Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3443-3454.doi: 10.3864/j.issn.0578-1752.2020.17.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L.

HAO ShuLin1(),CHEN HongWei2,LIAO FangLi3,LI Li2,LIU ChangYan2,LIU LiangJun2,WAN ZhengHuang2(),SHA AiHua1()   

  1. 1College of Agriculture, Yangtze University/Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, Hubei
    2Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    3Seed Authority of Jingzhou, Jingzhou 434020, Hubei
  • Received:2019-12-19 Accepted:2020-03-05 Online:2020-09-01 Published:2020-09-11
  • Contact: ZhengHuang WAN,AiHua SHA E-mail:shulinlin6@163.com;zhwan168@163.com;aihuasha@163.com

Abstract:

【Objective】The distribution structure and evolution of F-box gene family members in Vicia faba were analyzed by bioinformatics method to study the expression patterns of family members and their responses to salt stress under different treatment times. It can provide a reference for the study of the biological function and the mechanism of F-box genes.【Method】Based on the salt-stressed transcriptome sequencing (RNA-seq) data, the NR, Swiss-Prot, PFAM and NCBI websites were used at the same time to screen and annotate the F-box genes of Vicia faba. The softwares including Web Logo 3, Prot Comp 9.0, MEGA-X and MEME were also applied to analyze the bioinformatics of conserved domain, subcellular localization, phylogenetic tree and Motif. Based on salt stress transcriptome data, the differential expression patterns of F-box gene family in Vicia faba (yz17134 salt tolerance and yz17078 salt intolerance) under salt stress were analyzed, and real-time fluorescence quantitative PCR (qRT-PCR) was used to verify the specific expression of part family members at 16 h and 24 h.【Result】Based on salt-stressed transcriptome sequencing (RNA-seq) data, 161 Vicia faba F-box genes were annotated and all contain F-box conserved domain. According to different C-terminal domains, they were divided into 11 subfamilies (FBX, FBXFBA, FBXLRR, FBXPP2, FBXKelch, FBXTUB, FBXFBD, FBXDUF, FBXACTIN, FBXWD40, and FBO). The analysis of the conserved domain showed that the F-box conserved Motif contained an extremely conserved tryptophan residue. By comparing and analyzing the evolutionary tree constructed by the F-box family of Vicia faba and the F-box family of Arabidopsis thaliana, it was found that most of the genes in the same C-terminal domain were clustered together. The results of subcellular localization prediction showed that 124 F-box genes were located outside the cell, and 37 F-box genes were located in the nucleus. The analysis of gene structure showed that there were no introns in the DNA sequences of the F-box family genes of Vicia faba, and all of them were composed of UTR zone and CDS zone. Analysis of F-box differential expression patterns based on salt-stressed transcriptome data showed that F-box gene expression in Vicia faba was diverse from each other at two different processing time points, the expression was more obvious at 16 hours after salt treatment. The results of qRT-PCR analysis showed that there were five different genes in the F-box family. The expressions of Vf056266.1, Vf062764.1 and Vf024236.1 were all up-regulated at 16 hours after salt treatment, Vf060904.1 and Vf045761.1 were both down-regulated at 16 hours after salt treatment.【Conclusion】161 Vicia faba F-box genes were identified by family annotation, and they were identified by family annotation, which were Evolutionarily divided into 11 subfamilies. 5 important genes were obtained through a series of bioinformatics analysis. What’s more, there exist difference among the expressions in diverse salt treatment time.

Key words: Vicia faba L., RNA-seq, F-box gene family, salt stress, expression pattern

Table 1

Primers for real-time quantitative PCR"

基因Gene 正向引物序列Forward primer sequence (5′-3′) 反向引物序列Reverse primer sequence (5′-3′)
Vf056266.1 CACGCCCAAAATCTCAAGGT AAGTTGCTAGGCCTTCCAGT
Vf060904.1 TGAACGAAACTGGCTTGA CGATGGTGCGATAGAGGA
Vf062764.1 TTACCAATAACCCTTCCAC TCAATACGATTAGCACCCT
Vf024236.1 CTGCTGCTGTTGTGAAGA AACCAAACGGGAGAAGAT
Vf045761.1 CCGTCTCATACTATCGTCTGTT GGGTCGGCTTGGGAGGAAT
VfNADHD4 AGGGTTAGTGAGCACCATGC ATAGCCAAAGGGAATACGCC

Fig. 1

Conserved Motif of Vicia faba L.F-box protein"

Fig. 2

Phylogenetic analysis of F-box protein in Vicia faba L. and Arabidopsis thaliana"

Fig. 3

Sub-cellular localization of F-box gene family in Vicia faba L."

Fig. 4

Family structure and Motif analysis of F-box gene in Vicia faba L."

Fig. 5

The pattern of expression of F-box family in salt stress of Vicia faba L. The heat map was generated based on the calculation of sequencing data of salt stress of Vicia faba L.. Each kind of color represents the value of the corresponding relative expression. The higher the value, the higher the expression"

Fig. 6

F-box genes of Vicia faba L.for salt stress based on qRT-PCR"

[11] XU G, MA H, NEI M, KONG H. Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(3):835-840.
doi: 10.1073/pnas.0812043106 pmid: 19126682
[12] KIPREOS E T, PAGANO M. The F-box protein family. Genome Biology, 2000,1(5):1-7.
[13] SONG J B, WANG Y X, LI H B, LI B W, ZHOU Z S, GAO S, YANG Z M. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Functional Integrative Genomics, 2015,15(4):495-507.
doi: 10.1007/s10142-015-0438-z pmid: 25877816
[14] JIA Q, XIAO Z X, WONG F L, SUN S, LIANG K J, LAM H M. Genome-wide analyses of the soybean F-box gene family in response to salt stress. International Journal of Molecular Sciences, 2017,18(4):818-835.
doi: 10.3390/ijms18040818
[15] JAIN M, NIJHAWAN A, ARORA R, AGARWAL P, RAY S, SHARMA P, KAPOOR S, TYAGI A K, KHURANA J P. F-Box proteins in rice. genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 2007,143(4):1467-1483.
pmid: 17293439
[16] CUI H R, ZHANG Z R, LÜ W, XU J N, WANG X Y. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome. Molecular Genetics and Genomics, 2015,290(4):1435-1446.
doi: 10.1007/s00438-015-1004-z pmid: 25855485
[17] GUPTA S, GARG V, KANT C, BHATIA S. Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genomics, 2015,16(1):1-15.
doi: 10.1186/1471-2164-16-1
[18] WANG G M, YIN H, QIAO X, TAN X, GU C, WANG B H, CHENG R, WANG Y Z, ZHANG S L. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri). Plant Science, 2016,253:164-175.
doi: 10.1016/j.plantsci.2016.09.009 pmid: 27968985
[19] 王秀燕, 孙莉萍, 张建锋, 李辉, 吕文清, 张其清. F-box蛋白家族及其功能. 生命科学, 2008,20(5):807-811.
WANG X Y, SUN L P, ZHANG J F, LI H, LÜ W Q, ZHANG Q Q. F-box proteins and their functions. Life Sciences, 2008,20(5):807-811. (in Chinese)
[20] HEPWORTH S R, KLENZ J E, HAUGHN G W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006,223(4):769-778.
doi: 10.1007/s00425-005-0138-3 pmid: 16244866
[21] KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005,435(7041):446-451.
doi: 10.1038/nature03542 pmid: 15917798
[1] 王海飞, 关建平, 孙雪莲, 马钰, 宗绪晓. 世界蚕豆种质资源遗传多样性和相似性的ISSR分析. 中国农业科学, 2011,44(5):1056-1062.
WANG H F, GUAN J P, SUN X L, MA Y, ZONG X X. Genetic diversity and similarity of global faba bean (Vcia faba L.) germplasm revealed by ISSR markers. Scientia Agricultura Sinica, 2011,44(5):1056-1062. (in Chinese)
[22] WALSH T A, NEAL R, MERLO A O, HONMA M, HICKS G R, WOLFF K, MATSUMURA W, DAVIES J P. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiology, 2006,142:542-552.
doi: 10.1104/pp.106.085969 pmid: 16920877
[23] GOMI K, SASAKI A, ITOH H, UEGUCHI-TANAKA M, ASHIKARI M, KITANO H, MATSUOKA M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. The Plant Journal, 2004,37(4):626-634.
doi: 10.1111/j.1365-313x.2003.01990.x pmid: 14756772
[24] GAGNE J M, SMALLE J, GINGERICH D J, WALKER J M, YOO S D, YANAGISAWA S, VIERSTRA R D. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(17):6803-6808.
doi: 10.1073/pnas.0401698101 pmid: 15090654
[25] SHEARD L B, TAN X, MAO H, WITHERS J, BEN-NISSAN G, HINDS T R, KOBAYASHI Y, HSU F F, SHARON M, BROWSE J, HE S Y, RIZO J, HOWE G A, ZHENG N. Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor. Nature, 2010,468(7322):400-405.
doi: 10.1038/nature09430 pmid: 20927106
[26] IMAIZUMI T, SCHULTZ T F, HARMON F G, HO L A, KAY S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005,309(5732):293-297.
doi: 10.1126/science.1110586 pmid: 16002617
[27] ZHANG Y, XU W Y, LI Z H, DENG X W, WU W H, XUE Y B. F-Box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiology, 2008,148(4):2121-2133.
doi: 10.1104/pp.108.126912 pmid: 18835996
[28] SONG S, DAI X, ZHANG W H. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. Journal of Experimental Botany, 2012,63(15):5559-5568.
pmid: 22859682
[29] SONNEVELD T, TOBUTT K R, VAUGHAN S P, ROBBINS T P. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-Box gene. The Plant Cell, 2005,17(1):37-51.
doi: 10.1105/tpc.104.026963 pmid: 15598801
[30] GRABHERR M G, HAAS B J, YASSOUR M, LEVIN J Z, THOMPSON D A, AMIT I, ADICONIS X, FAN L, RAYCHOWDHURY R, ZENG Q, CHEN Z, MAUCELI E, HACOHEN N, GNIRKE A, RHIND N, DI PALMA F, BIRREN B W, NUSBAUM C, LINDBLAD- TOH K, FRIEDMAN N, REGEV A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011,29(7):644-652.
doi: 10.1038/nbt.1883 pmid: 21572440
[31] CHEN C J, XIA R, CHEN H, HE Y H. TBtools, a Toolkit for biologists integrating various biological data handing tools with a user friendly interface. Biorxiv.org, 2018,3(27):1020-1027.
[32] WANG G M, YIN H, QIAO X, TAN X, GU C, WANG B H, CHENG R, WANG Y Z, ZHANG S L. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear ( Pyrus bretschneideri). Plant Science, 2016,253:164-175.
doi: 10.1016/j.plantsci.2016.09.009 pmid: 27968985
[33] KOU Y, QIAO L, WANG Q. RETRACTED ARTICLE: Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumor Biology, 2015,36(4):2249-2255.
doi: 10.1007/s13277-014-2832-x pmid: 25412953
[34] ZHANG H M, WHEELER S L, XIA X, COLYVAS K, OFFLER C E, PATRICK J W. Transcript profiling identifies gene cohorts controlled by each signal regulating trans-differentiation of epidermal cells of Vicia faba cotyledons to a transfer cell phenotype. Frontiers in Plant Science, 2017,8:2021.
doi: 10.3389/fpls.2017.02021 pmid: 29234338
[35] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT-method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[36] BAI C, SEN P, HOFMANN K, MA L, GOEBL M, HARPER J W, ELLEDGE S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996,86(2):263-274.
doi: 10.1016/s0092-8674(00)80098-7 pmid: 8706131
[37] KURODA H, YANAGAWA Y, TAKAHASHI N, HORII Y, MATSUI M. A comprehensive analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and F-box (FBX) proteins. PLoS ONE, 2012,7(11):e50009.
doi: 10.1371/journal.pone.0050009 pmid: 23166809
[38] JIA F Y, WANG C Y, HUANG J G, YANG G D, WU C G, ZHENG C C. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. Journal of Experimental Botany, 2015,66(15):4683-4697.
doi: 10.1093/jxb/erv245 pmid: 26041321
[39] AN J P, LI R, QU F J, YOU C X, WANG X F, HAO Y J. Apple F-Box protein MdMAX2 regulates plant photomorphogenesis and stress response. Frontiers in Plant Science, 2016,7:01685.
[40] HEPWORTH S R, KLENZ J E, HAUGHN G W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006,223(4):769-778.
doi: 10.1007/s00425-005-0138-3 pmid: 16244866
[41] 刘巧红, 杨亮, 刘志斌, 李旭锋, 杨毅. 拟南芥AtTR1在盐胁迫应答中的功能初探. 四川大学学报(自然科学版), 2016,53(4):895-901.
LIU Q H, YANG L, LIU Z B, LI X F, YANG Y. First exploration on protein function of Arabidopsis AtTR1 in response to salt stress. Journal of Sichuan University (Natural Science Edition), 2016,53(4):895-901. (in Chinese)
[42] 严莉, 王翠平, 陈建伟, 乔改霞, 李健. 基于转录组信息的黑果枸杞MYB转录因子家族分析. 中国农业科学, 2017,50(20):3991-4002.
doi: 10.3864/j.issn.0578-1752.2017.20.013
YAN L, WANG C P, CHEN J W, QIAO G X, LI J. Analysis of MYB Transcription Factor Family Based on Transcriptome Sequencing in Lycium ruthenicum Murr. Scientia Agricultura Sinica, 2017,50(20):3991-4002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.013
[43] 段桂芳, 王立群, 李新梅, 赵福, 罗俊, 赵小英, 刘选明. 拟南芥F-box基因At3g16740的表达分析. 生命科学研究, 2013,17(6):486-492.
DUAN G F, WANG L Q, LI X M, ZHAO F, LUO J, ZHAO X Y, LIU X M. Expression Analysis of F-box Gene At3g16740 in Arabidopsis. Life Science Research, 2013,17(6):486-492. (in Chinese)
[44] MÁS P, KIM W Y, SOMERS D E, KAY S A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 2003,426(6966):567-570.
doi: 10.1038/nature02163 pmid: 14654842
[2] BAUTE J, POLYN S, DE BLOCK J, BLOMME J, VAN LIJSEBETTENS M, INZÉ D. F-Box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiology, 2017,58(5):962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173
[3] ZHAO Z, ZHANG G, ZHOU S, REN Y, WANG W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Science, 2017,259:71-85.
doi: 10.1016/j.plantsci.2017.03.010 pmid: 28483055
[4] STEFANOWICZ K, LANNOO N, ZHAO Y, EGGERMONT L, VAN HOVE J, AL ATALAH B, VAN DAMME E J. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection. BMC Plant Biology, 2016,16(1):213-226.
pmid: 27716048
[5] SMALLE J, VIERSTRA R D. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 2004,55:555-590.
doi: 10.1146/annurev.arplant.55.031903.141801 pmid: 15377232
[6] SADANANDOM A, BAILEY M, EWAN R, LEE J, NELIS S. The ubiquitin-proteasome system: Central modifier of plant signalling. New Phytologist, 2012,196(1):13-28.
doi: 10.1111/j.1469-8137.2012.04266.x pmid: 22897362
[7] HO M S, OU C, CHAN Y R, CHIEN C T, PI H. The utility Fbox for protein destruction. Cellular and Molecular Life Sciences, 2008,65(13):1977-2000.
doi: 10.1007/s00018-008-7592-6 pmid: 18344020
[8] SOMERS D E, FUJIWARA S. Thinking outside the F-box: Novel ligands for novel receptors. Trends in Plant Science, 2009,14(4):206-213.
doi: 10.1016/j.tplants.2009.01.003 pmid: 19285909
[9] HUA Z, ZOU C, SHIU S H, VIERSTRA R D. Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS ONE, 2011,6(1):e16219.
doi: 10.1371/journal.pone.0016219 pmid: 21297981
[10] NAVARRO-QUEZADA A, SCHUMANN N, QUINT M. Plant F-box protein evolution is determined by lineage-specific timing of major gene family expansion waves. PLoS ONE, 2013,8(7):e68672.
doi: 10.1371/journal.pone.0068672 pmid: 23904908
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[3] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[4] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[5] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[6] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[7] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[8] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[9] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[10] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[11] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[12] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[13] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[14] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[15] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!