Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 152-163.doi: 10.3864/j.issn.0578-1752.2021.01.011

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis)

LI Hui1(),HAN ZhanPin1,HE LiXia2(),YANG YaLing1,YOU ShuYan2,DENG Lin2,WANG ChunGuo2   

  1. 1College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384
    2College of Life Sciences, Nankai University, Tianjin 300071
  • Received:2020-04-12 Accepted:2020-06-29 Online:2021-01-01 Published:2021-01-13
  • Contact: Hui LI,LiXia HE E-mail:lihui@tjau.edu.cn;helx@mail.nankai.edu.cn

Abstract:

【Objective】In our previous study, Ethylene-responsive factors (ERFs) involved in abiotic stress responses in cauliflower were identified. In the present study, one of these ERF transcription factors with unknown function, named BraERF023a, was cloned. The expression profiles and function of BraERF023a under salt and drought stresses were further explored. 【Method】BraERF023a was cloned by RT-PCR in cauliflower. The sequence characteristics of BraERF023a were analyzed by biosoftwares such as MEGA 6. The expression profiles of BraERF023a under salt and drought stresses were explored by qRT-PCR. BraERF023a overexpression vector was then constructed and genetically transformed into Arabidopsis. The phenotypes and survival rate of overexpression BraERF023a transgenic Arabidopsis under salt and drought stresses were observed and analyzed.【Result】Sequence analysis confirmed that BraERF023a coding region was 597 bp in length and encoded a protein containing 198 amino acids with an AP2 conserved domain. BraERF023a was highly conserved in Brassica. The expression level of BraERF023a significantly increased under both salt and drought stresses in cauliflower. Functional analysis indicated that comparative with the wild-type controls, overexpression BraERF023a transgenic Arabidopsis lines exhibited better growth vigor and higher plant survival rate under salt or drought stress.【Conclusion】 BraERF023a played important roles in positive response to salt and drought stresses in cauliflower. Overexpression of BraERF023a in Arabidopsis could significantly improve the tolerance of transgenic lines to salt and drought stresses.

Key words: cauliflower, ERF transcription factor, BraERF023a, salt stress, drought stress

Table 1

Primers used for BraERF023a cloning, vector construction and qRT-PCR assay"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
BraERF023a-F ATGCTGAGTACAGTGAGTGAAACC
BraERF023a-R TCACAGACACGCCATGAACTG
Nco I-BraERF023a-F CCATGGATGCTGAGTACAGTGAGTG
BstE II-BraERF023a-R GGTCACCTCACAGACACGCCAT
qBraERF023a-F CCACCACTTACCAACGAAC
qBraERF023a-R AAGATCCGAGCCAAATCCG
35S-F AACAGAACTCGCCGTAAAG
BraActin-F GCTCCTCTTAACCCAAAGGC
BraActin-R CACACCATCACCAGAATCCAGC
AtActin-F GGTAACATTGTGCTCAGTGGTGG
AtActin-R AACGACCTTAATCTTCATGCTGC

Fig. 1

Sequence analysis of BraERF023a in cauliflower Sequences marked by the black lines indicated the AP2 domain, and the boxes indicated the conserved fourteenth and nineteenth amino acids in the AP2 domain of ERFs, respectively"

Fig. 2

Expression profiles of BraERF023a under salt (a) and drought (b) stresses detected by qRT-PCR ** indicated the difference is significant at the 0.01 level. The same as below"

Fig. 3

Identification of BraERF023a in Agrobacterium tumefaciens and transgenic lines in Arabidopsis a: Identification of Agrobacterium tumefaciens with BraERF023a by PCR used the specific primers and combined primers, respectively. M: DNA marker, 1-6 indicated PCR identification used the specific primers, 1′-6′ indicated PCR identification used the combined primers. b: Identification of individual Arabidopsis plant with BraERF023a by PCR used the specific primers and combined primers, respectively. M: DNA marker, 1-10 indicated PCR identification of individual plants used the specific primers, 1′-10′ indicated PCR identification of individual plant used the combined primers. c: Expression levels of BraERF023a in differential overexpression BraERF023a transgenic Arabidopsis lines detected by qRT-PCR, CK: Wild-type control, L3/L4/L6/L8/L9 indicated the five independent transgenic lines"

Fig. 4

Phenotypes of overexpression BraERF023a transgenic Arabidopsis at different developmental stages a, b and c indicated the phenotypes of 3-week-old, 4-week-old and 8-week-old overexpression BraERF023a transgenic Arabidopsis and the control (CK). L4/L8/L9 indicated three independent overexpression BraERF023a transgenic lines"

Table 2

Phenotypic analysis of overexpression BraERF023a transgenic Arabidopsis"

表型Phenotype 对照CK L4 L8 L9
株高 Stem length (cm) 43.125±2.780c 56.750±3. 862a 51.125±1.0307ab 49.625±3.0923b
抽薹时间 Bolting time (d) 26.00±2.4495b 32.00±2.4495a 29±1.9148a 31.00±1.2583a
茎粗 Stem diameter (mm) 1.2375±0.0727b 1.7800±0.2191a 1.6300±0.1551a 1.7125±0.1059a
主茎 Stem (number) 5.75±0.9574c 6.75±1.0708ab 6.25±0.5000b 7.775±0.5774a
一级分枝 Primary branch (number) 13.75±2.630b 15.00±2.449ab 16.00±3.742a 13.75±5.132b
二级分枝 Secondary branch (number) 5.00±0.816a 5.00±1.155a 5.75±2.602a 6.00±1.15a
果荚长 Pod length (mm) 18.000±1.0475a 17.153±1.3553a 17.600±1.2035a 18.028±0.8587a

Fig. 5

Phenotypes of overexpression BraERF023a transgenic Arabidopsis under salt stress a: The phenotypes of overexpression BraERF023a transgenic Arabidopsis (L4, L8, L9) and control before salt stress (200 mmol·L-1 NaCl); b: The phenotypes of overexpression BraERF023a transgenic Arabidopsis (L4, L8, L9) and control under salt stress (200 mmol?L-1 NaCl) for three weeks"

Fig. 6

Phenotypes of overexpression BraERF023a transgenic Arabidopsis under drought stress L4, L8, L9 indicated three independent overexpression BraERF023a transgenic lines; CK indicated wild-type control"

Fig. 7

Survival rate of overexpression BraERF023a transgenic Arabidopsis under drought stress L4, L8 and L9 indicated three independent overexpression BraERF023a transgenic lines; CK indicated wild-type control"

[1] FEDOROFF N V, BATTISTI D S, BEACHY R N, COOPER P J M, FISCHHOFF D A, HODGES C N, KNAUF V C, LOBELL D, MAZUR B J, MOLDEN D, REYNOLDS M P, RONALD P C, ROSEGRANT M W, SANCHEZ P A, VONSHAK A, ZHU J K. Radically rethinking agriculture for the 21st century. Science, 2010,327(5967):833-834.
doi: 10.1126/science.1186834 pmid: 20150494
[2] 邵文靖, 敖特根白音, 郎明林. AP2/ERF转录因子对植物非生物胁迫的应答机制研究进展. 分子植物育种, 2020. http://kns.cnki.net/kcms/detail/46.1068.S.20200226.2306.014.html.
doi: 10.1111/pbr.12645 pmid: 31598026
SHAO W J, AO T G B Y, LANG M L. Mechanism of AP2/ERF transcription factor response to plant abiotic stress. Molecular Plant Breeding, 2020. http://kns.cnki.net/kcms/detail/46.1068.S.20200226.2306.014.html.(in Chinese)
doi: 10.1111/pbr.12645 pmid: 31598026
[3] SINGH K B, FOLEY R C, LUIS OATE-FÁNCHEZ. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 2002,5(5):430-436.
doi: 10.1016/S1369-5266(02)00289-3
[4] JOFUKU K D, DEN BOER B G, VAN MONTAGU M, OKAMURO J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 1994,6(9):1211-1225.
doi: 10.1105/tpc.6.9.1211 pmid: 7919989
[5] ALLEN M D, YAMASAKI K, OHME-TAKAGI M, TATENO M, SUZUKI M. A novel mode of DNA recognition by a beta- sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 1998,17(18):5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626
[6] NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783 pmid: 16407444
[7] SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI K, YAMAGUCHI-FHINOZAKI K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002,290(3):998-1009.
doi: 10.1006/bbrc.2001.6299 pmid: 11798174
[8] KRIZEK B A. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Research, 2003,31(7):1859-1868.
doi: 10.1093/nar/gkg292 pmid: 12655002
[9] YAMAGUCHI-FHINOZAKI K, SHINOZAKI K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006,57(1):781-803.
doi: 10.1146/annurev.arplant.57.032905.105444
[10] HATTORI Y, NAGAI K, FURUKAWA S, SONG X J, KAWANO R, SAKAKIBARA H, WU J H, MATSUMOTO T, YOSHIMURA A, KITANO H, MATSUOKA M, MORI H, ASHIKARI M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009,460(7258):1026-1030.
doi: 10.1038/nature08258 pmid: 19693083
[11] NIE J, WEN C, XI L, LV S H, ZHAO Q C, KOU Y P, MA N, ZHAO L J, ZHOU X F. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Reports, 2018,37(7):1049-1060.
doi: 10.1007/s00299-018-2290-9 pmid: 29687169
[12] 翟莹, 赵艳, 杨晓杰, 孙天国, 张军, 姚雅男. 大豆乙烯响应因子GmERF6的功能分析. 生物技术通报, 2013(12):73-77.
ZHAI Y, ZHAO Y, YANG X J, SUN T G, ZHANG J, YAO Y N. Functional analysis of soybean ethylene-response factor GmERF6. Biotechnology Bulletin, 2013(12):73-77. (in Chinese)
[13] LI Y, ZHANG H, ZHANG Q, LIU Q C, ZHAI H, ZHAO N, HE S Z. An AP2/ERF gene, IbRAP2-12, from sweet potato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science, 2019,281:19-30.
doi: 10.1016/j.plantsci.2019.01.009 pmid: 30824052
[14] SEO Y J, PARK J B, CHO Y J, JUNG C, SEO H S, PARK S K, NAHM B H, SONG J T. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Molecule Cells, 2010,30(3):271-277.
doi: 10.1007/s10059-010-0114-z
[15] PARK H Y, SEOK H Y, WOO D H, LEE S Y, TARTE V N, LEE E H, LEE C H, MOON Y H. AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochemical and Biophysical Research Communications, 2011,414(1):135-141.
doi: 10.1016/j.bbrc.2011.09.039
[16] LEE J H, HONG J P, OH S K, LEE S, CHOI D, KIM W T. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Molecular Biology, 2004,55(1):61-81.
doi: 10.1007/s11103-004-0417-6
[17] YI S Y, KIM J H, JOUNG Y H, LEE S, KIM W T, YU S H, CHOI D. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiology, 2004,136(1):2862-2874.
doi: 10.1104/pp.104.042903 pmid: 15347795
[18] HUANG Z J, ZHANG Z J, ZHANG X L, ZHANG H B, HUANG D F, HUANG R F. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letter, 2004,573(1):110-116.
doi: 10.1016/j.febslet.2004.07.064
[19] ZHANG H W, HUANG Z J, XIE B Y, CHEN Q, TIAN X, ZHANG X L, ZHANG H B, LU X Y, HUANG D F, HUANG R F. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta, 2004,220(2):262-270.
doi: 10.1007/s00425-004-1347-x
[20] XU Z S, XIA L Q, CHEN M, CHENG X G, ZHANG R Y, LI L C, ZHAO Y X, LU Y, NI Z Y, LIU L, QIU Z G, MA Y Z. Isolation and molecular characterization of the Triticum aestivum L. ethylene- responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecule Biology, 2007,65(6):719-732.
[21] LI H, WANG Y, WU M, LI L H, LI C, HAN Z P, YUAN J Y, CHEN C B, SONG W Q, WANG C G. Genome-wide identification of AP2/ERF transcription factors in cauliflower and expression profiling of the ERF family under salt and drought stresses. Frontiers in Plant Science, 2017,8:946.
doi: 10.3389/fpls.2017.00946 pmid: 28642765
[22] MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Biophysica Acta, 2012,1819(2):86-96.
[23] WU L J, CHEN X L, REN H Y, ZHANG Z J, ZHANG H W, WANG J Y, WANG X C, HUANG R F. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta, 2007,226(4):815-825.
doi: 10.1007/s00425-007-0528-9
[24] CHENG M C, LIAO P M, KUO W W, LIN T P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress- responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 2013,162(2):1566-1582.
doi: 10.1104/pp.113.221911
[25] 王佳慧, 顾凯迪, 王楚堃, 由春香, 胡大刚, 郝玉金. 苹果乙烯响应因子MdERF72对非生物胁迫的响应. 中国农业科学, 2019,52(23):4374-4385.
doi: 10.3864/j.issn.0578-1752.2019.23.017
WANG J H, GU K D, WANG C K, YOU C X, HU D G, HAO Y J. Analysis of apple ethylene response factor MdERF72 to abiotic stresses. Scientia Agricultura Sinica, 2019,52(23):4374-4385. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.23.017
[26] ZHUO C L, LIANG L, ZHAO Y Q, GUO Z F, LU S Y, ZHOU C L. A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell and Environment, 2018,41(9):2021-2032.
[27] BOLT S, ZUTHER E, ZINTL S, HINCHA D K, SCHMÜLLING T. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell and Environment, 2017,40(1):108-120.
doi: 10.1111/pce.12838
[28] ILLGEN S, ZINTL S, ZUTHER E, HINCHA D K, SCHMÜLLING T. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Molecule Biology, 2020,103(3):303-320.
[29] BIELSA B, HEWITT S, REYES-CHIN-WO S, DHINGRA A, RUBIO-CABETAS M J. Identification of water use efficiency related genes in ‘garnem’ almond-peach rootstock using time-course transcriptome analysis. PLoS ONE, 2018,13(10):e0205493.
doi: 10.1371/journal.pone.0205493 pmid: 30308016
[30] KARABA A, DIXIT S, GRECO R, AHARONI A, TRIJATMIKO K R, MARSCH-MARTINEZ N, KRISHNAN A, NATARAJA K N, UDAYAKUMAR M, PEREIRA A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences of the USA, 2007,104(39):15270-15275.
[31] 张军辉. 葡萄灰霉病抗性QTL定位及候选基因研究[D]. 沈阳: 沈阳农业大学, 2018.
ZHANG J H. QTL mapping and candidate gene research of grapevine Botrytis cinerea resistance[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[32] XIE Z L, NOLAN T, JIANG H, TANG B Y, ZHANG M C, LI Z H, YIN Y H. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. The Plant Cell, 2019,31(8):1788-1806.
doi: 10.1105/tpc.18.00918 pmid: 31126980
[33] QI W W, SUN F, WANG Q J, CHEN M L, HUANG Y Q, FENG Y Q, LUO X J, YANG J S. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiology, 2011,157(1):216-228.
doi: 10.1104/pp.111.179945
[34] NAKANO T, FUJISAWA M, SHIMA Y, ITO Y. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 2014,65:3111-3119.
doi: 10.1093/jxb/eru154
[35] SCARPECI T E, FREA V S, ZANOR M I, VALLE E M. Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. Journal of Experimental Botany, 2017,68(3):673-685.
doi: 10.1093/jxb/erw429 pmid: 28204526
[36] 潘健, 温海帆, 何欢乐, 连红莉, 王刚, 潘俊松, 蔡润. 黄瓜ERF基因家族鉴定及其在雌花芽分化中的表达分析. 中国农业科学, 2020,53(1):133-147.
doi: 10.3864/j.issn.0578-1752.2020.01.013
PAN J, WEN H F, HE H L, LIAN H L, WANG G, PAN J S, CAI R. Genome-wide identification of cucumber ERF gene family and expression analysis in female bud differentiation. Scientia Agricultura Sinica, 2020,53(1):133-147. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.01.013
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[8] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[9] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[10] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[11] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[12] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[15] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!