of the foreign OsLTP gene was confirmed by PCR and southern hybridization analysis. In the treatments of 100 mmol•L-1 and 200 mmol•L-1 NaCl solution, the biomass of plants, chlorophyll accumulation, PSⅡ activity, and antioxidant enzyme activities in leaves of the transgenic plants were higher than that of the non-transformants, MDA content in leaves was insteadly lower than the controls. 【Conclusion】 OsLTP gene improved salt tolerance of transgenic B. napus by maintaining PSII activity, chlorophyll accumulation in leaves and increased the activities of antioxidant enzymes.

Key words: Brassica napus L. , OsLTP , genetic transformation , salt stress

[1]Priti M, Gopalan S, Igor K. Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnology, 2011, 29: 144-155.

[2]Coben G S, Crowfoot P D, Murphy M, Linnane A W. Exchange of phospholipids between mitochondria and microsomes in vitro stimulated by yeast cell cytosol. Biochimica et Biophysica Acta, 1976, 441: 255-259.

[3]Cohen L K, Lueking D R, Kaplan S. Intermembrane phospholipid transfer mediated by cell-free extracts of Rhodopseudomonas sphaeroides. The Journal of Biological Chemistry, 1979, 254: 721-728.

[4]Wang N J, Lee C C, Cheng C S, Lo W C, Yang Y F, Chen M N, Lyu P C. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB). BMC Genomics, 2012, 13: S9.

[5]Kader J C. Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 627-654.

[6]Torres-Schumann S, Godoy J A, Pintor-Toro J A. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Molecular Biology, 1992, 18: 749-757.

[7]Colmenero-Flores J M, Campos F, Garciarrubio A, Covarrubias A A. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: Identification of a novel late embryogenesis abundant-like protein. Plant Molecular Biology, 1997, 4: 393-405.

[8]Gaudet D A, Laroche A, Frick M, Huel R, Puchalski B. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiologia Plantarum, 2003, 117: 195-205.

[9]Jang C S, Lee H J, Chang S J, Seo Y W. Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Science, 2004, 167: 995-1001.

[10]Boutrot F, Meynard D, Guiderdoni E, Joudrier P, Gautier M F. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: Comparative promoter activity of six TaLtp genes in transgenic rice. Planta, 2007, 4: 843-862.

[11]Wang Z, Xie W Q, Chi F, Li C F. Identification of non-specific lipid transfer protein-1 as a calmodulin-binding protein in Arabidopsis. FEBS Letters, 2005, 579: 1683-1687.

[12]Molina A, Garcia-Olmedo F. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. The Plant Journal, 1997, 12: 669-675.

[13]Patkar R N, Chattoo B B. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Molecular Breeding, 2006, 17: 159-171.

[14]Jayaraj J, Punja Z K. Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Reports, 2007, 26: 1539-1546.

[15]李诚斌. 水稻OsLTP1基因的克隆、表达分析及功能鉴定[D]. 南宁: 广西大学, 2004.

Li C B. Cloning, expression and functional analysis of rice OsLTP[D]. Nanning: Guangxi University, 2004. (in Chinese)

[16]Qin X Y, Liu Y, Mao S J, Li T B, Wu H K, Chu C C, Wang Y P. Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance its cold resistance. Euphytica, 2011, 177: 33-43.

[17]赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30: 207-210.

Zhao S J. Xu C C, Zou Q, Meng Q W. Improvement of method for measurement of MDA in plant tissues. Plant Physiology Communications, 1994, 30: 207-210. (in Chinese)

[18]Stewart R R, Bewley J D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 1980, 65: 245-248.

[19]Bradford M M. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.

[20]Castillo F J, Penel C, Greppin H. Peroxidase release induced by ozone in Sedum album leaves: Involvement of Ca2+. Plant Physiology, 1984, 74: 846-851.

[21]杜坤, 范芸, 吴冕, 周晓燕, 高亚楠, 王幼平. 提高甘蓝型油菜下胚轴愈伤组织诱导率的研究. 扬州大学学报: 农业与生命科学版, 2012, 33: 58-61.

Du K, Fan Y, Wu M, Zhou X Y, Gao Y N, Wang Y P. Studies on the enhancing callus induction ratio from hypocotyl explants of Brassica napus L.. Journal of Yangzhou University: Agricultural and Life Science Edition, 2012, 33: 58-61. (in Chinese)

[22]张其德, 温晓刚, 卢从明, 冯丽洁, 匡廷云, 张建华. 盐胁迫下CO2加倍对春小麦一些光合功能的影响. 植物生态学报, 2000, 24: 308-311.

Zhang Q D, Wen X G, Lu C M, Feng L J, Kuang T Y, Zhang J H. Effects of CO2 doubling on some photosynthetic functions of spring wheat under salt stress. Acta Phytoecologica Sinica, 2000, 24: 308-311. (in Chinese)

[23]Sairam R K, Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 2002, 162: 897-904.

[24]Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative  stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.

[25]陈少裕. 膜脂过氧化与植物逆境胁迫. 植物学通报, 1989, 6: 211-217.

Chen S Y. Membrane lipid peroxidation and plant stress. Chinese Bulletin of Botany, 1989, 6: 211-217. (in Chinese)

[26]Roxas V P, Lodhi S A, Garrett D K, Mahan J R, Allen R D. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant and Cell Physiology, 2000, 41: 1229-1234.
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[3] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[4] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[5] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[6] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[7] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[8] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[9] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[10] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[11] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[12] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[13] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[14] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[15] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!