Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 248-260.doi: 10.3864/j.issn.0578-1752.2021.02.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Na1(),ZHAO ZiBo2,GAO Qiong1,HE ShouPu1,MA ChenHui1,PENG Zhen1,2(),DU XiongMing1,2()
[1] | 李忠旺, 陈玉梁, 罗俊杰, 石有太, 冯克云, 陈子萱. 棉花抗旱品种筛选鉴定及抗旱性综合评价方法. 干旱地区农业研究, 2017,35(1):240-247. |
LI Z W, CHEN Y L, LUO J J, SHI Y T, FENG K Y, CHEN Z X. Screening and evaluation for drought resistance of cotton varieties. Agricultural Research in the Arid Areas, 2017,35(1):240-247. (in Chinese) | |
[2] | 孟超敏, 蔡彩平, 郭旺珍. 棉花抗逆育种研究进展. 南京农业大学学报, 2012,5(5):29-38. |
MENG C M, CAI C P, GUO W Z. Advances in cotton stress resistance breeding. Journal of Nanjing Agricultural University, 2012,5(5):29-38. (in Chinese) | |
[3] | MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681. |
[4] | ZHANG X, ZHEN J, LI Z, KANG D, YANG Y, JIN K, HUA J. Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Molecular Biology Reporter, 2011,29(3):626-637. |
[5] |
MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview. Archives of Biochemistry & Biophysics, 2005,444(2):139-158.
pmid: 16309626 |
[6] | MAAS E V. Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Division, 1977,103(2):115-134. |
[7] | MAGWANGA R O, KIRUNGU J N, LU P, CAI X Y, XU Y C, WANG X X, ZHOU Z L, HOU Y Q, AGONG S G, WANG K B, LIU F. Knockdown of ghAlba_4 and ghAlba_5 proteins in cotton inhibits root growth and increases sensitivity to drought and salt stresses. Frontiers in Plant Science, 2019,3389(10):1292-1241. |
[8] |
DEINLEIN U, STEPHAN A B, HORIE T, LUO W, SCHROEDER J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014,19(6):371-379.
doi: 10.1016/j.tplants.2014.02.001 |
[9] | 黄滋康, 季道藩, 潘家驹. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003. |
HUANG Z K, JI D F, PAN J J. Chinese Cotton Genetics and Breeding. Jinan: Shandong Science and Technology Press, 2003. (in Chinese) | |
[10] | ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental & Experimental Botany, 2007,59(2):206-216. |
[11] |
PEEL G J, MICKELBART M V, RHODES D. Choline metabolism in glycinebetaine accumulating and non-accumulating near-isogenic lines of Zea mays and Sorghum bicolor. Phytochemistry, 2010,71(4):404-414.
pmid: 20004921 |
[12] | 陈少良, 李金玉, 毕望富, 王沙生. 盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化. 植物学通报, 2001,18:587-596. |
CHEN S L, LI J Y, BI F W, WANG S S. Genotypic variation in accumulation of salt ions, betaine and sugars in poplar under conditions of salt stress. Chinese Bulletin of Botany, 2001,18:587-596. (in Chinese) | |
[13] | MCNEIL S D, NUCCIO M L, ZIEMAK M J, ET A L. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(17):10001. |
[14] |
RICARDA J, OLIVER B, JOHN S, JOSETTE M. Biochemical characterization of two wheat phosphoethanolamine N-methyltransferase isoforms with different sensitivities to inhibition by phosphatidic acid. The Journal of Biological Chemistry, 2009,284(46):31962-31971.
doi: 10.1074/jbc.M109.022657 pmid: 19762471 |
[15] |
WERETILNYK E A, SMITH D D, WILCH G A, SUMMERS P S. Enzymes of choline synthesis in spinach (response of phospho-base N-methyltransferase activities to light and salinity). Plant Physiology, 1995,109(3):1085-1091.
pmid: 12228655 |
[16] |
HANSON A D, RHODES D. 14C tracer evidence for synthesis of choline and betaine via phosphoryl base intermediates in salinized sugarbeet leaves. Plant Physiology, 1983,71(3):692-700.
doi: 10.1104/pp.71.3.692 pmid: 16662890 |
[17] |
PENG Z, HE S, GONG W, XU F, PAN Z, JIA Y, GENG X, DU X. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biology, 2018,18(1):128.
pmid: 29925319 |
[18] | ZHANG J, WANG F, ZHANG C, ZHANG J, YU C, LIU G, ZHAO Y, HAO F, ZHANG J. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. Plant Cell Reports, 2018,37(18):1091-1100. |
[19] |
KLÁRA KOSOVÁ, ILJA PRÁŠIL, PAVEL VÍTÁMVÁS. Protein contribution to plant salinity response and tolerance acquisition. International Journal of Molecular Sciences, 2013,14(4):6757-6789.
doi: 10.3390/ijms14046757 pmid: 23531537 |
[20] | GOU W, ZHENG P, CHEN F, ZHANG L, CUI Z, CAO M, ZHANG L, HU J. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (pgpr) strains. Pakistan Journal of Botany, 2015,47(2):581-586. |
[21] |
NUCCIO M L, RUSSELL B L, NOLTE K D, RATHINASABAPATHI B, GAGE D A, HANSON A D. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. The Plant Journal for Cell and Molecular Biology, 1998,16(4):487-496.
pmid: 9881168 |
[22] | 王名雪, 陆平, 许菲, 潘琪芳, 唐克轩, 赵静雅. 枸杞胆碱合成关键酶基因PEAMT的克隆及生物信息学分析. 上海交通大学学报(农业科学版), 2013,31(1):1-7. |
WANG M X, LU P, XU F, PAN Q F, TANG K X, ZHAO J Y. Cloning and bioinformatics analysis of choline biosynthetic gene PEAMT in Lycium barbarum. Journal of Shanghai Jiaotong University, 2013,31(1):1-7. (in Chinese) | |
[23] |
SUMMERS P S, WERETILNYK E A. Choline synthesis in spinach in relation to salt stress. Plant Physiology, 1993,103(4):1269-1276.
doi: 10.1104/pp.103.4.1269 pmid: 12232019 |
[24] | LI Q L, XIE J H, MA X Q, LI D. Molecular cloning of Phosphoethanolamine N-methyltransferase (PEAMT) gene and its promoter from the halophyte Suaeda liaotungensis and their response to salt stress. Acta Physiologiae Plantarum, 2016,38(2):39. |
[25] |
GHORBANI A, FEIZPOUR A, HASHEMZAHI M, GHOLAMI L, HOSSEINI M, SOUKHTANLOO M, VAFAEE B F, KHODAEI E, MOHAMMADIAN R N, BOSKABADY M. The effect of adipose derived stromal cells on oxidative stress level, lung emphysema and white blood cells of guinea pigs model of chronic obstructive pulmonary disease. Daru Journal of Pharmaceutical Sciences, 2014,22(1):26.
doi: 10.1186/2008-2231-22-26 pmid: 24495506 |
[26] | 段珍, 张吉宇, 狄红艳, 霍雅馨. 无芒隐子草CsPEAMT基因克隆及表达特性分析. 西北植物学报, 2014,34(12):2367-2373. |
DUAN Z, ZHANG J Y, DI H Y, HUO Y X. Clone and expression characterization of CsPEAMT gene in Cleistogenes songorica. Acta Botanica Boreali-Occidentalia Sinica, 2014,34(12):2367-2373. (in Chinese) | |
[27] |
MOU Z, WANG X, FU Z, ET A L. Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. The Plant Cell, 2002,14(9):2031-2043.
doi: 10.1105/tpc.001701 pmid: 12215503 |
[28] | SAHU B B, SHAW B P. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biology, 2009,9(1):69. |
[29] |
KING J, WEI Y D, BHUIYAN N H, SELVARAJ G, LIU W P, LIU G S. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Molecular Biology, 2007,64(3):305-318.
doi: 10.1007/s11103-007-9155-x pmid: 17406792 |
[30] |
WU S, YU Z, WANG F, LI W, YE C, LI J, TANG J, DING J, ZHAO J, WANG B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Molecular Biotechnology, 2007,36(2):102-112.
doi: 10.1007/s12033-007-0009-1 pmid: 17914189 |
[1] | WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16. |
[2] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[3] | DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722. |
[4] | LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926. |
[5] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[6] | ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695. |
[7] | HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708. |
[8] | ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525. |
[9] | QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561. |
[10] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
[11] | ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471. |
[12] | HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845. |
[13] | LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963. |
[14] | QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598. |
[15] | ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683. |
|