Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4851-4868.doi: 10.3864/j.issn.0578-1752.2021.22.012
• HORTICULTURE • Previous Articles Next Articles
WANG Jie(),WU XiaoYu,YANG Liu,DUAN QiaoHong(),HUANG JiaBao()
[1] | 李正吉, 赵胜业, 倪树林, 周民. 喷盐水克服大白菜自交不亲和的研究. 蔬菜, 1997(1): 28. |
LI Z J, ZHAO S Y, NI S L, ZHOU M. Study on overcoming self-incompatibility of Chinese cabbage by spraying salt water. Vegetable, 1997(1): 28. (in Chinese) | |
[2] |
SPALDING E P, HARPER J F. The ins and outs of cellular Ca2+ transport. Current Opinion in Plant Biology, 2011, 14(6): 715-720.
doi: 10.1016/j.pbi.2011.08.001 |
[3] | 王精明, 李洪清, 李美茹. 水稻幼苗根细胞质膜和液泡膜微囊Ca2+-ATP酶的特性. 植物生理学通讯, 2004, 40(1): 22-26. |
WANG J M, LI H Q, LI M R. Characteristics of Ca2+-ATPase of plasma membrane and tonoplast membrane vesicles from roots of rice seedlings. Plant Physiology Communications, 2004, 40(1): 22-26. (in Chinese) | |
[4] |
PUTNEY J W. A model for receptor-regulated calcium entry. Cell Calcium, 1986, 7(1): 1-12.
doi: 10.1016/0143-4160(86)90026-6 |
[5] |
TOYOSHIMA C, NOMURA H, SUGITA Y. Structural basis of ion pumping by Ca2+-ATPase of sarcoplasmic Reticulum. FEBS Letters, 2003, 555(1): 106-110.
doi: 10.1016/S0014-5793(03)01086-X |
[6] |
HEPLER P K. Calcium: a central regulator of plant growth and development. The Plant Cell, 2005, 17(8): 2142-2155.
doi: 10.1105/tpc.105.032508 |
[7] | 任衍钢, 白冠军, 宋玉奇, 路彦文. 钙泵的发现历程. 生物学通报, 2018, 53(10): 57-60. |
REN Y G, BAI G J, SONG Y Q, LU Y W. The discovery of calcium pump. Bulletin of Biology, 2018, 53(10): 57-60. (in Chinese) | |
[8] | 李唯奇, 张洁, 张旭东, 王瑞萍. 拟南芥At-ACA8基因在植物抗逆及调控植物生长发育中的应用. CN103122357A. 2013. |
LI W Q, ZHANG J, ZHANG X D, WANG R P. Application of Arabidopsis At-ACA8 gene in plant stress resistance and regulation of plant growth and development. CN103122357A. 2013. (in Chinese) | |
[9] |
HARPER J F, HONG B, HWANG I, GUO H Q, STODDARD R, HUANG J F, PALMGREN M G, SZE H. A novel calmodulin- regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. The Journal of Biological Chemistry, 1998, 273(2): 1099-1106.
doi: 10.1074/jbc.273.2.1099 |
[10] |
WIMMERS L E, EWING N N, BENNETT A B. Higher plant Ca2+-ATPase: primary structure and regulation of mRNA abundance by salt. PNAS, 1992, 89(19): 9205-9209.
doi: 10.1073/pnas.89.19.9205 |
[11] | 刘宇欣, 束艺, 张念, 陈秀玲, 王傲雪. 茄科植物Ca2+-ATPase基因家族鉴定及分析. 分子植物育种, 2021(13): 4268-4277. |
LIU Y X, SHU Y, ZHANG N, CHEN X L, WANG A X. Identification and analysis of Ca2+-ATPase gene family in Solanaceae. Molecular Plant Breeding, 2021(13): 4268-4277. (in Chinese) | |
[12] |
CHEN F, MOTTINO G, SHIN V Y, FRANK J S. Subcellular distribution of ankyrin in developing rabbit heart: relationship to the Na+-Ca2+ exchanger. Journal of Molecular and Cellular Cardiology, 1997, 29(10): 2621-2629.
doi: 10.1006/jmcc.1997.0475 |
[13] | 彭陈. 稻瘟菌P型ATP酶的基因家族分析及其基因MoCTA1、MoCTA3的研究[D]. 合肥: 安徽农业大学, 2012. |
PENG C. Analysis of P-type ATPase gene family of Magnaporthe grisea and its genes MoCTA1 and MoCTA3[D]. He Fei: Anhui Agricultural University, 2012. (in Chinese) | |
[14] |
LEE J, PARK I, LEE Z W, KIM S W, BAEK N, PARK H S, PARK S U, KWON S, KIM H. Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Molecular Biology Reports, 2013, 40(1): 177-188.
doi: 10.1007/s11033-012-2047-4 |
[15] |
SUN M Z, JIA B W, CUI N, WEN Y D, DUANMU H Z, YU Q Y, XIAO J L, SUN X L, ZHU Y M. Functional characterization of a Glycine soja Ca2+ ATPase in salt-alkaline stress responses. Plant Molecular Biology, 2016, 90(4): 419-434.
doi: 10.1007/s11103-015-0426-7 |
[16] | 张美萍, 杨珺凯, 孙明哲, 贾博为, 孙晓丽. 基于家族分析的苜蓿逆境应答Ca2+ATPase家族基因筛选与鉴定. 植物生理学报, 2017, 53(2): 198-208. |
ZHANG M P, YANG J K, SUN M Z, JIA B W, SUN X L. Screening and identification of environmental stress responsive Medicago sativa Ca2+ ATPases based on gene family analyses. Plant Physiology Communications, 2017, 53(2): 198-208. (in Chinese) | |
[17] |
PALMGREN M G, NISSEN P. P-type ATPases. Annual Review of Biophysics, 2011, 40(1): 243.
doi: 10.1146/biophys.2011.40.issue-1 |
[18] | HANIKENNE M, BAURAIN D. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). Frontiers in Plant Science, 2013, 4: 544. |
[19] | GEISLER M, AXELSEN K B, HARPER J F, PALMGREN M G. Molecular aspects of higher plant P-type Ca2+-ATPases. Biochimica et Biophysica Acta, 2000, 1465(1/2): 52-78. |
[20] |
AXELSEN K B, PALMGREN M G. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 2001, 126(2): 696-706.
doi: 10.1104/pp.126.2.696 |
[21] |
YU H Y, YAN J P, DU X G, HUA J. Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. Journal of Experimental Botany, 2018, 69(10): 2693-2703.
doi: 10.1093/jxb/ery073 |
[22] |
LIANG F, CUNNINGHAM K W, HARPER J F, SZE H. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic Reticulum-type Ca 2+-ATPase in Arabidopsis thaliana. PNAS, 1997, 94(16): 8579-8584.
doi: 10.1073/pnas.94.16.8579 |
[23] | GEORGE L, ROMANOWSKY S M, HARPER J F, SHARROCK R A. The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiology, 2007, 146(2): 323-324. |
[24] | SCHIOTT M, ROMANOWSKY S M, BAEKGAARD L, JAKOBSEN M K, PALMGREN M G, HARPER J F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proceedings of the National Academy of Sciences, 2004, 101(25): 9502-9507. |
[25] |
LI X Y, CHANROJ S, WU Z Y, ROMANOWSKY S M, HARPER J F, SZE H. A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process. Plant Physiology, 2008, 147(4): 1675-1689.
doi: 10.1104/pp.108.119909 |
[26] | HUDA K M, BANU M S, GARG B, TULA S, TUTEJA R, TUTEJA N. OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing stress-responsive genes. Plant Journal for Cell & Molecular Biology, 2013, 76(6): 997. |
[27] | 程涣, 苏同兵, 于拴仓, 张凤兰, 余阳俊, 张德双, 赵岫云, 汪维红, 卢桂香, 龚义勤, 柳李旺. 大白菜钙运输基因ECA和钙响应基因CAS在缺钙胁迫下的表达分析. 植物生理学报, 2015, 51(4): 566-572. |
CHENG H, SU T B, YU S C, ZHANG F L, YU Y J, ZHANG D S, ZHAO X Y, WANG W H, LU G X, GONG Y Q, LIU L W. Expression analysis of Ca2+Transport and response genes, ECA and CAS, in cabbage under calcium deficiency condition. Plant Physiology Communications, 2015, 51(4): 566-572. (in Chinese) | |
[28] |
ROMBAUTS S, DÉHAIS P, VAN MONTAGU M, ROUZÉ P. PlantCARE, a plant Cis-acting regulatory element database. Nucleic Acids Research, 1999, 27(1): 295-296.
doi: 10.1093/nar/27.1.295 |
[29] |
ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTRO E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40: W597-W603.
doi: 10.1093/nar/gks400 |
[30] |
HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K T. WoLF PSORT: protein localization predictor. Nucleic Acids Research, 2007, 35(Web Server issue): W585-W587.
doi: 10.1093/nar/gkm259 |
[31] |
TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
doi: 10.1093/molbev/msr121 |
[32] | GUO A Y, ZHU Q H, CHEN X, LUO J C. GSDS: a gene structure display server. Hereditas, 2007, 29(8): 1023-1026. |
[33] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[34] |
WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T H, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49.
doi: 10.1093/nar/gkr1293 |
[35] |
XU Q F, DUNBRACK R L. Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB. Bioinformatics, 2012, 28(21): 2763-2772.
doi: 10.1093/bioinformatics/bts533 |
[36] |
BAILEY T L, WILLIAMS N, MISLEH C, LI W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 2006, 34(Suppl_2): W369-W373.
doi: 10.1093/nar/gkl198 |
[37] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[38] | 常琳, 刘妍, 董发才, 宋纯鹏. 拟南芥内源茉莉酸甲酯缓解盐胁迫的生理生化分析. 中国植物生理学会第十次会员代表大会暨全国学术年会.开封. 2009. |
CHANG L, LIU Y, DONG F C, SONG C P. Physiological and biochemical analysis of endogenous methyl jasmonate alleviating salt stress in Arabidopsis thaliana. The 10th Congress of the Chinese society of plant physiology and its annual meeting. Kaifeng. 2009. (in Chinese) | |
[39] | 庞洪影. 茉莉酸甲酯调控刺槐抗盐性的生理机制研究[D]. 哈尔滨: 东北林业大学, 2012. |
PANG H Y. Physiological mechanism of methyl jasmonate regulating salt resistance of Robinia pseudoacacia[D]. Harbin: Northeast Forestry University, 2012. (in Chinese) | |
[40] |
MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
doi: 10.1038/nmeth.1226 |
[41] |
GIFFORD J L, WALSH M P, VOGEL H J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 2007, 405(2): 199-221.
doi: 10.1042/BJ20070255 |
[42] | 汤寓涵, 夏星, 陈德伟, 赵大球, 陶俊. 芍药CIPK基因克隆及其响应钙调控的表达水平研究. 植物生理学报, 2018, 54(8): 1316-1324. |
TANG Y H, XIA X, CHEN D W, ZHAO D Q, TAO J. Cloning of herbaceous peony CIPK gene and its expression level analysis in response to calcium regulation. Plant Physiology Communications, 2018, 54(8): 1316-1324.(in Chinese) | |
[43] |
BAXTER I, TCHIEU J, SUSSMAN M R, BOUTRY M, PALMGREN M G, GRIBSKOV M, HARPER J F, AXELSEN K B. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology, 2003, 132(2): 618-628.
doi: 10.1104/pp.103.021923 |
[44] |
HUDA K M K, BANU M S A, GARG B, TULA S, TUTEJA R, TUTEJA N. OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. The Plant Journal, 2013, 76(6): 997-1015.
doi: 10.1111/tpj.2013.76.issue-6 |
[45] |
IWANO M, IGARASHI M, TARUTANI Y, KAOTHIEN-NAKAYAMA P, NAKAYAMA H, MORIYAMA H, YAKABE R, ENTANI T, SHIMOSATO-ASANO H, UEKI M, TAMIYA G, TAKAYAMA S. A pollen coat-inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. The Plant Cell, 2014, 26(2): 636-649.
doi: 10.1105/tpc.113.121350 |
[46] |
GIACOMETTI S, MARRANO C A, BONZA M C, LUONI L, LIMONTA M, DE MICHELIS M I. Phosphorylation of serine residues in the N-Terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. Journal of Experimental Botany, 2011, 63(3): 1215-1224.
doi: 10.1093/jxb/err346 |
[47] | 周君, 肖伟, 陈修德, 高东升, 李玲. 外源钙对‘黄金梨’叶片光合特性及果实品质的影响. 植物生理学报, 2018, 54(3): 449-455. |
ZHOU J, XIAO W, CHEN X D, GAO D S, LI L. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae’ pear. Plant Physiology Communications, 2018, 54(3): 449-455.(in Chinese) | |
[48] | 赵娟, 王芳, 李永生, 姚海梅, 张同祯, 方永丰, 王汉宁. 钙对低温胁迫下玉米种子萌发及幼苗生长的影响. 甘肃农业大学学报, 2016, 51(6): 30-35. |
ZHAO J A, WANG F, LI Y S, YAO H M, ZHANG T Z, FANG Y F, WANG H N. Effects of calcium on maize seed germination and seedling growth under low temperature stress. Journal of Gansu Agricultural University, 2016, 51(6): 30-35.(in Chinese) | |
[49] | 史晓龙, 张智猛, 戴良香, 张冠初, 慈敦伟, 丁红, 田家明. 外源施钙对盐胁迫下花生营养元素吸收与分配的影响. 应用生态学报, 2018(10): 3302-3310. |
SHI X L, ZHANG Z M, DAI L X, ZHANG G C, CI D W, DING H, TIAN J M. Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress. Chinese Journal of Applied Ecology, 2018(10): 3302-3310.(in Chinese) | |
[50] |
YANG X E, WANG S S, WANG M, QIAO Z, BAO C C, ZHANG W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Molecular Biology, 2014, 86(3): 225-236.
doi: 10.1007/s11103-014-0220-y |
[1] | HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. |
[2] | HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708. |
[3] | ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525. |
[4] | LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963. |
[5] | ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683. |
[6] | SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584. |
[7] | WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260. |
[8] | KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083. |
[9] | LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163. |
[10] | XU ChunMei,ZOU Ya,LIU ZiGang,MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing. Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa [J]. Scientia Agricultura Sinica, 2020, 53(5): 929-941. |
[11] | ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682. |
[12] | ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473. |
[13] | SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981. |
[14] | HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454. |
[15] | YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340. |
|